MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmssnn Structured version   Visualization version   GIF version

Theorem prmssnn 16584
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn ℙ ⊆ ℕ

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 16582 . 2 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
21ssriv 3938 1 ℙ ⊆ ℕ
Colors of variables: wff setvar class
Syntax hints:  wss 3902  cn 12122  cprime 16579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-prm 16580
This theorem is referenced by:  prmex  16585  prminf  16824  prmgaplem3  16962  prmgaplem4  16963  prmdvdsfi  27042  mumul  27116  sqff1o  27117  dirith2  27464  hgt750lema  34665  tgoldbachgtde  34668  tgoldbachgtda  34669  tgoldbachgt  34671  prmdvdsfmtnof1lem1  47614  prmdvdsfmtnof  47616
  Copyright terms: Public domain W3C validator