Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lema Structured version   Visualization version   GIF version

Theorem hgt750lema 31075
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750lemb.2 (𝜑 → 2 ≤ 𝑁)
hgt750lemb.a 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
hgt750lema.f 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
Assertion
Ref Expression
hgt750lema (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝑧,𝑂   𝐴,𝑐,𝑑,𝑛   𝑁,𝑐,𝑛   𝜑,𝑐,𝑛   𝑛,𝐹   𝑁,𝑎,𝑑,𝑐,𝑛   𝑂,𝑎,𝑐,𝑑,𝑛   𝜑,𝑎,𝑑
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑎)   𝐹(𝑧,𝑎,𝑐,𝑑)   𝑁(𝑧)

Proof of Theorem hgt750lema
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 fzofi 12981 . . . 4 (0..^3) ∈ Fin
21a1i 11 . . 3 (𝜑 → (0..^3) ∈ Fin)
3 hgt750leme.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43nnnn0d 11558 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5 3nn0 11517 . . . . . . 7 3 ∈ ℕ0
65a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
7 ssid 3773 . . . . . . 7 ℕ ⊆ ℕ
87a1i 11 . . . . . 6 (𝜑 → ℕ ⊆ ℕ)
94, 6, 8reprfi2 31041 . . . . 5 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
10 ssrab2 3836 . . . . . 6 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
1110a1i 11 . . . . 5 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
129, 11ssfid 8343 . . . 4 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
1312adantr 466 . . 3 ((𝜑𝑎 ∈ (0..^3)) → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
14 vmaf 25066 . . . . . 6 Λ:ℕ⟶ℝ
1514a1i 11 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
167a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
174nn0zd 11687 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1817ad2antrr 705 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
195a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
20 simpr 471 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
2110, 20sseldi 3750 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
2216, 18, 19, 21reprf 31030 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
23 c0ex 10240 . . . . . . . . 9 0 ∈ V
2423tpid1 4440 . . . . . . . 8 0 ∈ {0, 1, 2}
25 fzo0to3tp 12762 . . . . . . . 8 (0..^3) = {0, 1, 2}
2624, 25eleqtrri 2849 . . . . . . 7 0 ∈ (0..^3)
2726a1i 11 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
2822, 27ffvelrnd 6505 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
2915, 28ffvelrnd 6505 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
30 1ex 10241 . . . . . . . . . 10 1 ∈ V
3130tpid2 4441 . . . . . . . . 9 1 ∈ {0, 1, 2}
3231, 25eleqtrri 2849 . . . . . . . 8 1 ∈ (0..^3)
3332a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
3422, 33ffvelrnd 6505 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
3515, 34ffvelrnd 6505 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
36 2ex 11298 . . . . . . . . . 10 2 ∈ V
3736tpid3 4443 . . . . . . . . 9 2 ∈ {0, 1, 2}
3837, 25eleqtrri 2849 . . . . . . . 8 2 ∈ (0..^3)
3938a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
4022, 39ffvelrnd 6505 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
4115, 40ffvelrnd 6505 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
4235, 41remulcld 10276 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
4329, 42remulcld 10276 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
44 vmage0 25068 . . . . 5 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
4528, 44syl 17 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘0)))
46 vmage0 25068 . . . . . 6 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
4734, 46syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘1)))
48 vmage0 25068 . . . . . 6 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
4940, 48syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘2)))
5035, 41, 47, 49mulge0d 10810 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
5129, 42, 45, 50mulge0d 10810 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
522, 13, 43, 51fsumiunle 29915 . 2 (𝜑 → Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
53 eqid 2771 . . . 4 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}
54 inss2 3982 . . . . . 6 (𝑂 ∩ ℙ) ⊆ ℙ
55 prmssnn 15597 . . . . . 6 ℙ ⊆ ℕ
5654, 55sstri 3761 . . . . 5 (𝑂 ∩ ℙ) ⊆ ℕ
5756a1i 11 . . . 4 (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ)
5853, 8, 57, 4, 6reprdifc 31045 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) = 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
5958sumeq1d 14639 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
60 ssrab2 3836 . . . . . . . 8 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
6160a1i 11 . . . . . . 7 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
629, 61ssfid 8343 . . . . . 6 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
6314a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
647a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
6517adantr 466 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
665a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
6761sselda 3752 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
6864, 65, 66, 67reprf 31030 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
6926a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
7068, 69ffvelrnd 6505 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
7163, 70ffvelrnd 6505 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
7232a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
7368, 72ffvelrnd 6505 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
7463, 73ffvelrnd 6505 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
7538a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
7668, 75ffvelrnd 6505 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
7763, 76ffvelrnd 6505 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
7874, 77remulcld 10276 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
7971, 78remulcld 10276 . . . . . 6 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
8062, 79fsumrecl 14673 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
8180recnd 10274 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
82 fsumconst 14729 . . . 4 (((0..^3) ∈ Fin ∧ Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ) → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
