| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝑅 = 𝑅 | |
| 2 | eqid 2729 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | predeq123 6254 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Predcpred 6252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 |
| This theorem is referenced by: dfpred3g 6265 preddowncl 6284 frpoinsg 6295 frpoins3xpg 8080 frpoins3xp3g 8081 xpord2pred 8085 sexp2 8086 xpord3pred 8092 sexp3 8093 csbfrecsg 8224 fpr3g 8225 frrlem1 8226 frrlem12 8237 frrlem13 8238 fpr2a 8242 frrdmcl 8248 fprresex 8250 wfr3g 8259 ttrclselem1 9640 ttrclselem2 9641 frmin 9664 frinsg 9666 frr3g 9671 frr2 9675 elwlim 35816 |
| Copyright terms: Public domain | W3C validator |