![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2730 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | predeq123 6300 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1449 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Predcpred 6298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 |
This theorem is referenced by: dfpred3g 6311 predbrg 6321 preddowncl 6332 frpoinsg 6343 wfisgOLD 6354 frpoins3xpg 8128 frpoins3xp3g 8129 xpord2pred 8133 sexp2 8134 xpord3pred 8140 sexp3 8141 csbfrecsg 8271 fpr3g 8272 frrlem1 8273 frrlem12 8284 frrlem13 8285 fpr2a 8289 frrdmcl 8295 fprresex 8297 wfr3g 8309 wfrlem1OLD 8310 wfrdmclOLD 8319 wfrlem14OLD 8324 wfrlem15OLD 8325 wfrlem17OLD 8327 wfr2aOLD 8328 ttrclselem1 9722 ttrclselem2 9723 frmin 9746 frinsg 9748 frr3g 9753 frr2 9757 elwlim 35099 |
Copyright terms: Public domain | W3C validator |