Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof 47460
Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof 𝐹:ran FermatNo⟶ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . 2 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
2 fmtnorn 47408 . . 3 (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓)
3 ltso 11370 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ)
5 fmtnoge3 47404 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
65adantr 480 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ‘3))
7 eleq1 2832 . . . . . . . . 9 ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
87adantl 481 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
96, 8mpbid 232 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘3))
10 uzuzle23 12954 . . . . . . 7 (𝑓 ∈ (ℤ‘3) → 𝑓 ∈ (ℤ‘2))
119, 10syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘2))
12 eluz2nn 12949 . . . . . 6 (𝑓 ∈ (ℤ‘2) → 𝑓 ∈ ℕ)
13 prmdvdsfi 27168 . . . . . 6 (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
1411, 12, 133syl 18 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
15 exprmfct 16751 . . . . . . 7 (𝑓 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑓)
1611, 15syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝𝑓)
17 rabn0 4412 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑓)
1816, 17sylibr 234 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅)
19 ssrab2 4103 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℙ
20 prmssnn 16723 . . . . . . . 8 ℙ ⊆ ℕ
21 nnssre 12297 . . . . . . . 8 ℕ ⊆ ℝ
2220, 21sstri 4018 . . . . . . 7 ℙ ⊆ ℝ
2319, 22sstri 4018 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ
2423a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)
25 fiinfcl 9570 . . . . . 6 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑓})
2619, 25sselid 4006 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
274, 14, 18, 24, 26syl13anc 1372 . . . 4 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
2827rexlimiva 3153 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
292, 28sylbi 217 . 2 (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
301, 29fmpti 7146 1 𝐹:ran FermatNo⟶ℙ
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249   Or wor 5606  ran crn 5701  wf 6569  cfv 6573  Fincfn 9003  infcinf 9510  cr 11183   < clt 11324  cn 12293  2c2 12348  3c3 12349  0cn0 12553  cuz 12903  cdvds 16302  cprime 16718  FermatNocfmtno 47401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-fmtno 47402
This theorem is referenced by:  prmdvdsfmtnof1  47461
  Copyright terms: Public domain W3C validator