| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version | ||
| Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| prmssnn | ⊢ ℙ ⊆ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 16603 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
| 2 | 1 | ssriv 3941 | 1 ⊢ ℙ ⊆ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 ℕcn 12146 ℙcprime 16600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-prm 16601 |
| This theorem is referenced by: prmex 16606 prminf 16845 prmgaplem3 16983 prmgaplem4 16984 prmdvdsfi 27033 mumul 27107 sqff1o 27108 dirith2 27455 hgt750lema 34624 tgoldbachgtde 34627 tgoldbachgtda 34628 tgoldbachgt 34630 prmdvdsfmtnof1lem1 47569 prmdvdsfmtnof 47571 |
| Copyright terms: Public domain | W3C validator |