832, 81, 82syl2anc 573 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
84 fveq1 6332 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (𝑛‘0) = ((𝐹𝑒)‘0))
8584fveq2d 6337 . . . . . . 7 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘0)) = (Λ‘((𝐹𝑒)‘0)))
86 fveq1 6332 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘1) = ((𝐹𝑒)‘1))
8786fveq2d 6337 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘1)) = (Λ‘((𝐹𝑒)‘1)))
88 fveq1 6332 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘2) = ((𝐹𝑒)‘2))
8988fveq2d 6337 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘2)) = (Λ‘((𝐹𝑒)‘2)))
9087, 89oveq12d 6814 . . . . . . 7 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) = ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))))
9185, 90oveq12d 6814 . . . . . 6 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
92 3nn 11393 . . . . . . . . . 10 3 ∈ ℕ
9392a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℕ)
9493ralrimivw 3116 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (0..^3)3 ∈ ℕ)
9594r19.21bi 3081 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 3 ∈ ℕ)
9617adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑁 ∈ ℤ)
977a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → ℕ ⊆ ℕ)
98 simpr 471 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑎 ∈ (0..^3))
99 fveq1 6332 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐‘0) = (𝑑‘0))
10099eleq1d 2835 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
101100notbid 307 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
102101cbvrabv 3349 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}
103 fveq1 6332 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑎) = (𝑑𝑎))
104103eleq1d 2835 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
105104notbid 307 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
106105cbvrabv 3349 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)}
107 eqid 2771 . . . . . . 7 if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})) = if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))
108 hgt750lema.f . . . . . . 7 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
10995, 96, 97, 98, 102, 106, 107, 108reprpmtf1o 31044 . . . . . 6 ((𝜑𝑎 ∈ (0..^3)) → 𝐹:{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}–1-1-onto→{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
110 eqidd 2772 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝐹𝑒) = (𝐹𝑒))
11179adantlr 694 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
112111recnd 10274 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
11391, 13, 109, 110, 112fsumf1o 14662 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
114 fveq2 6333 . . . . . . . . . 10 (𝑒 = 𝑛 → (𝐹𝑒) = (𝐹𝑛))
115114fveq1d 6335 . . . . . . . . 9 (𝑒 = 𝑛 → ((𝐹𝑒)‘0) = ((𝐹𝑛)‘0))
116115fveq2d 6337 . . . . . . . 8 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘0)) = (Λ‘((𝐹𝑛)‘0)))
117114fveq1d 6335 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘1) = ((𝐹𝑛)‘1))
118117fveq2d 6337 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘1)) = (Λ‘((𝐹𝑛)‘1)))
119114fveq1d 6335 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘2) = ((𝐹𝑛)‘2))
120119fveq2d 6337 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘2)) = (Λ‘((𝐹𝑛)‘2)))
121118, 120oveq12d 6814 . . . . . . . 8 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))) = ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
122116, 121oveq12d 6814 . . . . . . 7 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
123122cbvsumv 14634 . . . . . 6 Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
124123a1i 11 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
125 ovexd 6829 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (0..^3) ∈ V)
12698adantr 466 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑎 ∈ (0..^3))
127125, 126, 27, 107pmtridf1o 30196 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})):(0..^3)–1-1-onto→(0..^3))
128108, 127, 22, 15, 20hgt750lemg 31072 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
129128sumeq2dv 14641 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
130113, 124, 1293eqtrrd 2810 . . . 4 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
131130sumeq2dv 14641 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
132 hashfzo0 13419 . . . . . . 7 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1335, 132ax-mp 5 . . . . . 6 (♯‘(0..^3)) = 3
134133a1i 11 . . . . 5 (𝜑 → (♯‘(0..^3)) = 3)
135134eqcomd 2777 . . . 4 (𝜑 → 3 = (♯‘(0..^3)))
136 hgt750lemb.a . . . . . 6 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
137136a1i 11 . . . . 5 (𝜑𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
138137sumeq1d 14639 . . . 4 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
139135, 138oveq12d 6814 . . 3 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
14083, 131, 1393eqtr4rd 2816 . 2 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
14152, 59, 1403brtr4d 4819 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  {crab 3065  Vcvv 3351  cdif 3720  cin 3722  wss 3723  ifcif 4226  {cpr 4319  {ctp 4321   ciun 4655   class class class wbr 4787  cmpt 4864   I cid 5157  cres 5252  ccom 5254  wf 6026  cfv 6030  (class class class)co 6796  Fincfn 8113  cc 10140  cr 10141  0cc0 10142  1c1 10143   · cmul 10147  cle 10281  cn 11226  2c2 11276  3c3 11277  0cn0 11499  cz 11584  ..^cfzo 12673  chash 13321  Σcsu 14624  cdvds 15189  cprime 15592  pmTrspcpmtr 18068  Λcvma 25039  reprcrepr 31026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-reg 8657  ax-inf2 8706  ax-ac2 9491  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-r1 8795  df-rank 8796  df-card 8969  df-ac 9143  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-prod 14843  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-dvds 15190  df-gcd 15425  df-prm 15593  df-pc 15749  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-pmtr 18069  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-vma 25045  df-repr 31027
This theorem is referenced by:  hgt750leme  31076
  Copyright terms: Public domain W3C validator