Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof 44926
Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof 𝐹:ran FermatNo⟶ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . 2 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
2 fmtnorn 44874 . . 3 (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓)
3 ltso 10986 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ)
5 fmtnoge3 44870 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
65adantr 480 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ‘3))
7 eleq1 2826 . . . . . . . . 9 ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
87adantl 481 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
96, 8mpbid 231 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘3))
10 uzuzle23 12558 . . . . . . 7 (𝑓 ∈ (ℤ‘3) → 𝑓 ∈ (ℤ‘2))
119, 10syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘2))
12 eluz2nn 12553 . . . . . 6 (𝑓 ∈ (ℤ‘2) → 𝑓 ∈ ℕ)
13 prmdvdsfi 26161 . . . . . 6 (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
1411, 12, 133syl 18 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
15 exprmfct 16337 . . . . . . 7 (𝑓 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑓)
1611, 15syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝𝑓)
17 rabn0 4316 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑓)
1816, 17sylibr 233 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅)
19 ssrab2 4009 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℙ
20 prmssnn 16309 . . . . . . . 8 ℙ ⊆ ℕ
21 nnssre 11907 . . . . . . . 8 ℕ ⊆ ℝ
2220, 21sstri 3926 . . . . . . 7 ℙ ⊆ ℝ
2319, 22sstri 3926 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ
2423a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)
25 fiinfcl 9190 . . . . . 6 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑓})
2619, 25sselid 3915 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
274, 14, 18, 24, 26syl13anc 1370 . . . 4 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
2827rexlimiva 3209 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
292, 28sylbi 216 . 2 (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
301, 29fmpti 6968 1 𝐹:ran FermatNo⟶ℙ
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  wss 3883  c0 4253   class class class wbr 5070  cmpt 5153   Or wor 5493  ran crn 5581  wf 6414  cfv 6418  Fincfn 8691  infcinf 9130  cr 10801   < clt 10940  cn 11903  2c2 11958  3c3 11959  0cn0 12163  cuz 12511  cdvds 15891  cprime 16304  FermatNocfmtno 44867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305  df-fmtno 44868
This theorem is referenced by:  prmdvdsfmtnof1  44927
  Copyright terms: Public domain W3C validator