| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ 𝑅 = 𝑅 | |
| 2 | eqid 2730 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | predeq123 6278 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
| 4 | 1, 2, 3 | mp3an12 1453 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Predcpred 6276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 |
| This theorem is referenced by: dfpred3g 6289 preddowncl 6308 frpoinsg 6319 frpoins3xpg 8122 frpoins3xp3g 8123 xpord2pred 8127 sexp2 8128 xpord3pred 8134 sexp3 8135 csbfrecsg 8266 fpr3g 8267 frrlem1 8268 frrlem12 8279 frrlem13 8280 fpr2a 8284 frrdmcl 8290 fprresex 8292 wfr3g 8301 ttrclselem1 9685 ttrclselem2 9686 frmin 9709 frinsg 9711 frr3g 9716 frr2 9720 elwlim 35818 |
| Copyright terms: Public domain | W3C validator |