Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lema Structured version   Visualization version   GIF version

Theorem hgt750lema 34420
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750lemb.2 (𝜑 → 2 ≤ 𝑁)
hgt750lemb.a 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
hgt750lema.f 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
Assertion
Ref Expression
hgt750lema (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝑧,𝑂   𝐴,𝑐,𝑑,𝑛   𝑁,𝑐,𝑛   𝜑,𝑐,𝑛   𝑛,𝐹   𝑁,𝑎,𝑑,𝑐,𝑛   𝑂,𝑎,𝑐,𝑑,𝑛   𝜑,𝑎,𝑑
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑎)   𝐹(𝑧,𝑎,𝑐,𝑑)   𝑁(𝑧)

Proof of Theorem hgt750lema
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13975 . . . 4 (0..^3) ∈ Fin
21a1i 11 . . 3 (𝜑 → (0..^3) ∈ Fin)
3 hgt750leme.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43nnnn0d 12565 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5 3nn0 12523 . . . . . . 7 3 ∈ ℕ0
65a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
7 ssidd 4000 . . . . . 6 (𝜑 → ℕ ⊆ ℕ)
84, 6, 7reprfi2 34386 . . . . 5 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
9 ssrab2 4073 . . . . . 6 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
109a1i 11 . . . . 5 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
118, 10ssfid 9292 . . . 4 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
1211adantr 479 . . 3 ((𝜑𝑎 ∈ (0..^3)) → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
13 vmaf 27096 . . . . . 6 Λ:ℕ⟶ℝ
1413a1i 11 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
15 ssidd 4000 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
164nn0zd 12617 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1716ad2antrr 724 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
185a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
19 simpr 483 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
209, 19sselid 3974 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
2115, 17, 18, 20reprf 34375 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
22 c0ex 11240 . . . . . . . . 9 0 ∈ V
2322tpid1 4774 . . . . . . . 8 0 ∈ {0, 1, 2}
24 fzo0to3tp 13753 . . . . . . . 8 (0..^3) = {0, 1, 2}
2523, 24eleqtrri 2824 . . . . . . 7 0 ∈ (0..^3)
2625a1i 11 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
2721, 26ffvelcdmd 7094 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
2814, 27ffvelcdmd 7094 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
29 1ex 11242 . . . . . . . . . 10 1 ∈ V
3029tpid2 4776 . . . . . . . . 9 1 ∈ {0, 1, 2}
3130, 24eleqtrri 2824 . . . . . . . 8 1 ∈ (0..^3)
3231a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
3321, 32ffvelcdmd 7094 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
3414, 33ffvelcdmd 7094 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
35 2ex 12322 . . . . . . . . . 10 2 ∈ V
3635tpid3 4779 . . . . . . . . 9 2 ∈ {0, 1, 2}
3736, 24eleqtrri 2824 . . . . . . . 8 2 ∈ (0..^3)
3837a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
3921, 38ffvelcdmd 7094 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
4014, 39ffvelcdmd 7094 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
4134, 40remulcld 11276 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
4228, 41remulcld 11276 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
43 vmage0 27098 . . . . 5 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
4427, 43syl 17 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘0)))
45 vmage0 27098 . . . . . 6 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
4633, 45syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘1)))
47 vmage0 27098 . . . . . 6 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
4839, 47syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘2)))
4934, 40, 46, 48mulge0d 11823 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
5028, 41, 44, 49mulge0d 11823 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
512, 12, 42, 50fsumiunle 32677 . 2 (𝜑 → Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
52 eqid 2725 . . . 4 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}
53 inss2 4228 . . . . . 6 (𝑂 ∩ ℙ) ⊆ ℙ
54 prmssnn 16650 . . . . . 6 ℙ ⊆ ℕ
5553, 54sstri 3986 . . . . 5 (𝑂 ∩ ℙ) ⊆ ℕ
5655a1i 11 . . . 4 (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ)
5752, 7, 56, 4, 6reprdifc 34390 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) = 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
5857sumeq1d 15683 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
59 ssrab2 4073 . . . . . . . 8 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
6059a1i 11 . . . . . . 7 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
618, 60ssfid 9292 . . . . . 6 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
6213a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
63 ssidd 4000 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
6416adantr 479 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
655a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
6660sselda 3976 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
6763, 64, 65, 66reprf 34375 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
6825a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
6967, 68ffvelcdmd 7094 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
7062, 69ffvelcdmd 7094 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
7131a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
7267, 71ffvelcdmd 7094 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
7362, 72ffvelcdmd 7094 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
7437a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
7567, 74ffvelcdmd 7094 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
7662, 75ffvelcdmd 7094 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
7773, 76remulcld 11276 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
7870, 77remulcld 11276 . . . . . 6 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
7961, 78fsumrecl 15716 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
8079recnd 11274 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
81 fsumconst 15772 . . . 4 (((0..^3) ∈ Fin ∧ Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ) → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
