| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version | ||
| Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| prmssnn | ⊢ ℙ ⊆ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 16587 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
| 2 | 1 | ssriv 3934 | 1 ⊢ ℙ ⊆ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 ℕcn 12132 ℙcprime 16584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-prm 16585 |
| This theorem is referenced by: prmex 16590 prminf 16829 prmgaplem3 16967 prmgaplem4 16968 prmdvdsfi 27045 mumul 27119 sqff1o 27120 dirith2 27467 hgt750lema 34691 tgoldbachgtde 34694 tgoldbachgtda 34695 tgoldbachgt 34697 prmdvdsfmtnof1lem1 47708 prmdvdsfmtnof 47710 |
| Copyright terms: Public domain | W3C validator |