| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ 𝑅 = 𝑅 | |
| 2 | eqid 2735 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | predeq123 6291 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Predcpred 6289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 |
| This theorem is referenced by: dfpred3g 6302 preddowncl 6321 frpoinsg 6332 wfisgOLD 6343 frpoins3xpg 8139 frpoins3xp3g 8140 xpord2pred 8144 sexp2 8145 xpord3pred 8151 sexp3 8152 csbfrecsg 8283 fpr3g 8284 frrlem1 8285 frrlem12 8296 frrlem13 8297 fpr2a 8301 frrdmcl 8307 fprresex 8309 wfr3g 8321 wfrlem1OLD 8322 wfrdmclOLD 8331 wfrlem14OLD 8336 wfrlem15OLD 8337 wfrlem17OLD 8339 wfr2aOLD 8340 ttrclselem1 9739 ttrclselem2 9740 frmin 9763 frinsg 9765 frr3g 9770 frr2 9774 elwlim 35841 |
| Copyright terms: Public domain | W3C validator |