Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem1 43114
Description: Lemma 1 for prmdvdsfmtnof1 43117. (Contributed by AV, 3-Aug-2021.)
Hypotheses
Ref Expression
prmdvdsfmtnof1lem1.i 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
prmdvdsfmtnof1lem1.j 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
Assertion
Ref Expression
prmdvdsfmtnof1lem1 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝐼(𝑝)   𝐽(𝑝)

Proof of Theorem prmdvdsfmtnof1lem1
StepHypRef Expression
1 ltso 10515 . . . 4 < Or ℝ
21a1i 11 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → < Or ℝ)
3 eluz2nn 12092 . . . . 5 (𝐹 ∈ (ℤ‘2) → 𝐹 ∈ ℕ)
43adantr 473 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → 𝐹 ∈ ℕ)
5 prmdvdsfi 25380 . . . 4 (𝐹 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin)
64, 5syl 17 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin)
7 exprmfct 15898 . . . . 5 (𝐹 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝐹)
87adantr 473 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → ∃𝑝 ∈ ℙ 𝑝𝐹)
9 rabn0 4219 . . . 4 ({𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝐹)
108, 9sylibr 226 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅)
11 ssrab2 3940 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℙ
12 prmssnn 15870 . . . . . 6 ℙ ⊆ ℕ
13 nnssre 11437 . . . . . 6 ℕ ⊆ ℝ
1412, 13sstri 3861 . . . . 5 ℙ ⊆ ℝ
1511, 14sstri 3861 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ
1615a1i 11 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ)
17 fiinfcl 8754 . . 3 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
182, 6, 10, 16, 17syl13anc 1352 . 2 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
19 prmdvdsfmtnof1lem1.i . . . 4 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
2019eleq1i 2850 . . 3 (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
21 eluz2nn 12092 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → 𝐺 ∈ ℕ)
2221adantl 474 . . . . . 6 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → 𝐺 ∈ ℕ)
23 prmdvdsfi 25380 . . . . . 6 (𝐺 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin)
2422, 23syl 17 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin)
25 exprmfct 15898 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝐺)
2625adantl 474 . . . . . 6 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → ∃𝑝 ∈ ℙ 𝑝𝐺)
27 rabn0 4219 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝐺)
2826, 27sylibr 226 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅)
29 ssrab2 3940 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℙ
3029, 14sstri 3861 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ
3130a1i 11 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ)
32 fiinfcl 8754 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
332, 24, 28, 31, 32syl13anc 1352 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
34 prmdvdsfmtnof1lem1.j . . . . . 6 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
3534eleq1i 2850 . . . . 5 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
36 nfrab1 3318 . . . . . . . . . 10 𝑝{𝑝 ∈ ℙ ∣ 𝑝𝐺}
37 nfcv 2926 . . . . . . . . . 10 𝑝
38 nfcv 2926 . . . . . . . . . 10 𝑝 <
3936, 37, 38nfinf 8735 . . . . . . . . 9 𝑝inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
4034, 39nfcxfr 2924 . . . . . . . 8 𝑝𝐽
41 nfcv 2926 . . . . . . . 8 𝑝
42 nfcv 2926 . . . . . . . . 9 𝑝
43 nfcv 2926 . . . . . . . . 9 𝑝𝐺
4440, 42, 43nfbr 4970 . . . . . . . 8 𝑝 𝐽𝐺
45 breq1 4926 . . . . . . . 8 (𝑝 = 𝐽 → (𝑝𝐺𝐽𝐺))
4640, 41, 44, 45elrabf 3585 . . . . . . 7 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ↔ (𝐽 ∈ ℙ ∧ 𝐽𝐺))
47 nfrab1 3318 . . . . . . . . . . 11 𝑝{𝑝 ∈ ℙ ∣ 𝑝𝐹}
4847, 37, 38nfinf 8735 . . . . . . . . . 10 𝑝inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
4919, 48nfcxfr 2924 . . . . . . . . 9 𝑝𝐼
50 nfcv 2926 . . . . . . . . . 10 𝑝𝐹
5149, 42, 50nfbr 4970 . . . . . . . . 9 𝑝 𝐼𝐹
52 breq1 4926 . . . . . . . . 9 (𝑝 = 𝐼 → (𝑝𝐹𝐼𝐹))
5349, 41, 51, 52elrabf 3585 . . . . . . . 8 (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ↔ (𝐼 ∈ ℙ ∧ 𝐼𝐹))
54 simp2l 1179 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼 ∈ ℙ)
55 simp2r 1180 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼𝐹)
56 simp1r 1178 . . . . . . . . . . 11 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐽𝐺)
57 breq1 4926 . . . . . . . . . . . 12 (𝐼 = 𝐽 → (𝐼𝐺𝐽𝐺))
58573ad2ant3 1115 . . . . . . . . . . 11 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → (𝐼𝐺𝐽𝐺))
5956, 58mpbird 249 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼𝐺)
6054, 55, 593jca 1108 . . . . . . . . 9 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))
61603exp 1099 . . . . . . . 8 ((𝐽 ∈ ℙ ∧ 𝐽𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6253, 61syl5bi 234 . . . . . . 7 ((𝐽 ∈ ℙ ∧ 𝐽𝐺) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6346, 62sylbi 209 . . . . . 6 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6463a1i 11 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))))
6535, 64syl5bir 235 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))))
6633, 65mpd 15 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6720, 66syl5bir 235 . 2 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6818, 67mpd 15 1 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961  wrex 3083  {crab 3086  wss 3823  c0 4172   class class class wbr 4923   Or wor 5319  cfv 6182  Fincfn 8300  infcinf 8694  cr 10328   < clt 10468  cn 11433  2c2 11489  cuz 12052  cdvds 15461  cprime 15865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-2o 7900  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-sup 8695  df-inf 8696  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-n0 11702  df-z 11788  df-uz 12053  df-rp 12199  df-fz 12703  df-seq 13179  df-exp 13239  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-dvds 15462  df-prm 15866
This theorem is referenced by:  prmdvdsfmtnof1  43117
  Copyright terms: Public domain W3C validator