Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version |
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
Ref | Expression |
---|---|
prmssnn | ⊢ ℙ ⊆ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16388 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
2 | 1 | ssriv 3926 | 1 ⊢ ℙ ⊆ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3888 ℕcn 11982 ℙcprime 16385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-prm 16386 |
This theorem is referenced by: prmex 16391 prminf 16625 prmgaplem3 16763 prmgaplem4 16764 prmdvdsfi 26265 mumul 26339 sqff1o 26340 dirith2 26685 hgt750lema 32646 tgoldbachgtde 32649 tgoldbachgtda 32650 tgoldbachgt 32652 prmdvdsfmtnof1lem1 45047 prmdvdsfmtnof 45049 |
Copyright terms: Public domain | W3C validator |