![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmssnn | Structured version Visualization version GIF version |
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
Ref | Expression |
---|---|
prmssnn | ⊢ ℙ ⊆ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16721 | . 2 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℕ) | |
2 | 1 | ssriv 4012 | 1 ⊢ ℙ ⊆ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ℕcn 12293 ℙcprime 16718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-prm 16719 |
This theorem is referenced by: prmex 16724 prminf 16962 prmgaplem3 17100 prmgaplem4 17101 prmdvdsfi 27168 mumul 27242 sqff1o 27243 dirith2 27590 hgt750lema 34634 tgoldbachgtde 34637 tgoldbachgtda 34638 tgoldbachgt 34640 prmdvdsfmtnof1lem1 47458 prmdvdsfmtnof 47460 |
Copyright terms: Public domain | W3C validator |