MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmssnn Structured version   Visualization version   GIF version

Theorem prmssnn 16392
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn ℙ ⊆ ℕ

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 16390 . 2 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
21ssriv 3930 1 ℙ ⊆ ℕ
Colors of variables: wff setvar class
Syntax hints:  wss 3892  cn 11984  cprime 16387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-prm 16388
This theorem is referenced by:  prmex  16393  prminf  16627  prmgaplem3  16765  prmgaplem4  16766  prmdvdsfi  26267  mumul  26341  sqff1o  26342  dirith2  26687  hgt750lema  32646  tgoldbachgtde  32649  tgoldbachgtda  32650  tgoldbachgt  32652  prmdvdsfmtnof1lem1  45015  prmdvdsfmtnof  45017
  Copyright terms: Public domain W3C validator