Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem1 44101
Description: Lemma 1 for prmdvdsfmtnof1 44104. (Contributed by AV, 3-Aug-2021.)
Hypotheses
Ref Expression
prmdvdsfmtnof1lem1.i 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
prmdvdsfmtnof1lem1.j 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
Assertion
Ref Expression
prmdvdsfmtnof1lem1 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝐼(𝑝)   𝐽(𝑝)

Proof of Theorem prmdvdsfmtnof1lem1
StepHypRef Expression
1 ltso 10710 . . . 4 < Or ℝ
21a1i 11 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → < Or ℝ)
3 eluz2nn 12272 . . . . 5 (𝐹 ∈ (ℤ‘2) → 𝐹 ∈ ℕ)
43adantr 484 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → 𝐹 ∈ ℕ)
5 prmdvdsfi 25692 . . . 4 (𝐹 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin)
64, 5syl 17 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin)
7 exprmfct 16038 . . . . 5 (𝐹 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝐹)
87adantr 484 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → ∃𝑝 ∈ ℙ 𝑝𝐹)
9 rabn0 4293 . . . 4 ({𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝐹)
108, 9sylibr 237 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅)
11 ssrab2 4007 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℙ
12 prmssnn 16010 . . . . . 6 ℙ ⊆ ℕ
13 nnssre 11629 . . . . . 6 ℕ ⊆ ℝ
1412, 13sstri 3924 . . . . 5 ℙ ⊆ ℝ
1511, 14sstri 3924 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ
1615a1i 11 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ)
17 fiinfcl 8949 . . 3 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
182, 6, 10, 16, 17syl13anc 1369 . 2 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
19 prmdvdsfmtnof1lem1.i . . . 4 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
2019eleq1i 2880 . . 3 (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
21 eluz2nn 12272 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → 𝐺 ∈ ℕ)
2221adantl 485 . . . . . 6 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → 𝐺 ∈ ℕ)
23 prmdvdsfi 25692 . . . . . 6 (𝐺 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin)
2422, 23syl 17 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin)
25 exprmfct 16038 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝐺)
2625adantl 485 . . . . . 6 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → ∃𝑝 ∈ ℙ 𝑝𝐺)
27 rabn0 4293 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝐺)
2826, 27sylibr 237 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅)
29 ssrab2 4007 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℙ
3029, 14sstri 3924 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ
3130a1i 11 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ)
32 fiinfcl 8949 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
332, 24, 28, 31, 32syl13anc 1369 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
34 prmdvdsfmtnof1lem1.j . . . . . 6 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
3534eleq1i 2880 . . . . 5 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
36 nfrab1 3337 . . . . . . . . . 10 𝑝{𝑝 ∈ ℙ ∣ 𝑝𝐺}
37 nfcv 2955 . . . . . . . . . 10 𝑝
38 nfcv 2955 . . . . . . . . . 10 𝑝 <
3936, 37, 38nfinf 8930 . . . . . . . . 9 𝑝inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
4034, 39nfcxfr 2953 . . . . . . . 8 𝑝𝐽
41 nfcv 2955 . . . . . . . 8 𝑝
42 nfcv 2955 . . . . . . . . 9 𝑝
43 nfcv 2955 . . . . . . . . 9 𝑝𝐺
4440, 42, 43nfbr 5077 . . . . . . . 8 𝑝 𝐽𝐺
45 breq1 5033 . . . . . . . 8 (𝑝 = 𝐽 → (𝑝𝐺𝐽𝐺))
4640, 41, 44, 45elrabf 3624 . . . . . . 7 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ↔ (𝐽 ∈ ℙ ∧ 𝐽𝐺))
47 nfrab1 3337 . . . . . . . . . . 11 𝑝{𝑝 ∈ ℙ ∣ 𝑝𝐹}
4847, 37, 38nfinf 8930 . . . . . . . . . 10 𝑝inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
4919, 48nfcxfr 2953 . . . . . . . . 9 𝑝𝐼
50 nfcv 2955 . . . . . . . . . 10 𝑝𝐹
5149, 42, 50nfbr 5077 . . . . . . . . 9 𝑝 𝐼𝐹
52 breq1 5033 . . . . . . . . 9 (𝑝 = 𝐼 → (𝑝𝐹𝐼𝐹))
5349, 41, 51, 52elrabf 3624 . . . . . . . 8 (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ↔ (𝐼 ∈ ℙ ∧ 𝐼𝐹))
54 simp2l 1196 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼 ∈ ℙ)
55 simp2r 1197 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼𝐹)
56 simp1r 1195 . . . . . . . . . . 11 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐽𝐺)
57 breq1 5033 . . . . . . . . . . . 12 (𝐼 = 𝐽 → (𝐼𝐺𝐽𝐺))
58573ad2ant3 1132 . . . . . . . . . . 11 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → (𝐼𝐺𝐽𝐺))
5956, 58mpbird 260 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼𝐺)
6054, 55, 593jca 1125 . . . . . . . . 9 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))
61603exp 1116 . . . . . . . 8 ((𝐽 ∈ ℙ ∧ 𝐽𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6253, 61syl5bi 245 . . . . . . 7 ((𝐽 ∈ ℙ ∧ 𝐽𝐺) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6346, 62sylbi 220 . . . . . 6 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6463a1i 11 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))))
6535, 64syl5bir 246 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))))
6633, 65mpd 15 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6720, 66syl5bir 246 . 2 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6818, 67mpd 15 1 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {crab 3110  wss 3881  c0 4243   class class class wbr 5030   Or wor 5437  cfv 6324  Fincfn 8492  infcinf 8889  cr 10525   < clt 10664  cn 11625  2c2 11680  cuz 12231  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006
This theorem is referenced by:  prmdvdsfmtnof1  44104
  Copyright terms: Public domain W3C validator