| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ 𝑅 = 𝑅 | |
| 2 | eqid 2731 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | predeq123 6244 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Predcpred 6242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 |
| This theorem is referenced by: dfpred3g 6255 preddowncl 6274 frpoinsg 6285 frpoins3xpg 8065 frpoins3xp3g 8066 xpord2pred 8070 sexp2 8071 xpord3pred 8077 sexp3 8078 csbfrecsg 8209 fpr3g 8210 frrlem1 8211 frrlem12 8222 frrlem13 8223 fpr2a 8227 frrdmcl 8233 fprresex 8235 wfr3g 8244 ttrclselem1 9610 ttrclselem2 9611 frmin 9637 frinsg 9639 frr3g 9644 frr2 9648 elwlim 35857 |
| Copyright terms: Public domain | W3C validator |