![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrlem16 | Structured version Visualization version GIF version |
Description: Lemma for general well-founded recursion. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024.) |
Ref | Expression |
---|---|
frrlem16 | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predres 6340 | . . . . . 6 ⊢ Pred(𝑅, 𝐴, 𝑤) = Pred((𝑅 ↾ 𝐴), 𝐴, 𝑤) | |
2 | relres 6010 | . . . . . . . 8 ⊢ Rel (𝑅 ↾ 𝐴) | |
3 | ssttrcl 9712 | . . . . . . . 8 ⊢ (Rel (𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴) |
5 | predrelss 6338 | . . . . . . 7 ⊢ ((𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴) → Pred((𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤)) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ Pred((𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) |
7 | 1, 6 | eqsstri 4016 | . . . . 5 ⊢ Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) |
8 | inss1 4228 | . . . . . . . . 9 ⊢ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) | |
9 | coss1 5855 | . . . . . . . . 9 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) → ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)))) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) |
11 | coss2 5856 | . . . . . . . . 9 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) → (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴))) | |
12 | 8, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (t++(𝑅 ↾ 𝐴) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) |
13 | 10, 12 | sstri 3991 | . . . . . . 7 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) |
14 | ttrcltr 9713 | . . . . . . 7 ⊢ (t++(𝑅 ↾ 𝐴) ∘ t++(𝑅 ↾ 𝐴)) ⊆ t++(𝑅 ↾ 𝐴) | |
15 | 13, 14 | sstri 3991 | . . . . . 6 ⊢ ((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅 ↾ 𝐴) |
16 | predtrss 6323 | . . . . . 6 ⊢ ((((t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅 ↾ 𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅 ↾ 𝐴) ∧ 𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) | |
17 | 15, 16 | mp3an1 1448 | . . . . 5 ⊢ ((𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
18 | 7, 17 | sstrid 3993 | . . . 4 ⊢ ((𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
19 | 18 | ancoms 459 | . . 3 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
20 | 19 | ralrimiva 3146 | . 2 ⊢ (𝑧 ∈ 𝐴 → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
21 | 20 | adantl 482 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ∩ cin 3947 ⊆ wss 3948 Fr wfr 5628 Se wse 5629 × cxp 5674 ↾ cres 5678 ∘ ccom 5680 Rel wrel 5681 Predcpred 6299 t++cttrcl 9704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-ttrcl 9705 |
This theorem is referenced by: frr1 9756 |
Copyright terms: Public domain | W3C validator |