Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version |
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
Ref | Expression |
---|---|
prmssnn | ⊢ ℙ ⊆ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16307 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
2 | 1 | ssriv 3921 | 1 ⊢ ℙ ⊆ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 ℕcn 11903 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-prm 16305 |
This theorem is referenced by: prmex 16310 prminf 16544 prmgaplem3 16682 prmgaplem4 16683 prmdvdsfi 26161 mumul 26235 sqff1o 26236 dirith2 26581 hgt750lema 32537 tgoldbachgtde 32540 tgoldbachgtda 32541 tgoldbachgt 32543 prmdvdsfmtnof1lem1 44924 prmdvdsfmtnof 44926 |
Copyright terms: Public domain | W3C validator |