MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prd Structured version   Visualization version   GIF version

Theorem hash2prd 14447
Description: A set of size two is an unordered pair if it contains two different elements. (Contributed by Alexander van der Vekens, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.)
Assertion
Ref Expression
hash2prd ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))

Proof of Theorem hash2prd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hash2prb 14444 . . 3 (𝑃𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦})))
2 simpr 484 . . . . . . . 8 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑥, 𝑦})
3 3simpa 1148 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝑃𝑌𝑃))
43ad2antlr 727 . . . . . . . . . 10 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋𝑃𝑌𝑃))
5 eleq2 2818 . . . . . . . . . . . 12 (𝑃 = {𝑥, 𝑦} → (𝑋𝑃𝑋 ∈ {𝑥, 𝑦}))
6 eleq2 2818 . . . . . . . . . . . 12 (𝑃 = {𝑥, 𝑦} → (𝑌𝑃𝑌 ∈ {𝑥, 𝑦}))
75, 6anbi12d 632 . . . . . . . . . . 11 (𝑃 = {𝑥, 𝑦} → ((𝑋𝑃𝑌𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
87adantl 481 . . . . . . . . . 10 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
94, 8mpbid 232 . . . . . . . . 9 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))
10 prel12g 4831 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
1110ad2antlr 727 . . . . . . . . 9 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})))
129, 11mpbird 257 . . . . . . . 8 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → {𝑋, 𝑌} = {𝑥, 𝑦})
132, 12eqtr4d 2768 . . . . . . 7 (((((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑋, 𝑌})
1413exp31 419 . . . . . 6 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑃 = {𝑥, 𝑦} → 𝑃 = {𝑋, 𝑌})))
1514com23 86 . . . . 5 (((𝑥𝑃𝑦𝑃) ∧ 𝑥𝑦) → (𝑃 = {𝑥, 𝑦} → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1615expimpd 453 . . . 4 ((𝑥𝑃𝑦𝑃) → ((𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1716rexlimivv 3180 . . 3 (∃𝑥𝑃𝑦𝑃 (𝑥𝑦𝑃 = {𝑥, 𝑦}) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))
181, 17biimtrdi 253 . 2 (𝑃𝑉 → ((♯‘𝑃) = 2 → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌})))
1918imp 406 1 ((𝑃𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑃 = {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {cpr 4594  cfv 6514  2c2 12248  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  symg2bas  19330  drngidlhash  33412
  Copyright terms: Public domain W3C validator