MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem16 Structured version   Visualization version   GIF version

Theorem frrlem16 9827
Description: Lemma for general well-founded recursion. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024.)
Assertion
Ref Expression
frrlem16 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
Distinct variable groups:   𝑤,𝑅,𝑧   𝑤,𝐴,𝑧

Proof of Theorem frrlem16
StepHypRef Expression
1 predres 6371 . . . . . 6 Pred(𝑅, 𝐴, 𝑤) = Pred((𝑅𝐴), 𝐴, 𝑤)
2 relres 6035 . . . . . . . 8 Rel (𝑅𝐴)
3 ssttrcl 9784 . . . . . . . 8 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ t++(𝑅𝐴))
42, 3ax-mp 5 . . . . . . 7 (𝑅𝐴) ⊆ t++(𝑅𝐴)
5 predrelss 6369 . . . . . . 7 ((𝑅𝐴) ⊆ t++(𝑅𝐴) → Pred((𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤))
64, 5ax-mp 5 . . . . . 6 Pred((𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤)
71, 6eqsstri 4043 . . . . 5 Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤)
8 inss1 4258 . . . . . . . . 9 (t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴)
9 coss1 5880 . . . . . . . . 9 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴) → ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))))
108, 9ax-mp 5 . . . . . . . 8 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴)))
11 coss2 5881 . . . . . . . . 9 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴) → (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴)))
128, 11ax-mp 5 . . . . . . . 8 (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴))
1310, 12sstri 4018 . . . . . . 7 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴))
14 ttrcltr 9785 . . . . . . 7 (t++(𝑅𝐴) ∘ t++(𝑅𝐴)) ⊆ t++(𝑅𝐴)
1513, 14sstri 4018 . . . . . 6 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅𝐴)
16 predtrss 6354 . . . . . 6 ((((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅𝐴) ∧ 𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
1715, 16mp3an1 1448 . . . . 5 ((𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
187, 17sstrid 4020 . . . 4 ((𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
1918ancoms 458 . . 3 ((𝑧𝐴𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
2019ralrimiva 3152 . 2 (𝑧𝐴 → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
2120adantl 481 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  cin 3975  wss 3976   Fr wfr 5649   Se wse 5650   × cxp 5698  cres 5702  ccom 5704  Rel wrel 5705  Predcpred 6331  t++cttrcl 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-ttrcl 9777
This theorem is referenced by:  frr1  9828
  Copyright terms: Public domain W3C validator