MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soltmin Structured version   Visualization version   GIF version

Theorem soltmin 6125
Description: Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
soltmin ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵𝐴𝑅𝐶)))

Proof of Theorem soltmin
StepHypRef Expression
1 sopo 5580 . . . . . 6 (𝑅 Or 𝑋𝑅 Po 𝑋)
21ad2antrr 726 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝑅 Po 𝑋)
3 simplr1 1216 . . . . . 6 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑋)
4 simplr2 1217 . . . . . . 7 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐵𝑋)
5 simplr3 1218 . . . . . . 7 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐶𝑋)
64, 5ifcld 4547 . . . . . 6 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋)
73, 6, 43jca 1128 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐵𝑋))
8 simpr 484 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
9 simpll 766 . . . . . 6 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝑅 Or 𝑋)
10 somin1 6122 . . . . . 6 ((𝑅 Or 𝑋 ∧ (𝐵𝑋𝐶𝑋)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵)
119, 4, 5, 10syl12anc 836 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵)
12 poltletr 6121 . . . . . 6 ((𝑅 Po 𝑋 ∧ (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐵𝑋)) → ((𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵) → 𝐴𝑅𝐵))
1312imp 406 . . . . 5 (((𝑅 Po 𝑋 ∧ (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐵𝑋)) ∧ (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵)) → 𝐴𝑅𝐵)
142, 7, 8, 11, 13syl22anc 838 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅𝐵)
153, 6, 53jca 1128 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐶𝑋))
16 somin2 6124 . . . . . 6 ((𝑅 Or 𝑋 ∧ (𝐵𝑋𝐶𝑋)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶)
179, 4, 5, 16syl12anc 836 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶)
18 poltletr 6121 . . . . . 6 ((𝑅 Po 𝑋 ∧ (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐶𝑋)) → ((𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
1918imp 406 . . . . 5 (((𝑅 Po 𝑋 ∧ (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐶𝑋)) ∧ (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶)) → 𝐴𝑅𝐶)
202, 15, 8, 17, 19syl22anc 838 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅𝐶)
2114, 20jca 511 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴𝑅𝐵𝐴𝑅𝐶))
2221ex 412 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐵𝐴𝑅𝐶)))
23 breq2 5123 . . 3 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐵𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
24 breq2 5123 . . 3 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐶𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
2523, 24ifboth 4540 . 2 ((𝐴𝑅𝐵𝐴𝑅𝐶) → 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
2622, 25impbid1 225 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵𝐴𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  cun 3924  ifcif 4500   class class class wbr 5119   I cid 5547   Po wpo 5559   Or wor 5560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661
This theorem is referenced by:  wemaplem2  9559
  Copyright terms: Public domain W3C validator