![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq3 | ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2732 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | predeq123 6301 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | |
4 | 1, 2, 3 | mp3an12 1451 | 1 ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 |
This theorem is referenced by: dfpred3g 6312 predbrg 6322 preddowncl 6333 frpoinsg 6344 wfisgOLD 6355 frpoins3xpg 8125 frpoins3xp3g 8126 xpord2pred 8130 sexp2 8131 xpord3pred 8137 sexp3 8138 csbfrecsg 8268 fpr3g 8269 frrlem1 8270 frrlem12 8281 frrlem13 8282 fpr2a 8286 frrdmcl 8292 fprresex 8294 wfr3g 8306 wfrlem1OLD 8307 wfrdmclOLD 8316 wfrlem14OLD 8321 wfrlem15OLD 8322 wfrlem17OLD 8324 wfr2aOLD 8325 ttrclselem1 9719 ttrclselem2 9720 frmin 9743 frinsg 9745 frr3g 9750 frr2 9754 elwlim 34790 |
Copyright terms: Public domain | W3C validator |