Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2738 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | predeq123 6192 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1449 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 |
This theorem is referenced by: dfpred3g 6203 predbrg 6213 preddowncl 6224 frpoinsg 6231 wfisgOLD 6242 csbfrecsg 8071 fpr3g 8072 frrlem1 8073 frrlem12 8084 frrlem13 8085 fpr2a 8089 frrdmcl 8095 fprresex 8097 wfr3g 8109 wfrlem1OLD 8110 wfrdmclOLD 8119 wfrlem14OLD 8124 wfrlem15OLD 8125 wfrlem17OLD 8127 wfr2aOLD 8128 trpredeq3 9400 trpredlem1 9405 trpredtr 9408 trpredmintr 9409 trpredrec 9415 frmin 9438 frinsg 9440 frr3g 9445 frr2 9449 ttrclselem1 33711 ttrclselem2 33712 frpoins3xpg 33714 frpoins3xp3g 33715 xpord2pred 33719 sexp2 33720 xpord3pred 33725 sexp3 33726 elwlim 33744 |
Copyright terms: Public domain | W3C validator |