![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2733 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | predeq123 6302 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1452 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 Predcpred 6300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 |
This theorem is referenced by: dfpred3g 6313 predbrg 6323 preddowncl 6334 frpoinsg 6345 wfisgOLD 6356 frpoins3xpg 8126 frpoins3xp3g 8127 xpord2pred 8131 sexp2 8132 xpord3pred 8138 sexp3 8139 csbfrecsg 8269 fpr3g 8270 frrlem1 8271 frrlem12 8282 frrlem13 8283 fpr2a 8287 frrdmcl 8293 fprresex 8295 wfr3g 8307 wfrlem1OLD 8308 wfrdmclOLD 8317 wfrlem14OLD 8322 wfrlem15OLD 8323 wfrlem17OLD 8325 wfr2aOLD 8326 ttrclselem1 9720 ttrclselem2 9721 frmin 9744 frinsg 9746 frr3g 9751 frr2 9755 elwlim 34795 |
Copyright terms: Public domain | W3C validator |