Step | Hyp | Ref
| Expression |
1 | | fzofi 13622 |
. . . 4
⊢ (0..^3)
∈ Fin |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → (0..^3) ∈
Fin) |
3 | | hgt750leme.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | 3 | nnnn0d 12223 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
5 | | 3nn0 12181 |
. . . . . . 7
⊢ 3 ∈
ℕ0 |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 3 ∈
ℕ0) |
7 | | ssidd 3940 |
. . . . . 6
⊢ (𝜑 → ℕ ⊆
ℕ) |
8 | 4, 6, 7 | reprfi2 32503 |
. . . . 5
⊢ (𝜑 →
(ℕ(repr‘3)𝑁)
∈ Fin) |
9 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ⊆
(ℕ(repr‘3)𝑁) |
10 | 9 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ⊆
(ℕ(repr‘3)𝑁)) |
11 | 8, 10 | ssfid 8971 |
. . . 4
⊢ (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ∈
Fin) |
12 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ∈
Fin) |
13 | | vmaf 26173 |
. . . . . 6
⊢
Λ:ℕ⟶ℝ |
14 | 13 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) →
Λ:ℕ⟶ℝ) |
15 | | ssidd 3940 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆
ℕ) |
16 | 4 | nn0zd 12353 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
17 | 16 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ) |
18 | 5 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 3 ∈
ℕ0) |
19 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) |
20 | 9, 19 | sselid 3915 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁)) |
21 | 15, 17, 18, 20 | reprf 32492 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ) |
22 | | c0ex 10900 |
. . . . . . . . 9
⊢ 0 ∈
V |
23 | 22 | tpid1 4701 |
. . . . . . . 8
⊢ 0 ∈
{0, 1, 2} |
24 | | fzo0to3tp 13401 |
. . . . . . . 8
⊢ (0..^3) =
{0, 1, 2} |
25 | 23, 24 | eleqtrri 2838 |
. . . . . . 7
⊢ 0 ∈
(0..^3) |
26 | 25 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ∈
(0..^3)) |
27 | 21, 26 | ffvelrnd 6944 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ) |
28 | 14, 27 | ffvelrnd 6944 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) →
(Λ‘(𝑛‘0)) ∈ ℝ) |
29 | | 1ex 10902 |
. . . . . . . . . 10
⊢ 1 ∈
V |
30 | 29 | tpid2 4703 |
. . . . . . . . 9
⊢ 1 ∈
{0, 1, 2} |
31 | 30, 24 | eleqtrri 2838 |
. . . . . . . 8
⊢ 1 ∈
(0..^3) |
32 | 31 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 1 ∈
(0..^3)) |
33 | 21, 32 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ) |
34 | 14, 33 | ffvelrnd 6944 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) →
(Λ‘(𝑛‘1)) ∈ ℝ) |
35 | | 2ex 11980 |
. . . . . . . . . 10
⊢ 2 ∈
V |
36 | 35 | tpid3 4706 |
. . . . . . . . 9
⊢ 2 ∈
{0, 1, 2} |
37 | 36, 24 | eleqtrri 2838 |
. . . . . . . 8
⊢ 2 ∈
(0..^3) |
38 | 37 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 2 ∈
(0..^3)) |
39 | 21, 38 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ) |
40 | 14, 39 | ffvelrnd 6944 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) →
(Λ‘(𝑛‘2)) ∈ ℝ) |
41 | 34, 40 | remulcld 10936 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) →
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈
ℝ) |
42 | 28, 41 | remulcld 10936 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) →
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℝ) |
43 | | vmage0 26175 |
. . . . 5
⊢ ((𝑛‘0) ∈ ℕ →
0 ≤ (Λ‘(𝑛‘0))) |
44 | 27, 43 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤
(Λ‘(𝑛‘0))) |
45 | | vmage0 26175 |
. . . . . 6
⊢ ((𝑛‘1) ∈ ℕ →
0 ≤ (Λ‘(𝑛‘1))) |
46 | 33, 45 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤
(Λ‘(𝑛‘1))) |
47 | | vmage0 26175 |
. . . . . 6
⊢ ((𝑛‘2) ∈ ℕ →
0 ≤ (Λ‘(𝑛‘2))) |
