MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prd Structured version   Visualization version   GIF version

Theorem hash2prd 13834
Description: A set of size two is an unordered pair if it contains two different elements. (Contributed by Alexander van der Vekens, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.)
Assertion
Ref Expression
hash2prd ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))

Proof of Theorem hash2prd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hash2prb 13831 . . 3 (𝑃𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
2 simpr 487 . . . . . . . 8 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑥, 𝑦})
3 3simpa 1144 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝑃𝑌𝑃))
43ad2antlr 725 . . . . . . . . . 10 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋𝑃𝑌𝑃))
5 eleq2 2901 . . . . . . . . . . . 12 (𝑃 = {𝑥, 𝑦} → (𝑋𝑃𝑋 ∈ {𝑥, 𝑦}))
6 eleq2 2901 . . . . . . . . . . . 12 (𝑃 = {𝑥, 𝑦} → (𝑌𝑃𝑌 ∈ {𝑥, 𝑦}))
75, 6anbi12d 632 . . . . . . . . . . 11 (𝑃 = {𝑥, 𝑦} → ((𝑋𝑃𝑌𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
87adantl 484 . . . . . . . . . 10 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
94, 8mpbid 234 . . . . . . . . 9 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))
10 prel12g 4794 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
1110ad2antlr 725 . . . . . . . . 9 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
129, 11mpbird 259 . . . . . . . 8 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → {𝑋, 𝑌} = {𝑥, 𝑦})
132, 12eqtr4d 2859 . . . . . . 7 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑋, 𝑌})
1413exp31 422 . . . . . 6 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑃 = {𝑥, 𝑦} → 𝑃 = {𝑋, 𝑌})))
1514com23 86 . . . . 5 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → (𝑃 = {𝑥, 𝑦} → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1615expimpd 456 . . . 4 ((𝑥𝑃𝑦𝑃) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1716rexlimivv 3292 . . 3 (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))
181, 17syl6bi 255 . 2 (𝑃𝑉 → ((♯‘𝑃) = 2 → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1918imp 409 1 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  {cpr 4569  cfv 6355  2c2 11693  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692
This theorem is referenced by:  symg2bas  18521
  Copyright terms: Public domain W3C validator