MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prd Structured version   Visualization version   GIF version

Theorem hash2prd 14493
Description: A set of size two is an unordered pair if it contains two different elements. (Contributed by Alexander van der Vekens, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.)
Assertion
Ref Expression
hash2prd ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))

Proof of Theorem hash2prd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hash2prb 14490 . . 3 (𝑃𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
2 simpr 484 . . . . . . . 8 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑥, 𝑦})
3 3simpa 1148 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝑃𝑌𝑃))
43ad2antlr 727 . . . . . . . . . 10 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋𝑃𝑌𝑃))
5 eleq2 2823 . . . . . . . . . . . 12 (𝑃 = {𝑥, 𝑦} → (𝑋𝑃𝑋 ∈ {𝑥, 𝑦}))
6 eleq2 2823 . . . . . . . . . . . 12 (𝑃 = {𝑥, 𝑦} → (𝑌𝑃𝑌 ∈ {𝑥, 𝑦}))
75, 6anbi12d 632 . . . . . . . . . . 11 (𝑃 = {𝑥, 𝑦} → ((𝑋𝑃𝑌𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
87adantl 481 . . . . . . . . . 10 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
94, 8mpbid 232 . . . . . . . . 9 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))
10 prel12g 4840 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
1110ad2antlr 727 . . . . . . . . 9 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
129, 11mpbird 257 . . . . . . . 8 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → {𝑋, 𝑌} = {𝑥, 𝑦})
132, 12eqtr4d 2773 . . . . . . 7 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑋, 𝑌})
1413exp31 419 . . . . . 6 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑃 = {𝑥, 𝑦} → 𝑃 = {𝑋, 𝑌})))
1514com23 86 . . . . 5 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → (𝑃 = {𝑥, 𝑦} → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1615expimpd 453 . . . 4 ((𝑥𝑃𝑦𝑃) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1716rexlimivv 3186 . . 3 (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))
181, 17biimtrdi 253 . 2 (𝑃𝑉 → ((♯‘𝑃) = 2 → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1918imp 406 1 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {cpr 4603  cfv 6531  2c2 12295  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349
This theorem is referenced by:  symg2bas  19374  drngidlhash  33449
  Copyright terms: Public domain W3C validator