MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem3 Structured version   Visualization version   GIF version

Theorem prmgaplem3 17086
Description: Lemma for prmgap 17092. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem3.a 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
Assertion
Ref Expression
prmgaplem3 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4089 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ
21a1i 11 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ)
3 prmssnn 16709 . . . . 5 ℙ ⊆ ℕ
4 nnssre 12267 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 4004 . . . 4 ℙ ⊆ ℝ
62, 5sstrdi 4007 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ)
7 fzofi 14011 . . . 4 (0..^𝑁) ∈ Fin
8 breq1 5150 . . . . . . 7 (𝑝 = 𝑖 → (𝑝 < 𝑁𝑖 < 𝑁))
98elrab 3694 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ↔ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁))
10 prmnn 16707 . . . . . . . . . 10 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ)
1110nnnn0d 12584 . . . . . . . . 9 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ0)
1211ad2antrl 728 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ ℕ0)
13 eluzge3nn 12929 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1413adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑁 ∈ ℕ)
15 simprr 773 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 < 𝑁)
16 elfzo0 13736 . . . . . . . 8 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
1712, 14, 15, 16syl3anbrc 1342 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ (0..^𝑁))
1817ex 412 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ((𝑖 ∈ ℙ ∧ 𝑖 < 𝑁) → 𝑖 ∈ (0..^𝑁)))
199, 18biimtrid 242 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → 𝑖 ∈ (0..^𝑁)))
2019ssrdv 4000 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁))
21 ssfi 9211 . . . 4 (((0..^𝑁) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁)) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
227, 20, 21sylancr 587 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
23 breq1 5150 . . . . 5 (𝑝 = 2 → (𝑝 < 𝑁 ↔ 2 < 𝑁))
24 2prm 16725 . . . . . 6 2 ∈ ℙ
2524a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℙ)
26 eluz2 12881 . . . . . 6 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
27 df-3 12327 . . . . . . . . . 10 3 = (2 + 1)
2827breq1i 5154 . . . . . . . . 9 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
29 2z 12646 . . . . . . . . . . 11 2 ∈ ℤ
30 zltp1le 12664 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3129, 30mpan 690 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3231biimprd 248 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 + 1) ≤ 𝑁 → 2 < 𝑁))
3328, 32biimtrid 242 . . . . . . . 8 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
3433imp 406 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
35343adant1 1129 . . . . . 6 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
3626, 35sylbi 217 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
3723, 25, 36elrabd 3696 . . . 4 (𝑁 ∈ (ℤ‘3) → 2 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁})
3837ne0d 4347 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)
39 prmgaplem3.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
40 sseq1 4020 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ))
41 eleq1 2826 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin))
42 neeq1 3000 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
4340, 41, 423anbi123d 1435 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)))
4439, 43ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
456, 22, 38, 44syl3anbrc 1342 . 2 (𝑁 ∈ (ℤ‘3) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
46 fimaxre 12209 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
4745, 46syl 17 1 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  wss 3962  c0 4338   class class class wbr 5147  cfv 6562  (class class class)co 7430  Fincfn 8983  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cn 12263  2c2 12318  3c3 12319  0cn0 12523  cz 12610  cuz 12875  ..^cfzo 13690  cprime 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-prm 16705
This theorem is referenced by:  prmgaplem5  17088
  Copyright terms: Public domain W3C validator