| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tgoldbachgtda | Structured version Visualization version GIF version | ||
| Description: Lemma for tgoldbachgtd 34675. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
| Ref | Expression |
|---|---|
| tgoldbachgtda.o | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
| tgoldbachgtda.n | ⊢ (𝜑 → 𝑁 ∈ 𝑂) |
| tgoldbachgtda.0 | ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) |
| tgoldbachgtda.h | ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) |
| tgoldbachgtda.k | ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) |
| tgoldbachgtda.1 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) |
| tgoldbachgtda.2 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) |
| tgoldbachgtda.3 | ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| Ref | Expression |
|---|---|
| tgoldbachgtda | ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgoldbachgtda.o | . . . . . 6 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | |
| 2 | tgoldbachgtda.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝑂) | |
| 3 | tgoldbachgtda.0 | . . . . . 6 ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) | |
| 4 | 1, 2, 3 | tgoldbachgnn 34672 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 5 | 4 | nnnn0d 12442 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 6 | 3nn0 12399 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 3 ∈ ℕ0) |
| 8 | inss2 4185 | . . . . . 6 ⊢ (𝑂 ∩ ℙ) ⊆ ℙ | |
| 9 | prmssnn 16587 | . . . . . 6 ⊢ ℙ ⊆ ℕ | |
| 10 | 8, 9 | sstri 3939 | . . . . 5 ⊢ (𝑂 ∩ ℙ) ⊆ ℕ |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ) |
| 12 | 5, 7, 11 | reprfi2 34636 | . . 3 ⊢ (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin) |
| 13 | tgoldbachgtda.h | . . . . . . . 8 ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) | |
| 14 | tgoldbachgtda.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) | |
| 15 | tgoldbachgtda.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) | |
| 16 | tgoldbachgtda.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) | |
| 17 | tgoldbachgtda.3 | . . . . . . . 8 ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | |
| 18 | 1, 2, 3, 13, 14, 15, 16, 17 | tgoldbachgtde 34673 | . . . . . . 7 ⊢ (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) |
| 19 | 18 | gt0ne0d 11681 | . . . . . 6 ⊢ (𝜑 → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≠ 0) |
| 20 | 19 | neneqd 2933 | . . . . 5 ⊢ (𝜑 → ¬ Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0) |
| 21 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) | |
| 22 | 21 | sumeq1d 15607 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = Σ𝑛 ∈ ∅ (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) |
| 23 | sum0 15628 | . . . . . 6 ⊢ Σ𝑛 ∈ ∅ (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0 | |
| 24 | 22, 23 | eqtrdi 2782 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = 0) |
| 25 | 20, 24 | mtand 815 | . . . 4 ⊢ (𝜑 → ¬ ((𝑂 ∩ ℙ)(repr‘3)𝑁) = ∅) |
| 26 | 25 | neqned 2935 | . . 3 ⊢ (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅) |
| 27 | hashnncl 14273 | . . . 4 ⊢ (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin → ((♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ ↔ ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅)) | |
| 28 | 27 | biimpar 477 | . . 3 ⊢ ((((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin ∧ ((𝑂 ∩ ℙ)(repr‘3)𝑁) ≠ ∅) → (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ) |
| 29 | 12, 26, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ) |
| 30 | nngt0 12156 | . 2 ⊢ ((♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ ℕ → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | |
| 31 | 29, 30 | syl 17 | 1 ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Fincfn 8869 0cc0 11006 1c1 11007 ici 11008 · cmul 11011 +∞cpnf 11143 < clt 11146 ≤ cle 11147 -cneg 11345 ℕcn 12125 2c2 12180 3c3 12181 4c4 12182 5c5 12183 7c7 12185 8c8 12186 9c9 12187 ℕ0cn0 12381 ℤcz 12468 ;cdc 12588 (,)cioo 13245 [,)cico 13247 ↑cexp 13968 ♯chash 14237 Σcsu 15593 expce 15968 πcpi 15973 ∥ cdvds 16163 ℙcprime 16582 ∫citg 25546 Λcvma 27029 _cdp2 32851 .cdp 32868 reprcrepr 34621 vtscvts 34648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-cc 10326 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-ros335 34658 ax-ros336 34659 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-symdif 4200 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-r1 9657 df-rank 9658 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-ef 15974 df-e 15975 df-sin 15976 df-cos 15977 df-tan 15978 df-pi 15979 df-dvds 16164 df-gcd 16406 df-prm 16583 df-pc 16749 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-pmtr 19354 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-ovol 25392 df-vol 25393 df-mbf 25547 df-itg1 25548 df-itg2 25549 df-ibl 25550 df-itg 25551 df-0p 25598 df-limc 25794 df-dv 25795 df-ulm 26313 df-log 26492 df-cxp 26493 df-atan 26804 df-cht 27034 df-vma 27035 df-chp 27036 df-dp2 32852 df-dp 32869 df-repr 34622 df-vts 34649 |
| This theorem is referenced by: tgoldbachgtd 34675 |
| Copyright terms: Public domain | W3C validator |