MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq3 Structured version   Visualization version   GIF version

Theorem predeq3 6325
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predeq3 (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌))

Proof of Theorem predeq3
StepHypRef Expression
1 eqid 2737 . 2 𝑅 = 𝑅
2 eqid 2737 . 2 𝐴 = 𝐴
3 predeq123 6322 . 2 ((𝑅 = 𝑅𝐴 = 𝐴𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌))
41, 2, 3mp3an12 1453 1 (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Predcpred 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321
This theorem is referenced by:  dfpred3g  6333  preddowncl  6353  frpoinsg  6364  wfisgOLD  6375  frpoins3xpg  8165  frpoins3xp3g  8166  xpord2pred  8170  sexp2  8171  xpord3pred  8177  sexp3  8178  csbfrecsg  8309  fpr3g  8310  frrlem1  8311  frrlem12  8322  frrlem13  8323  fpr2a  8327  frrdmcl  8333  fprresex  8335  wfr3g  8347  wfrlem1OLD  8348  wfrdmclOLD  8357  wfrlem14OLD  8362  wfrlem15OLD  8363  wfrlem17OLD  8365  wfr2aOLD  8366  ttrclselem1  9765  ttrclselem2  9766  frmin  9789  frinsg  9791  frr3g  9796  frr2  9800  elwlim  35824
  Copyright terms: Public domain W3C validator