![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmdvdsfmtnof | Structured version Visualization version GIF version |
Description: The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
Ref | Expression |
---|---|
prmdvdsfmtnof.1 | ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) |
Ref | Expression |
---|---|
prmdvdsfmtnof | ⊢ 𝐹:ran FermatNo⟶ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdvdsfmtnof.1 | . 2 ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) | |
2 | fmtnorn 47408 | . . 3 ⊢ (𝑓 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓) | |
3 | ltso 11370 | . . . . . 6 ⊢ < Or ℝ | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → < Or ℝ) |
5 | fmtnoge3 47404 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) | |
6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → (FermatNo‘𝑛) ∈ (ℤ≥‘3)) |
7 | eleq1 2832 | . . . . . . . . 9 ⊢ ((FermatNo‘𝑛) = 𝑓 → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) | |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ((FermatNo‘𝑛) ∈ (ℤ≥‘3) ↔ 𝑓 ∈ (ℤ≥‘3))) |
9 | 6, 8 | mpbid 232 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘3)) |
10 | uzuzle23 12954 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘3) → 𝑓 ∈ (ℤ≥‘2)) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → 𝑓 ∈ (ℤ≥‘2)) |
12 | eluz2nn 12949 | . . . . . 6 ⊢ (𝑓 ∈ (ℤ≥‘2) → 𝑓 ∈ ℕ) | |
13 | prmdvdsfi 27168 | . . . . . 6 ⊢ (𝑓 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) | |
14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin) |
15 | exprmfct 16751 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
16 | 11, 15 | syl 17 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) |
17 | rabn0 4412 | . . . . . 6 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑓) | |
18 | 16, 17 | sylibr 234 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅) |
19 | ssrab2 4103 | . . . . . . 7 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℙ | |
20 | prmssnn 16723 | . . . . . . . 8 ⊢ ℙ ⊆ ℕ | |
21 | nnssre 12297 | . . . . . . . 8 ⊢ ℕ ⊆ ℝ | |
22 | 20, 21 | sstri 4018 | . . . . . . 7 ⊢ ℙ ⊆ ℝ |
23 | 19, 22 | sstri 4018 | . . . . . 6 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ |
24 | 23 | a1i 11 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ) |
25 | fiinfcl 9570 | . . . . . 6 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}) | |
26 | 19, 25 | sselid 4006 | . . . . 5 ⊢ (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
27 | 4, 14, 18, 24, 26 | syl13anc 1372 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑓) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
28 | 27 | rexlimiva 3153 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑓 → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
29 | 2, 28 | sylbi 217 | . 2 ⊢ (𝑓 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) ∈ ℙ) |
30 | 1, 29 | fmpti 7146 | 1 ⊢ 𝐹:ran FermatNo⟶ℙ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ↦ cmpt 5249 Or wor 5606 ran crn 5701 ⟶wf 6569 ‘cfv 6573 Fincfn 9003 infcinf 9510 ℝcr 11183 < clt 11324 ℕcn 12293 2c2 12348 3c3 12349 ℕ0cn0 12553 ℤ≥cuz 12903 ∥ cdvds 16302 ℙcprime 16718 FermatNocfmtno 47401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-prm 16719 df-fmtno 47402 |
This theorem is referenced by: prmdvdsfmtnof1 47461 |
Copyright terms: Public domain | W3C validator |