| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash2prd | Structured version Visualization version GIF version | ||
| Description: A set of size two is an unordered pair if it contains two different elements. (Contributed by Alexander van der Vekens, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.) |
| Ref | Expression |
|---|---|
| hash2prd | ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2prb 14490 | . . 3 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 2 | simpr 484 | . . . . . . . 8 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑥, 𝑦}) | |
| 3 | 3simpa 1148 | . . . . . . . . . . 11 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃)) | |
| 4 | 3 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃)) |
| 5 | eleq2 2823 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥, 𝑦})) | |
| 6 | eleq2 2823 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ {𝑥, 𝑦})) | |
| 7 | 5, 6 | anbi12d 632 | . . . . . . . . . . 11 ⊢ (𝑃 = {𝑥, 𝑦} → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 8 | 7 | adantl 481 | . . . . . . . . . 10 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 9 | 4, 8 | mpbid 232 | . . . . . . . . 9 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})) |
| 10 | prel12g 4840 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) | |
| 11 | 10 | ad2antlr 727 | . . . . . . . . 9 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 12 | 9, 11 | mpbird 257 | . . . . . . . 8 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → {𝑋, 𝑌} = {𝑥, 𝑦}) |
| 13 | 2, 12 | eqtr4d 2773 | . . . . . . 7 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑋, 𝑌}) |
| 14 | 13 | exp31 419 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑃 = {𝑥, 𝑦} → 𝑃 = {𝑋, 𝑌}))) |
| 15 | 14 | com23 86 | . . . . 5 ⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) → (𝑃 = {𝑥, 𝑦} → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 16 | 15 | expimpd 453 | . . . 4 ⊢ ((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) → ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 17 | 16 | rexlimivv 3186 | . . 3 ⊢ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| 18 | 1, 17 | biimtrdi 253 | . 2 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 2 → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 19 | 18 | imp 406 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {cpr 4603 ‘cfv 6531 2c2 12295 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 |
| This theorem is referenced by: symg2bas 19374 drngidlhash 33449 |
| Copyright terms: Public domain | W3C validator |