| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prmdvdsfmtnof | Structured version Visualization version GIF version | ||
| Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
| Ref | Expression |
|---|---|
| prmdvdsfmtnof.1 | ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) |
| Ref | Expression |
|---|---|
| prmdvdsfmtnof | ⊢ 𝐹:ran FermatNo⟶ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdvdsfmtnof.1 | . 2 ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) | |
| 2 | fmtnorn 47496 | . . 3 ⊢ (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓) | |
| 3 | ltso 11313 | . . . . . 6 ⊢ < Or ℝ | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ) |
| 5 | fmtnoge3 47492 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) | |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) |
| 7 | eleq1 2822 | . . . . . . . . 9 ⊢ ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) | |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) |
| 9 | 6, 8 | mpbid 232 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘3)) |
| 10 | uzuzle23 12903 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘3) → 𝑓 ∈ (ℤ≥‘2)) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘2)) |
| 12 | eluz2nn 12896 | . . . . . 6 ⊢ (𝑓 ∈ (ℤ≥‘2) → 𝑓 ∈ ℕ) | |
| 13 | prmdvdsfi 27067 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) | |
| 14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) |
| 15 | exprmfct 16721 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
| 16 | 11, 15 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) |
| 17 | rabn0 4364 | . . . . . 6 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
| 18 | 16, 17 | sylibr 234 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅) |
| 19 | ssrab2 4055 | . . . . . . 7 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℙ | |
| 20 | prmssnn 16693 | . . . . . . . 8 ⊢ ℙ ⊆ ℕ | |
| 21 | nnssre 12242 | . . . . . . . 8 ⊢ ℕ ⊆ ℝ | |
| 22 | 20, 21 | sstri 3968 | . . . . . . 7 ⊢ ℙ ⊆ ℝ |
| 23 | 19, 22 | sstri 3968 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ) |
| 25 | fiinfcl 9513 | . . . . . 6 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}) | |
| 26 | 19, 25 | sselid 3956 | . . . . 5 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 27 | 4, 14, 18, 24, 26 | syl13anc 1374 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 28 | 27 | rexlimiva 3133 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 29 | 2, 28 | sylbi 217 | . 2 ⊢ (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
| 30 | 1, 29 | fmpti 7101 | 1 ⊢ 𝐹:ran FermatNo⟶ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 ↦ cmpt 5201 Or wor 5560 ran crn 5655 ⟶wf 6526 ‘cfv 6530 Fincfn 8957 infcinf 9451 ℝcr 11126 < clt 11267 ℕcn 12238 2c2 12293 3c3 12294 ℕ0cn0 12499 ℤ≥cuz 12850 ∥ cdvds 16270 ℙcprime 16688 FermatNocfmtno 47489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 df-prm 16689 df-fmtno 47490 |
| This theorem is referenced by: prmdvdsfmtnof1 47549 |
| Copyright terms: Public domain | W3C validator |