![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgoldbachgtda | Structured version Visualization version GIF version |
Description: Lemma for tgoldbachgtd 33674. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
Ref | Expression |
---|---|
tgoldbachgtda.o | β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} |
tgoldbachgtda.n | β’ (π β π β π) |
tgoldbachgtda.0 | β’ (π β (;10β;27) β€ π) |
tgoldbachgtda.h | β’ (π β π»:ββΆ(0[,)+β)) |
tgoldbachgtda.k | β’ (π β πΎ:ββΆ(0[,)+β)) |
tgoldbachgtda.1 | β’ ((π β§ π β β) β (πΎβπ) β€ (1._0_7_9_9_55)) |
tgoldbachgtda.2 | β’ ((π β§ π β β) β (π»βπ) β€ (1._4_14)) |
tgoldbachgtda.3 | β’ (π β ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· π»)vtsπ)βπ₯) Β· ((((Ξ βf Β· πΎ)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) |
Ref | Expression |
---|---|
tgoldbachgtda | β’ (π β 0 < (β―β((π β© β)(reprβ3)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgoldbachgtda.o | . . . . . 6 β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} | |
2 | tgoldbachgtda.n | . . . . . 6 β’ (π β π β π) | |
3 | tgoldbachgtda.0 | . . . . . 6 β’ (π β (;10β;27) β€ π) | |
4 | 1, 2, 3 | tgoldbachgnn 33671 | . . . . 5 β’ (π β π β β) |
5 | 4 | nnnn0d 12532 | . . . 4 β’ (π β π β β0) |
6 | 3nn0 12490 | . . . . 5 β’ 3 β β0 | |
7 | 6 | a1i 11 | . . . 4 β’ (π β 3 β β0) |
8 | inss2 4230 | . . . . . 6 β’ (π β© β) β β | |
9 | prmssnn 16613 | . . . . . 6 β’ β β β | |
10 | 8, 9 | sstri 3992 | . . . . 5 β’ (π β© β) β β |
11 | 10 | a1i 11 | . . . 4 β’ (π β (π β© β) β β) |
12 | 5, 7, 11 | reprfi2 33635 | . . 3 β’ (π β ((π β© β)(reprβ3)π) β Fin) |
13 | tgoldbachgtda.h | . . . . . . . 8 β’ (π β π»:ββΆ(0[,)+β)) | |
14 | tgoldbachgtda.k | . . . . . . . 8 β’ (π β πΎ:ββΆ(0[,)+β)) | |
15 | tgoldbachgtda.1 | . . . . . . . 8 β’ ((π β§ π β β) β (πΎβπ) β€ (1._0_7_9_9_55)) | |
16 | tgoldbachgtda.2 | . . . . . . . 8 β’ ((π β§ π β β) β (π»βπ) β€ (1._4_14)) | |
17 | tgoldbachgtda.3 | . . . . . . . 8 β’ (π β ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· π»)vtsπ)βπ₯) Β· ((((Ξ βf Β· πΎ)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) | |
18 | 1, 2, 3, 13, 14, 15, 16, 17 | tgoldbachgtde 33672 | . . . . . . 7 β’ (π β 0 < Ξ£π β ((π β© β)(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2)))))) |
19 | 18 | gt0ne0d 11778 | . . . . . 6 β’ (π β Ξ£π β ((π β© β)(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) β 0) |
20 | 19 | neneqd 2946 | . . . . 5 β’ (π β Β¬ Ξ£π β ((π β© β)(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) = 0) |
21 | simpr 486 | . . . . . . 7 β’ ((π β§ ((π β© β)(reprβ3)π) = β ) β ((π β© β)(reprβ3)π) = β ) | |
22 | 21 | sumeq1d 15647 | . . . . . 6 β’ ((π β§ ((π β© β)(reprβ3)π) = β ) β Ξ£π β ((π β© β)(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) = Ξ£π β β (((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2)))))) |
23 | sum0 15667 | . . . . . 6 β’ Ξ£π β β (((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) = 0 | |
