| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prmdvdsfmtnof | Structured version Visualization version GIF version | ||
| Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
| Ref | Expression |
|---|---|
| prmdvdsfmtnof.1 | ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) |
| Ref | Expression |
|---|---|
| prmdvdsfmtnof | ⊢ 𝐹:ran FermatNo⟶ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdvdsfmtnof.1 | . 2 ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) | |
| 2 | fmtnorn 47658 | . . 3 ⊢ (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓) | |
| 3 | ltso 11200 | . . . . . 6 ⊢ < Or ℝ | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ) |
| 5 | fmtnoge3 47654 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) | |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) |
| 7 | eleq1 2821 | . . . . . . . . 9 ⊢ ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) | |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) |
| 9 | 6, 8 | mpbid 232 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘3)) |
| 10 | uzuzle23 12784 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘3) → 𝑓 ∈ (ℤ≥‘2)) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘2)) |
| 12 | eluz2nn 12788 | . . . . . 6 ⊢ (𝑓 ∈ (ℤ≥‘2) → 𝑓 ∈ ℕ) | |
| 13 | prmdvdsfi 27045 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) | |
| 14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) |
| 15 | exprmfct 16617 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
| 16 | 11, 15 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) |
| 17 | rabn0 4338 | . . . . . 6 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
| 18 | 16, 17 | sylibr 234 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅) |
| 19 | ssrab2 4029 | . . . . . . 7 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℙ | |
| 20 | prmssnn 16589 | . . . . . . . 8 ⊢ ℙ ⊆ ℕ | |
| 21 | nnssre 12136 | . . . . . . . 8 ⊢ ℕ ⊆ ℝ | |
| 22 | 20, 21 | sstri 3940 | . . . . . . 7 ⊢ ℙ ⊆ ℝ |
| 23 | 19, 22 | sstri 3940 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ) |
| 25 | fiinfcl 9394 | . . . . . 6 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}) | |
| 26 | 19, 25 | sselid 3928 | . . . . 5 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 27 | 4, 14, 18, 24, 26 | syl13anc 1374 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 28 | 27 | rexlimiva 3126 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 29 | 2, 28 | sylbi 217 | . 2 ⊢ (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 30 | 1, 29 | fmpti 7051 | 1 ⊢ 𝐹:ran FermatNo⟶ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 {crab 3396 ⊆ wss 3898 ∅c0 4282 class class class wbr 5093 ↦ cmpt 5174 Or wor 5526 ran crn 5620 ⟶wf 6482 ‘cfv 6486 Fincfn 8875 infcinf 9332 ℝcr 11012 < clt 11153 ℕcn 12132 2c2 12187 3c3 12188 ℕ0cn0 12388 ℤ≥cuz 12738 ∥ cdvds 16165 ℙcprime 16584 FermatNocfmtno 47651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-prm 16585 df-fmtno 47652 |
| This theorem is referenced by: prmdvdsfmtnof1 47711 |
| Copyright terms: Public domain | W3C validator |