Proof of Theorem frrlem16
Step | Hyp | Ref
| Expression |
1 | | predres 6242 |
. . . . . 6
⊢
Pred(𝑅, 𝐴, 𝑤) = Pred((𝑅 ↾ 𝐴), 𝐴, 𝑤) |
2 | | relres 5920 |
. . . . . . . 8
⊢ Rel
(𝑅 ↾ 𝐴) |
3 | | ssttrcl 9473 |
. . . . . . . 8
⊢ (Rel
(𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴)) |
4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ (𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴) |
5 | | predrelss 6240 |
. . . . . . 7
⊢ ((𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴) → Pred((𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤)) |
6 | 4, 5 | ax-mp 5 |
. . . . . 6
⊢
Pred((𝑅 ↾
𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) |
7 | 1, 6 | eqsstri 3955 |
. . . . 5
⊢
Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) |
8 | | inss1 4162 |
. . . . . . . . 9
⊢
(t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) |
9 | | coss1 5764 |
. . . . . . . . 9
⊢
((t++(𝑅 ↾
𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) → ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)))) |
10 | 8, 9 | ax-mp 5 |
. . . . . . . 8
⊢
((t++(𝑅 ↾
𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) |
11 | | coss2 5765 |
. . . . . . . . 9
⊢
((t++(𝑅 ↾
𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) → (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴))) |
12 | 8, 11 | ax-mp 5 |
. . . . . . . 8
⊢
(t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) |
13 | 10, 12 | sstri 3930 |
. . . . . . 7
⊢
((t++(𝑅 ↾
𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) |
14 | | ttrcltr 9474 |
. . . . . . 7
⊢
(t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) |
15 | 13, 14 | sstri 3930 |
. . . . . 6
⊢
((t++(𝑅 ↾
𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅 ↾ 𝐴) |
16 | | predtrss 6225 |
. . . . . 6
⊢
((((t++(𝑅 ↾
𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅 ↾ 𝐴) ∧ 𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
17 | 15, 16 | mp3an1 1447 |
. . . . 5
⊢ ((𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
18 | 7, 17 | sstrid 3932 |
. . . 4
⊢ ((𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
19 | 18 | ancoms 459 |
. . 3
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
20 | 19 | ralrimiva 3103 |
. 2
⊢ (𝑧 ∈ 𝐴 → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
21 | 20 | adantl 482 |
1
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |