![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2735 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | predeq123 6324 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1450 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Predcpred 6322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 |
This theorem is referenced by: dfpred3g 6335 preddowncl 6355 frpoinsg 6366 wfisgOLD 6377 frpoins3xpg 8164 frpoins3xp3g 8165 xpord2pred 8169 sexp2 8170 xpord3pred 8176 sexp3 8177 csbfrecsg 8308 fpr3g 8309 frrlem1 8310 frrlem12 8321 frrlem13 8322 fpr2a 8326 frrdmcl 8332 fprresex 8334 wfr3g 8346 wfrlem1OLD 8347 wfrdmclOLD 8356 wfrlem14OLD 8361 wfrlem15OLD 8362 wfrlem17OLD 8364 wfr2aOLD 8365 ttrclselem1 9763 ttrclselem2 9764 frmin 9787 frinsg 9789 frr3g 9794 frr2 9798 elwlim 35805 |
Copyright terms: Public domain | W3C validator |