MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem16 Structured version   Visualization version   GIF version

Theorem frrlem16 9749
Description: Lemma for general well-founded recursion. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024.)
Assertion
Ref Expression
frrlem16 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
Distinct variable groups:   𝑤,𝑅,𝑧   𝑤,𝐴,𝑧

Proof of Theorem frrlem16
StepHypRef Expression
1 predres 6330 . . . . . 6 Pred(𝑅, 𝐴, 𝑤) = Pred((𝑅𝐴), 𝐴, 𝑤)
2 relres 6000 . . . . . . . 8 Rel (𝑅𝐴)
3 ssttrcl 9706 . . . . . . . 8 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ t++(𝑅𝐴))
42, 3ax-mp 5 . . . . . . 7 (𝑅𝐴) ⊆ t++(𝑅𝐴)
5 predrelss 6328 . . . . . . 7 ((𝑅𝐴) ⊆ t++(𝑅𝐴) → Pred((𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤))
64, 5ax-mp 5 . . . . . 6 Pred((𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤)
71, 6eqsstri 4008 . . . . 5 Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤)
8 inss1 4220 . . . . . . . . 9 (t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴)
9 coss1 5845 . . . . . . . . 9 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴) → ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))))
108, 9ax-mp 5 . . . . . . . 8 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴)))
11 coss2 5846 . . . . . . . . 9 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴) → (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴)))
128, 11ax-mp 5 . . . . . . . 8 (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴))
1310, 12sstri 3983 . . . . . . 7 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴))
14 ttrcltr 9707 . . . . . . 7 (t++(𝑅𝐴) ∘ t++(𝑅𝐴)) ⊆ t++(𝑅𝐴)
1513, 14sstri 3983 . . . . . 6 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅𝐴)
16 predtrss 6313 . . . . . 6 ((((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅𝐴) ∧ 𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
1715, 16mp3an1 1444 . . . . 5 ((𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
187, 17sstrid 3985 . . . 4 ((𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
1918ancoms 458 . . 3 ((𝑧𝐴𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
2019ralrimiva 3138 . 2 (𝑧𝐴 → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
2120adantl 481 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  wral 3053  cin 3939  wss 3940   Fr wfr 5618   Se wse 5619   × cxp 5664  cres 5668  ccom 5670  Rel wrel 5671  Predcpred 6289  t++cttrcl 9698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-ttrcl 9699
This theorem is referenced by:  frr1  9750
  Copyright terms: Public domain W3C validator