![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrlem16 | Structured version Visualization version GIF version |
Description: Lemma for general well-founded recursion. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024.) |
Ref | Expression |
---|---|
frrlem16 | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predres 6339 | . . . . . 6 ⊢ Pred(𝑅, 𝐴, 𝑤) = Pred((𝑅 ↾ 𝐴), 𝐴, 𝑤) | |
2 | relres 6009 | . . . . . . . 8 ⊢ Rel (𝑅 ↾ 𝐴) | |
3 | ssttrcl 9712 | . . . . . . . 8 ⊢ (Rel (𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴) |
5 | predrelss 6337 | . . . . . . 7 ⊢ ((𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴) → Pred((𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤)) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ Pred((𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) |
7 | 1, 6 | eqsstri 4015 | . . . . 5 ⊢ Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) |
8 | inss1 4227 | . . . . . . . . 9 ⊢ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) | |
9 | coss1 5854 | . . . . . . . . 9 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) → ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)))) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) |
11 | coss2 5855 | . . . . . . . . 9 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) → (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴))) | |
12 | 8, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) |
13 | 10, 12 | sstri 3990 | . . . . . . 7 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) |
14 | ttrcltr 9713 | . . . . . . 7 ⊢ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) | |
15 | 13, 14 | sstri 3990 | . . . . . 6 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅 ↾ 𝐴) |
16 | predtrss 6322 | . . . . . 6 ⊢ ((((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅 ↾ 𝐴) ∧ 𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) | |
17 | 15, 16 | mp3an1 1446 | . . . . 5 ⊢ ((𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
18 | 7, 17 | sstrid 3992 | . . . 4 ⊢ ((𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
19 | 18 | ancoms 457 | . . 3 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
20 | 19 | ralrimiva 3144 | . 2 ⊢ (𝑧 ∈ 𝐴 → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
21 | 20 | adantl 480 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ∀wral 3059 ∩ cin 3946 ⊆ wss 3947 Fr wfr 5627 Se wse 5628 × cxp 5673 ↾ cres 5677 ∘ ccom 5679 Rel wrel 5680 Predcpred 6298 t++cttrcl 9704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-ttrcl 9705 |
This theorem is referenced by: frr1 9756 |
Copyright terms: Public domain | W3C validator |