Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem1 47458
Description: Lemma 1 for prmdvdsfmtnof1 47461. (Contributed by AV, 3-Aug-2021.)
Hypotheses
Ref Expression
prmdvdsfmtnof1lem1.i 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
prmdvdsfmtnof1lem1.j 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
Assertion
Ref Expression
prmdvdsfmtnof1lem1 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝐼(𝑝)   𝐽(𝑝)

Proof of Theorem prmdvdsfmtnof1lem1
StepHypRef Expression
1 ltso 11370 . . . 4 < Or ℝ
21a1i 11 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → < Or ℝ)
3 eluz2nn 12949 . . . . 5 (𝐹 ∈ (ℤ‘2) → 𝐹 ∈ ℕ)
43adantr 480 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → 𝐹 ∈ ℕ)
5 prmdvdsfi 27168 . . . 4 (𝐹 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin)
64, 5syl 17 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin)
7 exprmfct 16751 . . . . 5 (𝐹 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝐹)
87adantr 480 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → ∃𝑝 ∈ ℙ 𝑝𝐹)
9 rabn0 4412 . . . 4 ({𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝐹)
108, 9sylibr 234 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅)
11 ssrab2 4103 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℙ
12 prmssnn 16723 . . . . . 6 ℙ ⊆ ℕ
13 nnssre 12297 . . . . . 6 ℕ ⊆ ℝ
1412, 13sstri 4018 . . . . 5 ℙ ⊆ ℝ
1511, 14sstri 4018 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ
1615a1i 11 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ)
17 fiinfcl 9570 . . 3 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
182, 6, 10, 16, 17syl13anc 1372 . 2 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
19 prmdvdsfmtnof1lem1.i . . . 4 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
2019eleq1i 2835 . . 3 (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
21 eluz2nn 12949 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → 𝐺 ∈ ℕ)
2221adantl 481 . . . . . 6 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → 𝐺 ∈ ℕ)
23 prmdvdsfi 27168 . . . . . 6 (𝐺 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin)
2422, 23syl 17 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin)
25 exprmfct 16751 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝐺)
2625adantl 481 . . . . . 6 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → ∃𝑝 ∈ ℙ 𝑝𝐺)
27 rabn0 4412 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝐺)
2826, 27sylibr 234 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅)
29 ssrab2 4103 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℙ
3029, 14sstri 4018 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ
3130a1i 11 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ)
32 fiinfcl 9570 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
332, 24, 28, 31, 32syl13anc 1372 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
34 prmdvdsfmtnof1lem1.j . . . . . 6 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
3534eleq1i 2835 . . . . 5 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
36 nfrab1 3464 . . . . . . . . . 10 𝑝{𝑝 ∈ ℙ ∣ 𝑝𝐺}
37 nfcv 2908 . . . . . . . . . 10 𝑝
38 nfcv 2908 . . . . . . . . . 10 𝑝 <
3936, 37, 38nfinf 9551 . . . . . . . . 9 𝑝inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
4034, 39nfcxfr 2906 . . . . . . . 8 𝑝𝐽
41 nfcv 2908 . . . . . . . 8 𝑝
42 nfcv 2908 . . . . . . . . 9 𝑝
43 nfcv 2908 . . . . . . . . 9 𝑝𝐺
4440, 42, 43nfbr 5213 . . . . . . . 8 𝑝 𝐽𝐺
45 breq1 5169 . . . . . . . 8 (𝑝 = 𝐽 → (𝑝𝐺𝐽𝐺))
4640, 41, 44, 45elrabf 3704 . . . . . . 7 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ↔ (𝐽 ∈ ℙ ∧ 𝐽𝐺))
47 nfrab1 3464 . . . . . . . . . . 11 𝑝{𝑝 ∈ ℙ ∣ 𝑝𝐹}
4847, 37, 38nfinf 9551 . . . . . . . . . 10 𝑝inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
4919, 48nfcxfr 2906 . . . . . . . . 9 𝑝𝐼
50 nfcv 2908 . . . . . . . . . 10 𝑝𝐹
5149, 42, 50nfbr 5213 . . . . . . . . 9 𝑝 𝐼𝐹
52 breq1 5169 . . . . . . . . 9 (𝑝 = 𝐼 → (𝑝𝐹𝐼𝐹))
5349, 41, 51, 52elrabf 3704 . . . . . . . 8 (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ↔ (𝐼 ∈ ℙ ∧ 𝐼𝐹))
54 simp2l 1199 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼 ∈ ℙ)
55 simp2r 1200 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼𝐹)
56 simp1r 1198 . . . . . . . . . . 11 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐽𝐺)
57 breq1 5169 . . . . . . . . . . . 12 (𝐼 = 𝐽 → (𝐼𝐺𝐽𝐺))
58573ad2ant3 1135 . . . . . . . . . . 11 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → (𝐼𝐺𝐽𝐺))
5956, 58mpbird 257 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼𝐺)
6054, 55, 593jca 1128 . . . . . . . . 9 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))
61603exp 1119 . . . . . . . 8 ((𝐽 ∈ ℙ ∧ 𝐽𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6253, 61biimtrid 242 . . . . . . 7 ((𝐽 ∈ ℙ ∧ 𝐽𝐺) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6346, 62sylbi 217 . . . . . 6 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6463a1i 11 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))))
6535, 64biimtrrid 243 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))))
6633, 65mpd 15 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6720, 66biimtrrid 243 . 2 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6818, 67mpd 15 1 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  wss 3976  c0 4352   class class class wbr 5166   Or wor 5606  cfv 6573  Fincfn 9003  infcinf 9510  cr 11183   < clt 11324  cn 12293  2c2 12348  cuz 12903  cdvds 16302  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719
This theorem is referenced by:  prmdvdsfmtnof1  47461
  Copyright terms: Public domain W3C validator