MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmssnn Structured version   Visualization version   GIF version

Theorem prmssnn 16653
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn ℙ ⊆ ℕ

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 16651 . 2 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
21ssriv 3953 1 ℙ ⊆ ℕ
Colors of variables: wff setvar class
Syntax hints:  wss 3917  cn 12193  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-prm 16649
This theorem is referenced by:  prmex  16654  prminf  16893  prmgaplem3  17031  prmgaplem4  17032  prmdvdsfi  27024  mumul  27098  sqff1o  27099  dirith2  27446  hgt750lema  34655  tgoldbachgtde  34658  tgoldbachgtda  34659  tgoldbachgt  34661  prmdvdsfmtnof1lem1  47589  prmdvdsfmtnof  47591
  Copyright terms: Public domain W3C validator