48 | 39, 47 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤
(Λ‘(𝑛‘2))) |
49 | 34, 40, 46, 48 | mulge0d 11482 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) |
50 | 28, 41, 44, 49 | mulge0d 11482 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))))) |
51 | 2, 12, 42, 50 | fsumiunle 31045 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ ∪
𝑎 ∈ (0..^3){𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) |
52 | | eqid 2738 |
. . . 4
⊢ {𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} |
53 | | inss2 4160 |
. . . . . 6
⊢ (𝑂 ∩ ℙ) ⊆
ℙ |
54 | | prmssnn 16309 |
. . . . . 6
⊢ ℙ
⊆ ℕ |
55 | 53, 54 | sstri 3926 |
. . . . 5
⊢ (𝑂 ∩ ℙ) ⊆
ℕ |
56 | 55 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑂 ∩ ℙ) ⊆
ℕ) |
57 | 52, 7, 56, 4, 6 | reprdifc 32507 |
. . 3
⊢ (𝜑 →
((ℕ(repr‘3)𝑁)
∖ ((𝑂 ∩
ℙ)(repr‘3)𝑁)) =
∪ 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) |
58 | 57 | sumeq1d 15341 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ ∪ 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) |
59 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘0)
∈ (𝑂 ∩ ℙ)}
⊆ (ℕ(repr‘3)𝑁) |
60 | 59 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆
(ℕ(repr‘3)𝑁)) |
61 | 8, 60 | ssfid 8971 |
. . . . . 6
⊢ (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ∈
Fin) |
62 | 13 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) →
Λ:ℕ⟶ℝ) |
63 | | ssidd 3940 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ
⊆ ℕ) |
64 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈
ℤ) |
65 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 3
∈ ℕ0) |
66 | 60 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈
(ℕ(repr‘3)𝑁)) |
67 | 63, 64, 65, 66 | reprf 32492 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ) |
68 | 25 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 0
∈ (0..^3)) |
69 | 67, 68 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈
ℕ) |
70 | 62, 69 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) →
(Λ‘(𝑛‘0)) ∈ ℝ) |
71 | 31 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 1
∈ (0..^3)) |
72 | 67, 71 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈
ℕ) |
73 | 62, 72 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) →
(Λ‘(𝑛‘1)) ∈ ℝ) |
74 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 2
∈ (0..^3)) |
75 | 67, 74 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈
ℕ) |
76 | 62, 75 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) →
(Λ‘(𝑛‘2)) ∈ ℝ) |
77 | 73, 76 | remulcld 10936 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) →
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈
ℝ) |
78 | 70, 77 | remulcld 10936 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) →
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℝ) |
79 | 61, 78 | fsumrecl 15374 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℝ) |
80 | 79 | recnd 10934 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℂ) |
81 | | fsumconst 15430 |
. . . 4
⊢ (((0..^3)
∈ Fin ∧ Σ𝑛
∈ {𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘0)
∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℂ) →
Σ𝑎 ∈
(0..^3)Σ𝑛 ∈
{𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘0)
∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) = ((♯‘(0..^3))
· Σ𝑛 ∈
{𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘0)
∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))))) |
82 | 2, 80, 81 | syl2anc 583 |
. . 3
