| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝑅 = 𝑅 | |
| 2 | eqid 2729 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | predeq123 6263 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Predcpred 6261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 |
| This theorem is referenced by: dfpred3g 6274 preddowncl 6293 frpoinsg 6304 frpoins3xpg 8096 frpoins3xp3g 8097 xpord2pred 8101 sexp2 8102 xpord3pred 8108 sexp3 8109 csbfrecsg 8240 fpr3g 8241 frrlem1 8242 frrlem12 8253 frrlem13 8254 fpr2a 8258 frrdmcl 8264 fprresex 8266 wfr3g 8275 ttrclselem1 9654 ttrclselem2 9655 frmin 9678 frinsg 9680 frr3g 9685 frr2 9689 elwlim 35784 |
| Copyright terms: Public domain | W3C validator |