Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof 45673
Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof 𝐹:ran FermatNo⟶ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . 2 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
2 fmtnorn 45621 . . 3 (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓)
3 ltso 11193 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ)
5 fmtnoge3 45617 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
65adantr 481 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ‘3))
7 eleq1 2825 . . . . . . . . 9 ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
87adantl 482 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
96, 8mpbid 231 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘3))
10 uzuzle23 12768 . . . . . . 7 (𝑓 ∈ (ℤ‘3) → 𝑓 ∈ (ℤ‘2))
119, 10syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘2))
12 eluz2nn 12763 . . . . . 6 (𝑓 ∈ (ℤ‘2) → 𝑓 ∈ ℕ)
13 prmdvdsfi 26402 . . . . . 6 (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
1411, 12, 133syl 18 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
15 exprmfct 16534 . . . . . . 7 (𝑓 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑓)
1611, 15syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝𝑓)
17 rabn0 4343 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑓)
1816, 17sylibr 233 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅)
19 ssrab2 4035 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℙ
20 prmssnn 16506 . . . . . . . 8 ℙ ⊆ ℕ
21 nnssre 12115 . . . . . . . 8 ℕ ⊆ ℝ
2220, 21sstri 3951 . . . . . . 7 ℙ ⊆ ℝ
2319, 22sstri 3951 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ
2423a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)
25 fiinfcl 9395 . . . . . 6 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑓})
2619, 25sselid 3940 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
274, 14, 18, 24, 26syl13anc 1372 . . . 4 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
2827rexlimiva 3142 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
292, 28sylbi 216 . 2 (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
301, 29fmpti 7056 1 𝐹:ran FermatNo⟶ℙ
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wrex 3071  {crab 3405  wss 3908  c0 4280   class class class wbr 5103  cmpt 5186   Or wor 5542  ran crn 5632  wf 6489  cfv 6493  Fincfn 8841  infcinf 9335  cr 11008   < clt 11147  cn 12111  2c2 12166  3c3 12167  0cn0 12371  cuz 12721  cdvds 16090  cprime 16501  FermatNocfmtno 45614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-2o 8405  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-sup 9336  df-inf 9337  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-rp 12870  df-fz 13379  df-seq 13861  df-exp 13922  df-cj 14938  df-re 14939  df-im 14940  df-sqrt 15074  df-abs 15075  df-dvds 16091  df-prm 16502  df-fmtno 45615
This theorem is referenced by:  prmdvdsfmtnof1  45674
  Copyright terms: Public domain W3C validator