MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmssnn Structured version   Visualization version   GIF version

Theorem prmssnn 16710
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn ℙ ⊆ ℕ

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 16708 . 2 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
21ssriv 3999 1 ℙ ⊆ ℕ
Colors of variables: wff setvar class
Syntax hints:  wss 3963  cn 12264  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-prm 16706
This theorem is referenced by:  prmex  16711  prminf  16949  prmgaplem3  17087  prmgaplem4  17088  prmdvdsfi  27165  mumul  27239  sqff1o  27240  dirith2  27587  hgt750lema  34651  tgoldbachgtde  34654  tgoldbachgtda  34655  tgoldbachgt  34657  prmdvdsfmtnof1lem1  47509  prmdvdsfmtnof  47511
  Copyright terms: Public domain W3C validator