MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem16 Structured version   Visualization version   GIF version

Theorem frrlem16 9651
Description: Lemma for general well-founded recursion. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024.)
Assertion
Ref Expression
frrlem16 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
Distinct variable groups:   𝑤,𝑅,𝑧   𝑤,𝐴,𝑧

Proof of Theorem frrlem16
StepHypRef Expression
1 predres 6286 . . . . . 6 Pred(𝑅, 𝐴, 𝑤) = Pred((𝑅𝐴), 𝐴, 𝑤)
2 relres 5953 . . . . . . . 8 Rel (𝑅𝐴)
3 ssttrcl 9605 . . . . . . . 8 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ t++(𝑅𝐴))
42, 3ax-mp 5 . . . . . . 7 (𝑅𝐴) ⊆ t++(𝑅𝐴)
5 predrelss 6284 . . . . . . 7 ((𝑅𝐴) ⊆ t++(𝑅𝐴) → Pred((𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤))
64, 5ax-mp 5 . . . . . 6 Pred((𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤)
71, 6eqsstri 3976 . . . . 5 Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑤)
8 inss1 4184 . . . . . . . . 9 (t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴)
9 coss1 5794 . . . . . . . . 9 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴) → ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))))
108, 9ax-mp 5 . . . . . . . 8 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴)))
11 coss2 5795 . . . . . . . . 9 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ⊆ t++(𝑅𝐴) → (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴)))
128, 11ax-mp 5 . . . . . . . 8 (t++(𝑅𝐴) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴))
1310, 12sstri 3939 . . . . . . 7 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ (t++(𝑅𝐴) ∘ t++(𝑅𝐴))
14 ttrcltr 9606 . . . . . . 7 (t++(𝑅𝐴) ∘ t++(𝑅𝐴)) ⊆ t++(𝑅𝐴)
1513, 14sstri 3939 . . . . . 6 ((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅𝐴)
16 predtrss 6269 . . . . . 6 ((((t++(𝑅𝐴) ∩ (𝐴 × 𝐴)) ∘ (t++(𝑅𝐴) ∩ (𝐴 × 𝐴))) ⊆ t++(𝑅𝐴) ∧ 𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
1715, 16mp3an1 1450 . . . . 5 ((𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
187, 17sstrid 3941 . . . 4 ((𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
1918ancoms 458 . . 3 ((𝑧𝐴𝑤 ∈ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
2019ralrimiva 3124 . 2 (𝑧𝐴 → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
2120adantl 481 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑤 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  cin 3896  wss 3897   Fr wfr 5564   Se wse 5565   × cxp 5612  cres 5616  ccom 5618  Rel wrel 5619  Predcpred 6247  t++cttrcl 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-ttrcl 9598
This theorem is referenced by:  frr1  9652
  Copyright terms: Public domain W3C validator