Proof of Theorem prmdvdsfmtnof1lem1
Step | Hyp | Ref
| Expression |
1 | | ltso 10986 |
. . . 4
⊢ < Or
ℝ |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ < Or ℝ) |
3 | | eluz2nn 12553 |
. . . . 5
⊢ (𝐹 ∈
(ℤ≥‘2) → 𝐹 ∈ ℕ) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ 𝐹 ∈
ℕ) |
5 | | prmdvdsfi 26161 |
. . . 4
⊢ (𝐹 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} ∈ Fin) |
6 | 4, 5 | syl 17 |
. . 3
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝐹} ∈ Fin) |
7 | | exprmfct 16337 |
. . . . 5
⊢ (𝐹 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝐹) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝐹) |
9 | | rabn0 4316 |
. . . 4
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝐹) |
10 | 8, 9 | sylibr 233 |
. . 3
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝐹} ≠ ∅) |
11 | | ssrab2 4009 |
. . . . 5
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} ⊆ ℙ |
12 | | prmssnn 16309 |
. . . . . 6
⊢ ℙ
⊆ ℕ |
13 | | nnssre 11907 |
. . . . . 6
⊢ ℕ
⊆ ℝ |
14 | 12, 13 | sstri 3926 |
. . . . 5
⊢ ℙ
⊆ ℝ |
15 | 11, 14 | sstri 3926 |
. . . 4
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} ⊆ ℝ |
16 | 15 | a1i 11 |
. . 3
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝐹} ⊆
ℝ) |
17 | | fiinfcl 9190 |
. . 3
⊢ (( <
Or ℝ ∧ ({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝐹} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}) |
18 | 2, 6, 10, 16, 17 | syl13anc 1370 |
. 2
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝐹}, ℝ, < ) ∈
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝐹}) |
19 | | prmdvdsfmtnof1lem1.i |
. . . 4
⊢ 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) |
20 | 19 | eleq1i 2829 |
. . 3
⊢ (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}) |
21 | | eluz2nn 12553 |
. . . . . . 7
⊢ (𝐺 ∈
(ℤ≥‘2) → 𝐺 ∈ ℕ) |
22 | 21 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ 𝐺 ∈
ℕ) |
23 | | prmdvdsfi 26161 |
. . . . . 6
⊢ (𝐺 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} ∈ Fin) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝐺} ∈ Fin) |
25 | | exprmfct 16337 |
. . . . . . 7
⊢ (𝐺 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝐺) |
26 | 25 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝐺) |
27 | | rabn0 4316 |
. . . . . 6
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝐺) |
28 | 26, 27 | sylibr 233 |
. . . . 5
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝐺} ≠ ∅) |
29 | | ssrab2 4009 |
. . . . . . 7
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} ⊆ ℙ |
30 | 29, 14 | sstri 3926 |
. . . . . 6
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} ⊆ ℝ |
31 | 30 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝐺} ⊆
ℝ) |
32 | | fiinfcl 9190 |
. . . . 5
⊢ (( <
Or ℝ ∧ ({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝐺} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}) |
33 | 2, 24, 28, 31, 32 | syl13anc 1370 |
. . . 4
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝐺}, ℝ, < ) ∈
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝐺}) |
34 | | prmdvdsfmtnof1lem1.j |
. . . . . 6
⊢ 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) |
35 | 34 | eleq1i 2829 |
. . . . 5
⊢ (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}) |
36 | | nfrab1 3310 |
. . . . . . . . . 10
⊢
Ⅎ𝑝{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} |
37 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑝ℝ |
38 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑝
< |
39 | 36, 37, 38 | nfinf 9171 |
. . . . . . . . 9
⊢
Ⅎ𝑝inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) |
40 | 34, 39 | nfcxfr 2904 |
. . . . . . . 8
⊢
Ⅎ𝑝𝐽 |
41 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑝ℙ |
42 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑝
∥ |
43 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑝𝐺 |
44 | 40, 42, 43 | nfbr 5117 |
. . . . . . . 8
⊢
Ⅎ𝑝 𝐽 ∥ 𝐺 |
45 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑝 = 𝐽 → (𝑝 ∥ 𝐺 ↔ 𝐽 ∥ 𝐺)) |
46 | 40, 41, 44, 45 | elrabf 3613 |
. . . . . . 7
⊢ (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} ↔ (𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺)) |
47 | | nfrab1 3310 |
. . . . . . . . . . 11
⊢
Ⅎ𝑝{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} |
48 | 47, 37, 38 | nfinf 9171 |
. . . . . . . . . 10
⊢
Ⅎ𝑝inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) |
49 | 19, 48 | nfcxfr 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑝𝐼 |
50 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑝𝐹 |
51 | 49, 42, 50 | nfbr 5117 |
. . . . . . . . 9
⊢
Ⅎ𝑝 𝐼 ∥ 𝐹 |
52 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑝 = 𝐼 → (𝑝 ∥ 𝐹 ↔ 𝐼 ∥ 𝐹)) |
53 | 49, 41, 51, 52 | elrabf 3613 |
. . . . . . . 8
⊢ (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} ↔ (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹)) |
54 | | simp2l 1197 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹) ∧ 𝐼 = 𝐽) → 𝐼 ∈ ℙ) |
55 | | simp2r 1198 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹) ∧ 𝐼 = 𝐽) → 𝐼 ∥ 𝐹) |
56 | | simp1r 1196 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹) ∧ 𝐼 = 𝐽) → 𝐽 ∥ 𝐺) |
57 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝐼 = 𝐽 → (𝐼 ∥ 𝐺 ↔ 𝐽 ∥ 𝐺)) |
58 | 57 | 3ad2ant3 1133 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹) ∧ 𝐼 = 𝐽) → (𝐼 ∥ 𝐺 ↔ 𝐽 ∥ 𝐺)) |
59 | 56, 58 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹) ∧ 𝐼 = 𝐽) → 𝐼 ∥ 𝐺) |
60 | 54, 55, 59 | 3jca 1126 |
. . . . . . . . 9
⊢ (((𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹) ∧ 𝐼 = 𝐽) → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺)) |
61 | 60 | 3exp 1117 |
. . . . . . . 8
⊢ ((𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺)))) |
62 | 53, 61 | syl5bi 241 |
. . . . . . 7
⊢ ((𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺)))) |
63 | 46, 62 | sylbi 216 |
. . . . . 6
⊢ (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺)))) |
64 | 63 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))))) |
65 | 35, 64 | syl5bir 242 |
. . . 4
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ (inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝐺}, ℝ, < ) ∈
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))))) |
66 | 33, 65 | mpd 15 |
. . 3
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺)))) |
67 | 20, 66 | syl5bir 242 |
. 2
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ (inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝐹}, ℝ, < ) ∈
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺)))) |
68 | 18, 67 | mpd 15 |
1
⊢ ((𝐹 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2))
→ (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) |