MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem3 Structured version   Visualization version   GIF version

Theorem prmgaplem3 17071
Description: Lemma for prmgap 17077. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem3.a 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
Assertion
Ref Expression
prmgaplem3 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ
21a1i 11 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ)
3 prmssnn 16693 . . . . 5 ℙ ⊆ ℕ
4 nnssre 12242 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3968 . . . 4 ℙ ⊆ ℝ
62, 5sstrdi 3971 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ)
7 fzofi 13990 . . . 4 (0..^𝑁) ∈ Fin
8 breq1 5122 . . . . . . 7 (𝑝 = 𝑖 → (𝑝 < 𝑁𝑖 < 𝑁))
98elrab 3671 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ↔ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁))
10 prmnn 16691 . . . . . . . . . 10 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ)
1110nnnn0d 12560 . . . . . . . . 9 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ0)
1211ad2antrl 728 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ ℕ0)
13 eluzge3nn 12904 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1413adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑁 ∈ ℕ)
15 simprr 772 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 < 𝑁)
16 elfzo0 13715 . . . . . . . 8 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
1712, 14, 15, 16syl3anbrc 1344 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ (0..^𝑁))
1817ex 412 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ((𝑖 ∈ ℙ ∧ 𝑖 < 𝑁) → 𝑖 ∈ (0..^𝑁)))
199, 18biimtrid 242 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → 𝑖 ∈ (0..^𝑁)))
2019ssrdv 3964 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁))
21 ssfi 9185 . . . 4 (((0..^𝑁) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁)) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
227, 20, 21sylancr 587 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
23 breq1 5122 . . . . 5 (𝑝 = 2 → (𝑝 < 𝑁 ↔ 2 < 𝑁))
24 2prm 16709 . . . . . 6 2 ∈ ℙ
2524a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℙ)
26 eluz2 12856 . . . . . 6 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
27 df-3 12302 . . . . . . . . . 10 3 = (2 + 1)
2827breq1i 5126 . . . . . . . . 9 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
29 2z 12622 . . . . . . . . . . 11 2 ∈ ℤ
30 zltp1le 12640 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3129, 30mpan 690 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3231biimprd 248 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 + 1) ≤ 𝑁 → 2 < 𝑁))
3328, 32biimtrid 242 . . . . . . . 8 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
3433imp 406 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
35343adant1 1130 . . . . . 6 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
3626, 35sylbi 217 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
3723, 25, 36elrabd 3673 . . . 4 (𝑁 ∈ (ℤ‘3) → 2 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁})
3837ne0d 4317 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)
39 prmgaplem3.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
40 sseq1 3984 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ))
41 eleq1 2822 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin))
42 neeq1 2994 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
4340, 41, 423anbi123d 1438 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)))
4439, 43ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
456, 22, 38, 44syl3anbrc 1344 . 2 (𝑁 ∈ (ℤ‘3) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
46 fimaxre 12184 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
4745, 46syl 17 1 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  wss 3926  c0 4308   class class class wbr 5119  cfv 6530  (class class class)co 7403  Fincfn 8957  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   < clt 11267  cle 11268  cn 12238  2c2 12293  3c3 12294  0cn0 12499  cz 12586  cuz 12850  ..^cfzo 13669  cprime 16688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-dvds 16271  df-prm 16689
This theorem is referenced by:  prmgaplem5  17073
  Copyright terms: Public domain W3C validator