822, 80, 81syl2anc 582 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
83 fveq1 6895 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (𝑛‘0) = ((𝐹𝑒)‘0))
8483fveq2d 6900 . . . . . . 7 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘0)) = (Λ‘((𝐹𝑒)‘0)))
85 fveq1 6895 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘1) = ((𝐹𝑒)‘1))
8685fveq2d 6900 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘1)) = (Λ‘((𝐹𝑒)‘1)))
87 fveq1 6895 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘2) = ((𝐹𝑒)‘2))
8887fveq2d 6900 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘2)) = (Λ‘((𝐹𝑒)‘2)))
8986, 88oveq12d 7437 . . . . . . 7 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) = ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))))
9084, 89oveq12d 7437 . . . . . 6 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
91 3nn 12324 . . . . . . . . . 10 3 ∈ ℕ
9291a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℕ)
9392ralrimivw 3139 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (0..^3)3 ∈ ℕ)
9493r19.21bi 3238 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 3 ∈ ℕ)
9516adantr 479 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑁 ∈ ℤ)
96 ssidd 4000 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → ℕ ⊆ ℕ)
97 simpr 483 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑎 ∈ (0..^3))
98 fveq1 6895 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐‘0) = (𝑑‘0))
9998eleq1d 2810 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
10099notbid 317 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
101100cbvrabv 3429 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}
102 fveq1 6895 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑎) = (𝑑𝑎))
103102eleq1d 2810 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
104103notbid 317 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
105104cbvrabv 3429 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)}
106 eqid 2725 . . . . . . 7 if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})) = if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))
107 hgt750lema.f . . . . . . 7 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
10894, 95, 96, 97, 101, 105, 106, 107reprpmtf1o 34389 . . . . . 6 ((𝜑𝑎 ∈ (0..^3)) → 𝐹:{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}–1-1-onto→{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
109 eqidd 2726 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝐹𝑒) = (𝐹𝑒))
11078adantlr 713 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
111110recnd 11274 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
11290, 12, 108, 109, 111fsumf1o 15705 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
113 fveq2 6896 . . . . . . . . . 10 (𝑒 = 𝑛 → (𝐹𝑒) = (𝐹𝑛))
114113fveq1d 6898 . . . . . . . . 9 (𝑒 = 𝑛 → ((𝐹𝑒)‘0) = ((𝐹𝑛)‘0))
115114fveq2d 6900 . . . . . . . 8 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘0)) = (Λ‘((𝐹𝑛)‘0)))
116113fveq1d 6898 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘1) = ((𝐹𝑛)‘1))
117116fveq2d 6900 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘1)) = (Λ‘((𝐹𝑛)‘1)))
118113fveq1d 6898 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘2) = ((𝐹𝑛)‘2))
119118fveq2d 6900 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘2)) = (Λ‘((𝐹𝑛)‘2)))
120117, 119oveq12d 7437 . . . . . . . 8 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))) = ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
121115, 120oveq12d 7437 . . . . . . 7 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
122121cbvsumv 15678 . . . . . 6 Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
123122a1i 11 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
124 ovexd 7454 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (0..^3) ∈ V)
12597adantr 479 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑎 ∈ (0..^3))
126124, 125, 26, 106pmtridf1o 32907 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})):(0..^3)–1-1-onto→(0..^3))
127107, 126, 21, 14, 19hgt750lemg 34417 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
128127sumeq2dv 15685 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
129112, 123, 1283eqtrrd 2770 . . . 4 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
130129sumeq2dv 15685 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
131 hashfzo0 14425 . . . . . . 7 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1325, 131ax-mp 5 . . . . . 6 (♯‘(0..^3)) = 3
133132a1i 11 . . . . 5 (𝜑 → (♯‘(0..^3)) = 3)
134133eqcomd 2731 . . . 4 (𝜑 → 3 = (♯‘(0..^3)))
135 hgt750lemb.a . . . . . 6 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
136135a1i 11 . . . . 5 (𝜑𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
137136sumeq1d 15683 . . . 4 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
138134, 137oveq12d 7437 . . 3 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
13982, 130, 1383eqtr4rd 2776 . 2 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
14051, 58, 1393brtr4d 5181 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3418  Vcvv 3461  cdif 3941  cin 3943  wss 3944  ifcif 4530  {cpr 4632  {ctp 4634   ciun 4997   class class class wbr 5149  cmpt 5232   I cid 5575  cres 5680  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  cr 11139  0cc0 11140  1c1 11141   · cmul 11145  cle 11281  cn 12245  2c2 12300  3c3 12301  0cn0 12505  cz 12591  ..^cfzo 13662  chash 14325  Σcsu 15668  cdvds 16234  cprime 16645  pmTrspcpmtr 19408  Λcvma 27069  reprcrepr 34371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-reg 9617  ax-inf2 9666  ax-ac2 10488  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-r1 9789  df-rank 9790  df-dju 9926  df-card 9964  df-ac 10141  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-prod 15886  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052  df-dvds 16235  df-gcd 16473  df-prm 16646  df-pc 16809  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-pmtr 19409  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-log 26535  df-vma 27075  df-repr 34372
This theorem is referenced by:  hgt750leme  34421
  Copyright terms: Public domain W3C validator