MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem3 Structured version   Visualization version   GIF version

Theorem prmgaplem3 17025
Description: Lemma for prmgap 17031. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem3.a 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
Assertion
Ref Expression
prmgaplem3 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4073 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ
21a1i 11 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ)
3 prmssnn 16650 . . . . 5 ℙ ⊆ ℕ
4 nnssre 12249 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3986 . . . 4 ℙ ⊆ ℝ
62, 5sstrdi 3989 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ)
7 fzofi 13975 . . . 4 (0..^𝑁) ∈ Fin
8 breq1 5152 . . . . . . 7 (𝑝 = 𝑖 → (𝑝 < 𝑁𝑖 < 𝑁))
98elrab 3679 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ↔ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁))
10 prmnn 16648 . . . . . . . . . 10 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ)
1110nnnn0d 12565 . . . . . . . . 9 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ0)
1211ad2antrl 726 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ ℕ0)
13 eluzge3nn 12907 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1413adantr 479 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑁 ∈ ℕ)
15 simprr 771 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 < 𝑁)
16 elfzo0 13708 . . . . . . . 8 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
1712, 14, 15, 16syl3anbrc 1340 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ (0..^𝑁))
1817ex 411 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ((𝑖 ∈ ℙ ∧ 𝑖 < 𝑁) → 𝑖 ∈ (0..^𝑁)))
199, 18biimtrid 241 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → 𝑖 ∈ (0..^𝑁)))
2019ssrdv 3982 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁))
21 ssfi 9198 . . . 4 (((0..^𝑁) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁)) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
227, 20, 21sylancr 585 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
23 breq1 5152 . . . . 5 (𝑝 = 2 → (𝑝 < 𝑁 ↔ 2 < 𝑁))
24 2prm 16666 . . . . . 6 2 ∈ ℙ
2524a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℙ)
26 eluz2 12861 . . . . . 6 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
27 df-3 12309 . . . . . . . . . 10 3 = (2 + 1)
2827breq1i 5156 . . . . . . . . 9 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
29 2z 12627 . . . . . . . . . . 11 2 ∈ ℤ
30 zltp1le 12645 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3129, 30mpan 688 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3231biimprd 247 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 + 1) ≤ 𝑁 → 2 < 𝑁))
3328, 32biimtrid 241 . . . . . . . 8 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
3433imp 405 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
35343adant1 1127 . . . . . 6 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
3626, 35sylbi 216 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
3723, 25, 36elrabd 3681 . . . 4 (𝑁 ∈ (ℤ‘3) → 2 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁})
3837ne0d 4335 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)
39 prmgaplem3.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
40 sseq1 4002 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ))
41 eleq1 2813 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin))
42 neeq1 2992 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
4340, 41, 423anbi123d 1432 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)))
4439, 43ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
456, 22, 38, 44syl3anbrc 1340 . 2 (𝑁 ∈ (ℤ‘3) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
46 fimaxre 12191 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
4745, 46syl 17 1 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  wss 3944  c0 4322   class class class wbr 5149  cfv 6549  (class class class)co 7419  Fincfn 8964  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cn 12245  2c2 12300  3c3 12301  0cn0 12505  cz 12591  cuz 12855  ..^cfzo 13662  cprime 16645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-dvds 16235  df-prm 16646
This theorem is referenced by:  prmgaplem5  17027
  Copyright terms: Public domain W3C validator