| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tgoldbachgtda | Structured version Visualization version GIF version | ||
| Description: Lemma for tgoldbachgtd 34660. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
| Ref | Expression |
|---|---|
| tgoldbachgtda.o | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
| tgoldbachgtda.n | ⊢ (𝜑 → 𝑁 ∈ 𝑂) |
| tgoldbachgtda.0 | ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) |
| tgoldbachgtda.h | ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) |
| tgoldbachgtda.k | ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) |
| tgoldbachgtda.1 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) |
| tgoldbachgtda.2 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) |
| tgoldbachgtda.3 | ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| Ref | Expression |
|---|---|
| tgoldbachgtda | ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgoldbachgtda.o | . . . . . 6 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | |
| 2 | tgoldbachgtda.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝑂) | |
| 3 | tgoldbachgtda.0 | . . . . . 6 ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) | |
| 4 | 1, 2, 3 | tgoldbachgnn 34657 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 5 | 4 | nnnn0d 12510 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 6 | 3nn0 12467 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℕ0) |
| 8 | inss2 4204 | . . . . . 6 ⊢ (𝑂 ∩ ℙ) ⊆ ℙ | |
| 9 | prmssnn 16653 | . . . . . 6 ⊢ ℙ ⊆ ℕ | |
| 10 | 8, 9 | sstri 3959 | . . . . 5 ⊢ (𝑂 ∩ ℙ) ⊆ ℕ |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ) |
| 12 | 5, 7, 11 | reprfi2 34621 | . . 3 ⊢ (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin) |
| 13 | tgoldbachgtda.h | . . . . . . . 8 ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) | |
| 14 | tgoldbachgtda.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) | |
| 15 | tgoldbachgtda.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) | |
| 16 | tgoldbachgtda.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) | |
| 17 | tgoldbachgtda.3 | . . . . . . . 8 ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | |
| 18 | 1, 2, 3, 13, 14, 15, 16, 17 | tgoldbachgtde 34658 | . . . . . . 7 ⊢ (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) |
| 19 | 18 | gt0ne0d 11749 | . . . . . 6 ⊢ (𝜑 → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≠ 0) |
| 20 | 19 | neneqd 2931 | . . . . 5 ⊢ (𝜑 → ¬ Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0) |
| 21 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) | |
| 22 | 21 | sumeq1d 15673 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = Σ𝑛 ∈ ∅ (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) |
| 23 | sum0 15694 | . . . . . 6 ⊢ Σ𝑛 ∈ ∅ (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0 | |
| 24 | 22, 23 | eqtrdi 2781 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0) |
| 25 | 20, 24 | mtand 815 | . . . 4 ⊢ (𝜑 → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) |
| 26 | 25 | neqned 2933 | . . 3 ⊢ (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅) |
| 27 | hashnncl 14338 | . . . 4 ⊢ (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin → ((♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅)) | |
| 28 | 27 | biimpar 477 | . . 3 ⊢ ((((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅) → (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ) |
| 29 | 12, 26, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ) |
| 30 | nngt0 12224 | . 2 ⊢ ((♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | |
| 31 | 29, 30 | syl 17 | 1 ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 Fincfn 8921 0cc0 11075 1c1 11076 ici 11077 · cmul 11080 +∞cpnf 11212 < clt 11215 ≤ cle 11216 -cneg 11413 ℕcn 12193 2c2 12248 3c3 12249 4c4 12250 5c5 12251 7c7 12253 8c8 12254 9c9 12255 ℕ0cn0 12449 ℤcz 12536 ;cdc 12656 (,)cioo 13313 [,)cico 13315 ↑cexp 14033 ♯chash 14302 Σcsu 15659 expce 16034 πcpi 16039 ∥ cdvds 16229 ℙcprime 16648 ∫citg 25526 Λcvma 27009 _cdp2 32798 .cdp 32815 reprcrepr 34606 vtscvts 34633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-ros335 34643 ax-ros336 34644 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-symdif 4219 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-r1 9724 df-rank 9725 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-prod 15877 df-ef 16040 df-e 16041 df-sin 16042 df-cos 16043 df-tan 16044 df-pi 16045 df-dvds 16230 df-gcd 16472 df-prm 16649 df-pc 16815 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-pmtr 19379 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 df-itg2 25529 df-ibl 25530 df-itg 25531 df-0p 25578 df-limc 25774 df-dv 25775 df-ulm 26293 df-log 26472 df-cxp 26473 df-atan 26784 df-cht 27014 df-vma 27015 df-chp 27016 df-dp2 32799 df-dp 32816 df-repr 34607 df-vts 34634 |
| This theorem is referenced by: tgoldbachgtd 34660 |
| Copyright terms: Public domain | W3C validator |