Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgoldbachgtda | Structured version Visualization version GIF version |
Description: Lemma for tgoldbachgtd 32542. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
Ref | Expression |
---|---|
tgoldbachgtda.o | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
tgoldbachgtda.n | ⊢ (𝜑 → 𝑁 ∈ 𝑂) |
tgoldbachgtda.0 | ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) |
tgoldbachgtda.h | ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) |
tgoldbachgtda.k | ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) |
tgoldbachgtda.1 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) |
tgoldbachgtda.2 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) |
tgoldbachgtda.3 | ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
Ref | Expression |
---|---|
tgoldbachgtda | ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgoldbachgtda.o | . . . . . 6 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | |
2 | tgoldbachgtda.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝑂) | |
3 | tgoldbachgtda.0 | . . . . . 6 ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) | |
4 | 1, 2, 3 | tgoldbachgnn 32539 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
5 | 4 | nnnn0d 12223 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
6 | 3nn0 12181 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℕ0) |
8 | inss2 4160 | . . . . . 6 ⊢ (𝑂 ∩ ℙ) ⊆ ℙ | |
9 | prmssnn 16309 | . . . . . 6 ⊢ ℙ ⊆ ℕ | |
10 | 8, 9 | sstri 3926 | . . . . 5 ⊢ (𝑂 ∩ ℙ) ⊆ ℕ |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ) |
12 | 5, 7, 11 | reprfi2 32503 | . . 3 ⊢ (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin) |
13 | tgoldbachgtda.h | . . . . . . . 8 ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) | |
14 | tgoldbachgtda.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) | |
15 | tgoldbachgtda.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) | |
16 | tgoldbachgtda.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) | |
17 | tgoldbachgtda.3 | . . . . . . . 8 ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | |
18 | 1, 2, 3, 13, 14, 15, 16, 17 | tgoldbachgtde 32540 | . . . . . . 7 ⊢ (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) |
19 | 18 | gt0ne0d 11469 | . . . . . 6 ⊢ (𝜑 → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≠ 0) |
20 | 19 | neneqd 2947 | . . . . 5 ⊢ (𝜑 → ¬ Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0) |
21 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) | |
22 | 21 | sumeq1d 15341 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = Σ𝑛 ∈ ∅ (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) |
23 | sum0 15361 | . . . . . 6 ⊢ Σ𝑛 ∈ ∅ (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0 | |
24 | 22, 23 | eqtrdi 2795 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0) |
25 | 20, 24 | mtand 812 | . . . 4 ⊢ (𝜑 → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) |
26 | 25 | neqned 2949 | . . 3 ⊢ (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅) |
27 | hashnncl 14009 | . . . 4 ⊢ (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin → ((♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅)) | |
28 | 27 | biimpar 477 | . . 3 ⊢ ((((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅) → (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ) |
29 | 12, 26, 28 | syl2anc 583 | . 2 ⊢ (𝜑 → (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ) |
30 | nngt0 11934 | . 2 ⊢ ((♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | |
31 | 29, 30 | syl 17 | 1 ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Fincfn 8691 0cc0 10802 1c1 10803 ici 10804 · cmul 10807 +∞cpnf 10937 < clt 10940 ≤ cle 10941 -cneg 11136 ℕcn 11903 2c2 11958 3c3 11959 4c4 11960 5c5 11961 7c7 11963 8c8 11964 9c9 11965 ℕ0cn0 12163 ℤcz 12249 ;cdc 12366 (,)cioo 13008 [,)cico 13010 ↑cexp 13710 ♯chash 13972 Σcsu 15325 expce 15699 πcpi 15704 ∥ cdvds 15891 ℙcprime 16304 ∫citg 24687 Λcvma 26146 _cdp2 31047 .cdp 31064 reprcrepr 32488 vtscvts 32515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 ax-cc 10122 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-ros335 32525 ax-ros336 32526 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-symdif 4173 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-r1 9453 df-rank 9454 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-prod 15544 df-ef 15705 df-e 15706 df-sin 15707 df-cos 15708 df-tan 15709 df-pi 15710 df-dvds 15892 df-gcd 16130 df-prm 16305 df-pc 16466 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-pmtr 18965 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 df-ibl 24691 df-itg 24692 df-0p 24739 df-limc 24935 df-dv 24936 df-ulm 25441 df-log 25617 df-cxp 25618 df-atan 25922 df-cht 26151 df-vma 26152 df-chp 26153 df-dp2 31048 df-dp 31065 df-repr 32489 df-vts 32516 |
This theorem is referenced by: tgoldbachgtd 32542 |
Copyright terms: Public domain | W3C validator |