Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version |
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
Ref | Expression |
---|---|
prmssnn | ⊢ ℙ ⊆ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16390 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
2 | 1 | ssriv 3930 | 1 ⊢ ℙ ⊆ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3892 ℕcn 11984 ℙcprime 16387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-prm 16388 |
This theorem is referenced by: prmex 16393 prminf 16627 prmgaplem3 16765 prmgaplem4 16766 prmdvdsfi 26267 mumul 26341 sqff1o 26342 dirith2 26687 hgt750lema 32646 tgoldbachgtde 32649 tgoldbachgtda 32650 tgoldbachgt 32652 prmdvdsfmtnof1lem1 45015 prmdvdsfmtnof 45017 |
Copyright terms: Public domain | W3C validator |