MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmssnn Structured version   Visualization version   GIF version

Theorem prmssnn 16390
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn ℙ ⊆ ℕ

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 16388 . 2 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
21ssriv 3926 1 ℙ ⊆ ℕ
Colors of variables: wff setvar class
Syntax hints:  wss 3888  cn 11982  cprime 16385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-br 5076  df-prm 16386
This theorem is referenced by:  prmex  16391  prminf  16625  prmgaplem3  16763  prmgaplem4  16764  prmdvdsfi  26265  mumul  26339  sqff1o  26340  dirith2  26685  hgt750lema  32646  tgoldbachgtde  32649  tgoldbachgtda  32650  tgoldbachgt  32652  prmdvdsfmtnof1lem1  45047  prmdvdsfmtnof  45049
  Copyright terms: Public domain W3C validator