| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash2prd | Structured version Visualization version GIF version | ||
| Description: A set of size two is an unordered pair if it contains two different elements. (Contributed by Alexander van der Vekens, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.) |
| Ref | Expression |
|---|---|
| hash2prd | ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2prb 14397 | . . 3 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 2 | simpr 484 | . . . . . . . 8 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑥, 𝑦}) | |
| 3 | 3simpa 1148 | . . . . . . . . . . 11 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃)) | |
| 4 | 3 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃)) |
| 5 | eleq2 2817 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥, 𝑦})) | |
| 6 | eleq2 2817 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ {𝑥, 𝑦})) | |
| 7 | 5, 6 | anbi12d 632 | . . . . . . . . . . 11 ⊢ (𝑃 = {𝑥, 𝑦} → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 8 | 7 | adantl 481 | . . . . . . . . . 10 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 9 | 4, 8 | mpbid 232 | . . . . . . . . 9 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})) |
| 10 | prel12g 4818 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) | |
| 11 | 10 | ad2antlr 727 | . . . . . . . . 9 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 12 | 9, 11 | mpbird 257 | . . . . . . . 8 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → {𝑋, 𝑌} = {𝑥, 𝑦}) |
| 13 | 2, 12 | eqtr4d 2767 | . . . . . . 7 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑋, 𝑌}) |
| 14 | 13 | exp31 419 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑃 = {𝑥, 𝑦} → 𝑃 = {𝑋, 𝑌}))) |
| 15 | 14 | com23 86 | . . . . 5 ⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) → (𝑃 = {𝑥, 𝑦} → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 16 | 15 | expimpd 453 | . . . 4 ⊢ ((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) → ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 17 | 16 | rexlimivv 3171 | . . 3 ⊢ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| 18 | 1, 17 | biimtrdi 253 | . 2 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 2 → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 19 | 18 | imp 406 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {cpr 4581 ‘cfv 6486 2c2 12201 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 |
| This theorem is referenced by: symg2bas 19290 drngidlhash 33381 |
| Copyright terms: Public domain | W3C validator |