Proof of Theorem soltmin
| Step | Hyp | Ref
| Expression |
| 1 | | sopo 5610 |
. . . . . 6
⊢ (𝑅 Or 𝑋 → 𝑅 Po 𝑋) |
| 2 | 1 | ad2antrr 726 |
. . . . 5
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝑅 Po 𝑋) |
| 3 | | simplr1 1215 |
. . . . . 6
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴 ∈ 𝑋) |
| 4 | | simplr2 1216 |
. . . . . . 7
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐵 ∈ 𝑋) |
| 5 | | simplr3 1217 |
. . . . . . 7
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐶 ∈ 𝑋) |
| 6 | 4, 5 | ifcld 4571 |
. . . . . 6
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋) |
| 7 | 3, 6, 4 | 3jca 1128 |
. . . . 5
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴 ∈ 𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 8 | | simpr 484 |
. . . . 5
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) |
| 9 | | simpll 766 |
. . . . . 6
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝑅 Or 𝑋) |
| 10 | | somin1 6152 |
. . . . . 6
⊢ ((𝑅 Or 𝑋 ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵) |
| 11 | 9, 4, 5, 10 | syl12anc 836 |
. . . . 5
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵) |
| 12 | | poltletr 6151 |
. . . . . 6
⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵) → 𝐴𝑅𝐵)) |
| 13 | 12 | imp 406 |
. . . . 5
⊢ (((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ∧ (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵)) → 𝐴𝑅𝐵) |
| 14 | 2, 7, 8, 11, 13 | syl22anc 838 |
. . . 4
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅𝐵) |
| 15 | 3, 6, 5 | 3jca 1128 |
. . . . 5
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴 ∈ 𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) |
| 16 | | somin2 6154 |
. . . . . 6
⊢ ((𝑅 Or 𝑋 ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶) |
| 17 | 9, 4, 5, 16 | syl12anc 836 |
. . . . 5
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶) |
| 18 | | poltletr 6151 |
. . . . . 6
⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) |
| 19 | 18 | imp 406 |
. . . . 5
⊢ (((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶)) → 𝐴𝑅𝐶) |
| 20 | 2, 15, 8, 17, 19 | syl22anc 838 |
. . . 4
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅𝐶) |
| 21 | 14, 20 | jca 511 |
. . 3
⊢ (((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶)) |
| 22 | 21 | ex 412 |
. 2
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶))) |
| 23 | | breq2 5146 |
. . 3
⊢ (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐵 ↔ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))) |
| 24 | | breq2 5146 |
. . 3
⊢ (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐶 ↔ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))) |
| 25 | 23, 24 | ifboth 4564 |
. 2
⊢ ((𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶) → 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) |
| 26 | 22, 25 | impbid1 225 |
1
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶))) |