24 | 22, 23 | eqtrdi 2789 | . . . . 5 β’ ((π β§ ((π β© β)(reprβ3)π) = β ) β Ξ£π β ((π β© β)(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) = 0) |
25 | 20, 24 | mtand 815 | . . . 4 β’ (π β Β¬ ((π β© β)(reprβ3)π) = β ) |
26 | 25 | neqned 2948 | . . 3 β’ (π β ((π β© β)(reprβ3)π) β β ) |
27 | hashnncl 14326 | . . . 4 β’ (((π β© β)(reprβ3)π) β Fin β ((β―β((π β© β)(reprβ3)π)) β β β ((π β© β)(reprβ3)π) β β )) | |
28 | 27 | biimpar 479 | . . 3 β’ ((((π β© β)(reprβ3)π) β Fin β§ ((π β© β)(reprβ3)π) β β ) β (β―β((π β© β)(reprβ3)π)) β β) |
29 | 12, 26, 28 | syl2anc 585 | . 2 β’ (π β (β―β((π β© β)(reprβ3)π)) β β) |
30 | nngt0 12243 | . 2 β’ ((β―β((π β© β)(reprβ3)π)) β β β 0 < (β―β((π β© β)(reprβ3)π))) | |
31 | 29, 30 | syl 17 | 1 β’ (π β 0 < (β―β((π β© β)(reprβ3)π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 {crab 3433 β© cin 3948 β wss 3949 β c0 4323 class class class wbr 5149 βΆwf 6540 βcfv 6544 (class class class)co 7409 βf cof 7668 Fincfn 8939 0cc0 11110 1c1 11111 ici 11112 Β· cmul 11115 +βcpnf 11245 < clt 11248 β€ cle 11249 -cneg 11445 βcn 12212 2c2 12267 3c3 12268 4c4 12269 5c5 12270 7c7 12272 8c8 12273 9c9 12274 β0cn0 12472 β€cz 12558 ;cdc 12677 (,)cioo 13324 [,)cico 13326 βcexp 14027 β―chash 14290 Ξ£csu 15632 expce 16005 Οcpi 16010 β₯ cdvds 16197 βcprime 16608 β«citg 25135 Ξcvma 26596 _cdp2 32037 .cdp 32054 reprcrepr 33620 vtscvts 33647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-reg 9587 ax-inf2 9636 ax-cc 10430 ax-ac2 10458 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 ax-ros335 33657 ax-ros336 33658 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-symdif 4243 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-ofr 7671 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-omul 8471 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-r1 9759 df-rank 9760 df-dju 9896 df-card 9934 df-acn 9937 df-ac 10111 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-xnn0 12545 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-fac 14234 df-bc 14263 df-hash 14291 df-word 14465 df-concat 14521 df-s1 14546 df-s2 14799 df-s3 14800 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-prod 15850 df-ef 16011 df-e 16012 df-sin 16013 df-cos 16014 df-tan 16015 df-pi 16016 df-dvds 16198 df-gcd 16436 df-prm 16609 df-pc 16770 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-pmtr 19310 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-lp 22640 df-perf 22641 df-cn 22731 df-cnp 22732 df-haus 22819 df-cmp 22891 df-tx 23066 df-hmeo 23259 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-xms 23826 df-ms 23827 df-tms 23828 df-cncf 24394 df-ovol 24981 df-vol 24982 df-mbf 25136 df-itg1 25137 df-itg2 25138 df-ibl 25139 df-itg 25140 df-0p 25187 df-limc 25383 df-dv 25384 df-ulm 25889 df-log 26065 df-cxp 26066 df-atan 26372 df-cht 26601 df-vma 26602 df-chp 26603 df-dp2 32038 df-dp 32055 df-repr 33621 df-vts 33648 |
This theorem is referenced by: tgoldbachgtd 33674 |
Copyright terms: Public domain | W3C validator |