Step | Hyp | Ref
| Expression |
1 | | prmdvdsfmtnof.1 |
. 2
β’ πΉ = (π β ran FermatNo β¦ inf({π β β β£ π β₯ π}, β, < )) |
2 | | fmtnorn 46502 |
. . 3
β’ (π β ran FermatNo β
βπ β
β0 (FermatNoβπ) = π) |
3 | | ltso 11299 |
. . . . . 6
β’ < Or
β |
4 | 3 | a1i 11 |
. . . . 5
β’ ((π β β0
β§ (FermatNoβπ) =
π) β < Or
β) |
5 | | fmtnoge3 46498 |
. . . . . . . . 9
β’ (π β β0
β (FermatNoβπ)
β (β€β₯β3)) |
6 | 5 | adantr 480 |
. . . . . . . 8
β’ ((π β β0
β§ (FermatNoβπ) =
π) β
(FermatNoβπ) β
(β€β₯β3)) |
7 | | eleq1 2820 |
. . . . . . . . 9
β’
((FermatNoβπ)
= π β
((FermatNoβπ) β
(β€β₯β3) β π β
(β€β₯β3))) |
8 | 7 | adantl 481 |
. . . . . . . 8
β’ ((π β β0
β§ (FermatNoβπ) =
π) β
((FermatNoβπ) β
(β€β₯β3) β π β
(β€β₯β3))) |
9 | 6, 8 | mpbid 231 |
. . . . . . 7
β’ ((π β β0
β§ (FermatNoβπ) =
π) β π β
(β€β₯β3)) |
10 | | uzuzle23 12878 |
. . . . . . 7
β’ (π β
(β€β₯β3) β π β
(β€β₯β2)) |
11 | 9, 10 | syl 17 |
. . . . . 6
β’ ((π β β0
β§ (FermatNoβπ) =
π) β π β
(β€β₯β2)) |
12 | | eluz2nn 12873 |
. . . . . 6
β’ (π β
(β€β₯β2) β π β β) |
13 | | prmdvdsfi 26844 |
. . . . . 6
β’ (π β β β {π β β β£ π β₯ π} β Fin) |
14 | 11, 12, 13 | 3syl 18 |
. . . . 5
β’ ((π β β0
β§ (FermatNoβπ) =
π) β {π β β β£ π β₯ π} β Fin) |
15 | | exprmfct 16646 |
. . . . . . 7
β’ (π β
(β€β₯β2) β βπ β β π β₯ π) |
16 | 11, 15 | syl 17 |
. . . . . 6
β’ ((π β β0
β§ (FermatNoβπ) =
π) β βπ β β π β₯ π) |
17 | | rabn0 4386 |
. . . . . 6
β’ ({π β β β£ π β₯ π} β β
β βπ β β π β₯ π) |
18 | 16, 17 | sylibr 233 |
. . . . 5
β’ ((π β β0
β§ (FermatNoβπ) =
π) β {π β β β£ π β₯ π} β β
) |
19 | | ssrab2 4078 |
. . . . . . 7
β’ {π β β β£ π β₯ π} β β |
20 | | prmssnn 16618 |
. . . . . . . 8
β’ β
β β |
21 | | nnssre 12221 |
. . . . . . . 8
β’ β
β β |
22 | 20, 21 | sstri 3992 |
. . . . . . 7
β’ β
β β |
23 | 19, 22 | sstri 3992 |
. . . . . 6
β’ {π β β β£ π β₯ π} β β |
24 | 23 | a1i 11 |
. . . . 5
β’ ((π β β0
β§ (FermatNoβπ) =
π) β {π β β β£ π β₯ π} β β) |
25 | | fiinfcl 9499 |
. . . . . 6
β’ (( <
Or β β§ ({π β
β β£ π β₯
π} β Fin β§ {π β β β£ π β₯ π} β β
β§ {π β β β£ π β₯ π} β β)) β inf({π β β β£ π β₯ π}, β, < ) β {π β β β£ π β₯ π}) |
26 | 19, 25 | sselid 3981 |
. . . . 5
β’ (( <
Or β β§ ({π β
β β£ π β₯
π} β Fin β§ {π β β β£ π β₯ π} β β
β§ {π β β β£ π β₯ π} β β)) β inf({π β β β£ π β₯ π}, β, < ) β
β) |
27 | 4, 14, 18, 24, 26 | syl13anc 1371 |
. . . 4
β’ ((π β β0
β§ (FermatNoβπ) =
π) β inf({π β β β£ π β₯ π}, β, < ) β
β) |
28 | 27 | rexlimiva 3146 |
. . 3
β’
(βπ β
β0 (FermatNoβπ) = π β inf({π β β β£ π β₯ π}, β, < ) β
β) |
29 | 2, 28 | sylbi 216 |
. 2
β’ (π β ran FermatNo β
inf({π β β
β£ π β₯ π}, β, < ) β
β) |
30 | 1, 29 | fmpti 7114 |
1
β’ πΉ:ran
FermatNoβΆβ |