⊢ (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) = ((♯‘(0..^3))
· Σ𝑛 ∈
{𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘0)
∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))))) |
83 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑛 = (𝐹‘𝑒) → (𝑛‘0) = ((𝐹‘𝑒)‘0)) |
84 | 83 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑛 = (𝐹‘𝑒) → (Λ‘(𝑛‘0)) = (Λ‘((𝐹‘𝑒)‘0))) |
85 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑛 = (𝐹‘𝑒) → (𝑛‘1) = ((𝐹‘𝑒)‘1)) |
86 | 85 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑛 = (𝐹‘𝑒) → (Λ‘(𝑛‘1)) = (Λ‘((𝐹‘𝑒)‘1))) |
87 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑛 = (𝐹‘𝑒) → (𝑛‘2) = ((𝐹‘𝑒)‘2)) |
88 | 87 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑛 = (𝐹‘𝑒) → (Λ‘(𝑛‘2)) = (Λ‘((𝐹‘𝑒)‘2))) |
89 | 86, 88 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑛 = (𝐹‘𝑒) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) =
((Λ‘((𝐹‘𝑒)‘1)) · (Λ‘((𝐹‘𝑒)‘2)))) |
90 | 84, 89 | oveq12d 7273 |
. . . . . 6
⊢ (𝑛 = (𝐹‘𝑒) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) = ((Λ‘((𝐹‘𝑒)‘0)) · ((Λ‘((𝐹‘𝑒)‘1)) · (Λ‘((𝐹‘𝑒)‘2))))) |
91 | | 3nn 11982 |
. . . . . . . . . 10
⊢ 3 ∈
ℕ |
92 | 91 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 3 ∈
ℕ) |
93 | 92 | ralrimivw 3108 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑎 ∈ (0..^3)3 ∈
ℕ) |
94 | 93 | r19.21bi 3132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → 3 ∈
ℕ) |
95 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → 𝑁 ∈ ℤ) |
96 | | ssidd 3940 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → ℕ ⊆
ℕ) |
97 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → 𝑎 ∈ (0..^3)) |
98 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘0) = (𝑑‘0)) |
99 | 98 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑑‘0) ∈ (𝑂 ∩ ℙ))) |
100 | 99 | notbid 317 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑‘0) ∈ (𝑂 ∩
ℙ))) |
101 | 100 | cbvrabv 3416 |
. . . . . . 7
⊢ {𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘0)
∈ (𝑂 ∩ ℙ)} =
{𝑑 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑑‘0)
∈ (𝑂 ∩
ℙ)} |
102 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘𝑎) = (𝑑‘𝑎)) |
103 | 102 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘𝑎) ∈ (𝑂 ∩ ℙ) ↔ (𝑑‘𝑎) ∈ (𝑂 ∩ ℙ))) |
104 | 103 | notbid 317 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑‘𝑎) ∈ (𝑂 ∩ ℙ))) |
105 | 104 | cbvrabv 3416 |
. . . . . . 7
⊢ {𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘𝑎) ∈ (𝑂 ∩ ℙ)} |
106 | | eqid 2738 |
. . . . . . 7
⊢ if(𝑎 = 0, ( I ↾ (0..^3)),
((pmTrsp‘(0..^3))‘{𝑎, 0})) = if(𝑎 = 0, ( I ↾ (0..^3)),
((pmTrsp‘(0..^3))‘{𝑎, 0})) |
107 | | hgt750lema.f |
. . . . . . 7
⊢ 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)),
((pmTrsp‘(0..^3))‘{𝑎, 0})))) |
108 | 94, 95, 96, 97, 101, 105, 106, 107 | reprpmtf1o 32506 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → 𝐹:{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}–1-1-onto→{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩
ℙ)}) |
109 | | eqidd 2739 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝐹‘𝑒) = (𝐹‘𝑒)) |
110 | 78 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) →
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℝ) |
111 | 110 | recnd 10934 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) →
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℂ) |
112 | 90, 12, 108, 109, 111 | fsumf1o 15363 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) = Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹‘𝑒)‘0)) · ((Λ‘((𝐹‘𝑒)‘1)) · (Λ‘((𝐹‘𝑒)‘2))))) |
