| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prmdvdsfmtnof | Structured version Visualization version GIF version | ||
| Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
| Ref | Expression |
|---|---|
| prmdvdsfmtnof.1 | ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) |
| Ref | Expression |
|---|---|
| prmdvdsfmtnof | ⊢ 𝐹:ran FermatNo⟶ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdvdsfmtnof.1 | . 2 ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) | |
| 2 | fmtnorn 47539 | . . 3 ⊢ (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓) | |
| 3 | ltso 11261 | . . . . . 6 ⊢ < Or ℝ | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ) |
| 5 | fmtnoge3 47535 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) | |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) |
| 7 | eleq1 2817 | . . . . . . . . 9 ⊢ ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) | |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) |
| 9 | 6, 8 | mpbid 232 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘3)) |
| 10 | uzuzle23 12850 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘3) → 𝑓 ∈ (ℤ≥‘2)) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘2)) |
| 12 | eluz2nn 12854 | . . . . . 6 ⊢ (𝑓 ∈ (ℤ≥‘2) → 𝑓 ∈ ℕ) | |
| 13 | prmdvdsfi 27024 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) | |
| 14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) |
| 15 | exprmfct 16681 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
| 16 | 11, 15 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) |
| 17 | rabn0 4355 | . . . . . 6 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
| 18 | 16, 17 | sylibr 234 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅) |
| 19 | ssrab2 4046 | . . . . . . 7 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℙ | |
| 20 | prmssnn 16653 | . . . . . . . 8 ⊢ ℙ ⊆ ℕ | |
| 21 | nnssre 12197 | . . . . . . . 8 ⊢ ℕ ⊆ ℝ | |
| 22 | 20, 21 | sstri 3959 | . . . . . . 7 ⊢ ℙ ⊆ ℝ |
| 23 | 19, 22 | sstri 3959 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ) |
| 25 | fiinfcl 9461 | . . . . . 6 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}) | |
| 26 | 19, 25 | sselid 3947 | . . . . 5 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 27 | 4, 14, 18, 24, 26 | syl13anc 1374 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 28 | 27 | rexlimiva 3127 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 29 | 2, 28 | sylbi 217 | . 2 ⊢ (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 30 | 1, 29 | fmpti 7087 | 1 ⊢ 𝐹:ran FermatNo⟶ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 ↦ cmpt 5191 Or wor 5548 ran crn 5642 ⟶wf 6510 ‘cfv 6514 Fincfn 8921 infcinf 9399 ℝcr 11074 < clt 11215 ℕcn 12193 2c2 12248 3c3 12249 ℕ0cn0 12449 ℤ≥cuz 12800 ∥ cdvds 16229 ℙcprime 16648 FermatNocfmtno 47532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 df-fmtno 47533 |
| This theorem is referenced by: prmdvdsfmtnof1 47592 |
| Copyright terms: Public domain | W3C validator |