| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version | ||
| Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| prmssnn | ⊢ ℙ ⊆ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 16651 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
| 2 | 1 | ssriv 3953 | 1 ⊢ ℙ ⊆ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ℕcn 12193 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-prm 16649 |
| This theorem is referenced by: prmex 16654 prminf 16893 prmgaplem3 17031 prmgaplem4 17032 prmdvdsfi 27024 mumul 27098 sqff1o 27099 dirith2 27446 hgt750lema 34655 tgoldbachgtde 34658 tgoldbachgtda 34659 tgoldbachgt 34661 prmdvdsfmtnof1lem1 47589 prmdvdsfmtnof 47591 |
| Copyright terms: Public domain | W3C validator |