| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash2prd | Structured version Visualization version GIF version | ||
| Description: A set of size two is an unordered pair if it contains two different elements. (Contributed by Alexander van der Vekens, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.) |
| Ref | Expression |
|---|---|
| hash2prd | ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2prb 14511 | . . 3 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}))) | |
| 2 | simpr 484 | . . . . . . . 8 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑥, 𝑦}) | |
| 3 | 3simpa 1149 | . . . . . . . . . . 11 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃)) | |
| 4 | 3 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃)) |
| 5 | eleq2 2830 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥, 𝑦})) | |
| 6 | eleq2 2830 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑥, 𝑦} → (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ {𝑥, 𝑦})) | |
| 7 | 5, 6 | anbi12d 632 | . . . . . . . . . . 11 ⊢ (𝑃 = {𝑥, 𝑦} → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 8 | 7 | adantl 481 | . . . . . . . . . 10 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 9 | 4, 8 | mpbid 232 | . . . . . . . . 9 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦})) |
| 10 | prel12g 4864 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) | |
| 11 | 10 | ad2antlr 727 | . . . . . . . . 9 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → ({𝑋, 𝑌} = {𝑥, 𝑦} ↔ (𝑋 ∈ {𝑥, 𝑦} ∧ 𝑌 ∈ {𝑥, 𝑦}))) |
| 12 | 9, 11 | mpbird 257 | . . . . . . . 8 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → {𝑋, 𝑌} = {𝑥, 𝑦}) |
| 13 | 2, 12 | eqtr4d 2780 | . . . . . . 7 ⊢ (((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑃 = {𝑥, 𝑦}) → 𝑃 = {𝑋, 𝑌}) |
| 14 | 13 | exp31 419 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑃 = {𝑥, 𝑦} → 𝑃 = {𝑋, 𝑌}))) |
| 15 | 14 | com23 86 | . . . . 5 ⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ 𝑥 ≠ 𝑦) → (𝑃 = {𝑥, 𝑦} → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 16 | 15 | expimpd 453 | . . . 4 ⊢ ((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) → ((𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 17 | 16 | rexlimivv 3201 | . . 3 ⊢ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑥 ≠ 𝑦 ∧ 𝑃 = {𝑥, 𝑦}) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| 18 | 1, 17 | biimtrdi 253 | . 2 ⊢ (𝑃 ∈ 𝑉 → ((♯‘𝑃) = 2 → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌}))) |
| 19 | 18 | imp 406 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 {cpr 4628 ‘cfv 6561 2c2 12321 ♯chash 14369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 |
| This theorem is referenced by: symg2bas 19410 drngidlhash 33462 |
| Copyright terms: Public domain | W3C validator |