![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version |
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
Ref | Expression |
---|---|
prmssnn | ⊢ ℙ ⊆ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16708 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
2 | 1 | ssriv 3999 | 1 ⊢ ℙ ⊆ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 ℕcn 12264 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-prm 16706 |
This theorem is referenced by: prmex 16711 prminf 16949 prmgaplem3 17087 prmgaplem4 17088 prmdvdsfi 27165 mumul 27239 sqff1o 27240 dirith2 27587 hgt750lema 34651 tgoldbachgtde 34654 tgoldbachgtda 34655 tgoldbachgt 34657 prmdvdsfmtnof1lem1 47509 prmdvdsfmtnof 47511 |
Copyright terms: Public domain | W3C validator |