![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2740 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | predeq123 6333 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1451 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 |
This theorem is referenced by: dfpred3g 6344 preddowncl 6364 frpoinsg 6375 wfisgOLD 6386 frpoins3xpg 8181 frpoins3xp3g 8182 xpord2pred 8186 sexp2 8187 xpord3pred 8193 sexp3 8194 csbfrecsg 8325 fpr3g 8326 frrlem1 8327 frrlem12 8338 frrlem13 8339 fpr2a 8343 frrdmcl 8349 fprresex 8351 wfr3g 8363 wfrlem1OLD 8364 wfrdmclOLD 8373 wfrlem14OLD 8378 wfrlem15OLD 8379 wfrlem17OLD 8381 wfr2aOLD 8382 ttrclselem1 9794 ttrclselem2 9795 frmin 9818 frinsg 9820 frr3g 9825 frr2 9829 elwlim 35787 |
Copyright terms: Public domain | W3C validator |