Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmdvdsfmtnof | Structured version Visualization version GIF version |
Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
Ref | Expression |
---|---|
prmdvdsfmtnof.1 | ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) |
Ref | Expression |
---|---|
prmdvdsfmtnof | ⊢ 𝐹:ran FermatNo⟶ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdvdsfmtnof.1 | . 2 ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) | |
2 | fmtnorn 44986 | . . 3 ⊢ (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓) | |
3 | ltso 11055 | . . . . . 6 ⊢ < Or ℝ | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ) |
5 | fmtnoge3 44982 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) | |
6 | 5 | adantr 481 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) |
7 | eleq1 2826 | . . . . . . . . 9 ⊢ ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) | |
8 | 7 | adantl 482 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) |
9 | 6, 8 | mpbid 231 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘3)) |
10 | uzuzle23 12629 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘3) → 𝑓 ∈ (ℤ≥‘2)) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘2)) |
12 | eluz2nn 12624 | . . . . . 6 ⊢ (𝑓 ∈ (ℤ≥‘2) → 𝑓 ∈ ℕ) | |
13 | prmdvdsfi 26256 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) | |
14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) |
15 | exprmfct 16409 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
16 | 11, 15 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) |
17 | rabn0 4319 | . . . . . 6 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
18 | 16, 17 | sylibr 233 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅) |
19 | ssrab2 4013 | . . . . . . 7 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℙ | |
20 | prmssnn 16381 | . . . . . . . 8 ⊢ ℙ ⊆ ℕ | |
21 | nnssre 11977 | . . . . . . . 8 ⊢ ℕ ⊆ ℝ | |
22 | 20, 21 | sstri 3930 | . . . . . . 7 ⊢ ℙ ⊆ ℝ |
23 | 19, 22 | sstri 3930 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ |
24 | 23 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ) |
25 | fiinfcl 9260 | . . . . . 6 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}) | |
26 | 19, 25 | sselid 3919 | . . . . 5 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
27 | 4, 14, 18, 24, 26 | syl13anc 1371 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
28 | 27 | rexlimiva 3210 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
29 | 2, 28 | sylbi 216 | . 2 ⊢ (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
30 | 1, 29 | fmpti 6986 | 1 ⊢ 𝐹:ran FermatNo⟶ℙ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 Or wor 5502 ran crn 5590 ⟶wf 6429 ‘cfv 6433 Fincfn 8733 infcinf 9200 ℝcr 10870 < clt 11009 ℕcn 11973 2c2 12028 3c3 12029 ℕ0cn0 12233 ℤ≥cuz 12582 ∥ cdvds 15963 ℙcprime 16376 FermatNocfmtno 44979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-prm 16377 df-fmtno 44980 |
This theorem is referenced by: prmdvdsfmtnof1 45039 |
Copyright terms: Public domain | W3C validator |