| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version | ||
| Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
| Ref | Expression |
|---|---|
| prmssnn | ⊢ ℙ ⊆ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 16644 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ ℙ ⊆ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ℕcn 12186 ℙcprime 16641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-prm 16642 |
| This theorem is referenced by: prmex 16647 prminf 16886 prmgaplem3 17024 prmgaplem4 17025 prmdvdsfi 27017 mumul 27091 sqff1o 27092 dirith2 27439 hgt750lema 34648 tgoldbachgtde 34651 tgoldbachgtda 34652 tgoldbachgt 34654 prmdvdsfmtnof1lem1 47585 prmdvdsfmtnof 47587 |
| Copyright terms: Public domain | W3C validator |