Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2738 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | predeq123 6203 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1450 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Predcpred 6201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 |
This theorem is referenced by: dfpred3g 6214 predbrg 6224 preddowncl 6235 frpoinsg 6246 wfisgOLD 6257 csbfrecsg 8100 fpr3g 8101 frrlem1 8102 frrlem12 8113 frrlem13 8114 fpr2a 8118 frrdmcl 8124 fprresex 8126 wfr3g 8138 wfrlem1OLD 8139 wfrdmclOLD 8148 wfrlem14OLD 8153 wfrlem15OLD 8154 wfrlem17OLD 8156 wfr2aOLD 8157 ttrclselem1 9483 ttrclselem2 9484 frmin 9507 frinsg 9509 frr3g 9514 frr2 9518 frpoins3xpg 33787 frpoins3xp3g 33788 xpord2pred 33792 sexp2 33793 xpord3pred 33798 sexp3 33799 elwlim 33817 |
Copyright terms: Public domain | W3C validator |