![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgoldbachgtda | Structured version Visualization version GIF version |
Description: Lemma for tgoldbachgtd 34639. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
Ref | Expression |
---|---|
tgoldbachgtda.o | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
tgoldbachgtda.n | ⊢ (𝜑 → 𝑁 ∈ 𝑂) |
tgoldbachgtda.0 | ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) |
tgoldbachgtda.h | ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) |
tgoldbachgtda.k | ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) |
tgoldbachgtda.1 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) |
tgoldbachgtda.2 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) |
tgoldbachgtda.3 | ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
Ref | Expression |
---|---|
tgoldbachgtda | ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgoldbachgtda.o | . . . . . 6 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | |
2 | tgoldbachgtda.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝑂) | |
3 | tgoldbachgtda.0 | . . . . . 6 ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) | |
4 | 1, 2, 3 | tgoldbachgnn 34636 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
5 | 4 | nnnn0d 12613 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
6 | 3nn0 12571 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℕ0) |
8 | inss2 4259 | . . . . . 6 ⊢ (𝑂 ∩ ℙ) ⊆ ℙ | |
9 | prmssnn 16723 | . . . . . 6 ⊢ ℙ ⊆ ℕ | |
10 | 8, 9 | sstri 4018 | . . . . 5 ⊢ (𝑂 ∩ ℙ) ⊆ ℕ |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ) |
12 | 5, 7, 11 | reprfi2 34600 | . . 3 ⊢ (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin) |
13 | tgoldbachgtda.h | . . . . . . . 8 ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) | |
14 | tgoldbachgtda.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) | |
15 | tgoldbachgtda.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) | |
16 | tgoldbachgtda.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) | |
17 | tgoldbachgtda.3 | . . . . . . . 8 ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | |
18 | 1, 2, 3, 13, 14, 15, 16, 17 | tgoldbachgtde 34637 | . . . . . . 7 ⊢ (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) |
19 | 18 | gt0ne0d 11854 | . . . . . 6 ⊢ (𝜑 → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≠ 0) |
20 | 19 | neneqd 2951 | . . . . 5 ⊢ (𝜑 → ¬ Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0) |
21 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) | |
22 | 21 | sumeq1d 15748 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = Σ𝑛 ∈ ∅ (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) |
23 | sum0 15769 | . . . . . 6 ⊢ Σ𝑛 ∈ ∅ (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0 | |
24 | 22, 23 | eqtrdi 2796 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0) |
25 | 20, 24 | mtand 815 | . . . 4 ⊢ (𝜑 → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) |
26 | 25 | neqned 2953 | . . 3 ⊢ (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅) |
27 | hashnncl 14415 | . . . 4 ⊢ (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin → ((♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅)) | |
28 | 27 | biimpar 477 | . . 3 ⊢ ((((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅) → (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ) |
29 | 12, 26, 28 | syl2anc 583 | . 2 ⊢ (𝜑 → (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ) |
30 | nngt0 12324 | . 2 ⊢ ((♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | |
31 | 29, 30 | syl 17 | 1 ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 Fincfn 9003 0cc0 11184 1c1 11185 ici 11186 · cmul 11189 +∞cpnf 11321 < clt 11324 ≤ cle 11325 -cneg 11521 ℕcn 12293 2c2 12348 3c3 12349 4c4 12350 5c5 12351 7c7 12353 8c8 12354 9c9 12355 ℕ0cn0 12553 ℤcz 12639 ;cdc 12758 (,)cioo 13407 [,)cico 13409 ↑cexp 14112 ♯chash 14379 Σcsu 15734 expce 16109 πcpi 16114 ∥ cdvds 16302 ℙcprime 16718 ∫citg 25672 Λcvma 27153 _cdp2 32835 .cdp 32852 reprcrepr 34585 vtscvts 34612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-cc 10504 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-ros335 34622 ax-ros336 34623 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-r1 9833 df-rank 9834 df-dju 9970 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-prod 15952 df-ef 16115 df-e 16116 df-sin 16117 df-cos 16118 df-tan 16119 df-pi 16120 df-dvds 16303 df-gcd 16541 df-prm 16719 df-pc 16884 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-pmtr 19484 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-limc 25921 df-dv 25922 df-ulm 26438 df-log 26616 df-cxp 26617 df-atan 26928 df-cht 27158 df-vma 27159 df-chp 27160 df-dp2 32836 df-dp 32853 df-repr 34586 df-vts 34613 |
This theorem is referenced by: tgoldbachgtd 34639 |
Copyright terms: Public domain | W3C validator |