113 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑛 → (𝐹‘𝑒) = (𝐹‘𝑛)) |
114 | 113 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑒 = 𝑛 → ((𝐹‘𝑒)‘0) = ((𝐹‘𝑛)‘0)) |
115 | 114 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑒 = 𝑛 → (Λ‘((𝐹‘𝑒)‘0)) = (Λ‘((𝐹‘𝑛)‘0))) |
116 | 113 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑛 → ((𝐹‘𝑒)‘1) = ((𝐹‘𝑛)‘1)) |
117 | 116 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑒 = 𝑛 → (Λ‘((𝐹‘𝑒)‘1)) = (Λ‘((𝐹‘𝑛)‘1))) |
118 | 113 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑛 → ((𝐹‘𝑒)‘2) = ((𝐹‘𝑛)‘2)) |
119 | 118 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑒 = 𝑛 → (Λ‘((𝐹‘𝑒)‘2)) = (Λ‘((𝐹‘𝑛)‘2))) |
120 | 117, 119 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑒 = 𝑛 → ((Λ‘((𝐹‘𝑒)‘1)) · (Λ‘((𝐹‘𝑒)‘2))) = ((Λ‘((𝐹‘𝑛)‘1)) · (Λ‘((𝐹‘𝑛)‘2)))) |
121 | 115, 120 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑒 = 𝑛 → ((Λ‘((𝐹‘𝑒)‘0)) · ((Λ‘((𝐹‘𝑒)‘1)) · (Λ‘((𝐹‘𝑒)‘2)))) = ((Λ‘((𝐹‘𝑛)‘0)) · ((Λ‘((𝐹‘𝑛)‘1)) · (Λ‘((𝐹‘𝑛)‘2))))) |
122 | 121 | cbvsumv 15336 |
. . . . . 6
⊢
Σ𝑒 ∈
{𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹‘𝑒)‘0)) · ((Λ‘((𝐹‘𝑒)‘1)) · (Λ‘((𝐹‘𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹‘𝑛)‘0)) · ((Λ‘((𝐹‘𝑛)‘1)) · (Λ‘((𝐹‘𝑛)‘2)))) |
123 | 122 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹‘𝑒)‘0)) · ((Λ‘((𝐹‘𝑒)‘1)) · (Λ‘((𝐹‘𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹‘𝑛)‘0)) · ((Λ‘((𝐹‘𝑛)‘1)) · (Λ‘((𝐹‘𝑛)‘2))))) |
124 | | ovexd 7290 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → (0..^3) ∈
V) |
125 | 97 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑎 ∈ (0..^3)) |
126 | 124, 125,
26, 106 | pmtridf1o 31263 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) → if(𝑎 = 0, ( I ↾ (0..^3)),
((pmTrsp‘(0..^3))‘{𝑎, 0})):(0..^3)–1-1-onto→(0..^3)) |
127 | 107, 126,
21, 14, 19 | hgt750lemg 32534 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)}) →
((Λ‘((𝐹‘𝑛)‘0)) · ((Λ‘((𝐹‘𝑛)‘1)) · (Λ‘((𝐹‘𝑛)‘2)))) = ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) |
128 | 127 | sumeq2dv 15343 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹‘𝑛)‘0)) · ((Λ‘((𝐹‘𝑛)‘1)) · (Λ‘((𝐹‘𝑛)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) |
129 | 112, 123,
128 | 3eqtrrd 2783 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))))) |
130 | 129 | sumeq2dv 15343 |
. . 3
⊢ (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))))) |
131 | | hashfzo0 14073 |
. . . . . . 7
⊢ (3 ∈
ℕ0 → (♯‘(0..^3)) = 3) |
132 | 5, 131 | ax-mp 5 |
. . . . . 6
⊢
(♯‘(0..^3)) = 3 |
133 | 132 | a1i 11 |
. . . . 5
⊢ (𝜑 → (♯‘(0..^3)) =
3) |
134 | 133 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → 3 =
(♯‘(0..^3))) |
135 | | hgt750lemb.a |
. . . . . 6
⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩
ℙ)} |
136 | 135 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩
ℙ)}) |
137 | 136 | sumeq1d 15341 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))))) |
138 | 134, 137 | oveq12d 7273 |
. . 3
⊢ (𝜑 → (3 · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))))) = ((♯‘(0..^3))
· Σ𝑛 ∈
{𝑐 ∈
(ℕ(repr‘3)𝑁)
∣ ¬ (𝑐‘0)
∈ (𝑂 ∩ ℙ)}
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))))) |
139 | 82, 130, 138 | 3eqtr4rd 2789 |
. 2
⊢ (𝜑 → (3 · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) |
140 | 51, 58, 139 | 3brtr4d 5102 |
1
⊢ (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 ·
Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) |