Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof 47510
Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof 𝐹:ran FermatNo⟶ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . 2 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
2 fmtnorn 47458 . . 3 (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓)
3 ltso 11338 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ)
5 fmtnoge3 47454 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
65adantr 480 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ‘3))
7 eleq1 2826 . . . . . . . . 9 ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
87adantl 481 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ‘3) ↔ 𝑓 ∈ (ℤ‘3)))
96, 8mpbid 232 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘3))
10 uzuzle23 12928 . . . . . . 7 (𝑓 ∈ (ℤ‘3) → 𝑓 ∈ (ℤ‘2))
119, 10syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ‘2))
12 eluz2nn 12921 . . . . . 6 (𝑓 ∈ (ℤ‘2) → 𝑓 ∈ ℕ)
13 prmdvdsfi 27164 . . . . . 6 (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
1411, 12, 133syl 18 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin)
15 exprmfct 16737 . . . . . . 7 (𝑓 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑓)
1611, 15syl 17 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝𝑓)
17 rabn0 4394 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑓)
1816, 17sylibr 234 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅)
19 ssrab2 4089 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℙ
20 prmssnn 16709 . . . . . . . 8 ℙ ⊆ ℕ
21 nnssre 12267 . . . . . . . 8 ℕ ⊆ ℝ
2220, 21sstri 4004 . . . . . . 7 ℙ ⊆ ℝ
2319, 22sstri 4004 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ
2423a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)
25 fiinfcl 9538 . . . . . 6 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑓})
2619, 25sselid 3992 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
274, 14, 18, 24, 26syl13anc 1371 . . . 4 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
2827rexlimiva 3144 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
292, 28sylbi 217 . 2 (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) ∈ ℙ)
301, 29fmpti 7131 1 𝐹:ran FermatNo⟶ℙ
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067  {crab 3432  wss 3962  c0 4338   class class class wbr 5147  cmpt 5230   Or wor 5595  ran crn 5689  wf 6558  cfv 6562  Fincfn 8983  infcinf 9478  cr 11151   < clt 11292  cn 12263  2c2 12318  3c3 12319  0cn0 12523  cuz 12875  cdvds 16286  cprime 16704  FermatNocfmtno 47451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-prm 16705  df-fmtno 47452
This theorem is referenced by:  prmdvdsfmtnof1  47511
  Copyright terms: Public domain W3C validator