Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lema Structured version   Visualization version   GIF version

Theorem hgt750lema 34641
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750lemb.2 (𝜑 → 2 ≤ 𝑁)
hgt750lemb.a 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
hgt750lema.f 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
Assertion
Ref Expression
hgt750lema (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝑧,𝑂   𝐴,𝑐,𝑑,𝑛   𝑁,𝑐,𝑛   𝜑,𝑐,𝑛   𝑛,𝐹   𝑁,𝑎,𝑑,𝑐,𝑛   𝑂,𝑎,𝑐,𝑑,𝑛   𝜑,𝑎,𝑑
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑎)   𝐹(𝑧,𝑎,𝑐,𝑑)   𝑁(𝑧)

Proof of Theorem hgt750lema
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13915 . . . 4 (0..^3) ∈ Fin
21a1i 11 . . 3 (𝜑 → (0..^3) ∈ Fin)
3 hgt750leme.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43nnnn0d 12479 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5 3nn0 12436 . . . . . . 7 3 ∈ ℕ0
65a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
7 ssidd 3967 . . . . . 6 (𝜑 → ℕ ⊆ ℕ)
84, 6, 7reprfi2 34607 . . . . 5 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
9 ssrab2 4039 . . . . . 6 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
109a1i 11 . . . . 5 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
118, 10ssfid 9188 . . . 4 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
1211adantr 480 . . 3 ((𝜑𝑎 ∈ (0..^3)) → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
13 vmaf 27062 . . . . . 6 Λ:ℕ⟶ℝ
1413a1i 11 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
15 ssidd 3967 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
164nn0zd 12531 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
185a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
19 simpr 484 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
209, 19sselid 3941 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
2115, 17, 18, 20reprf 34596 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
22 c0ex 11144 . . . . . . . . 9 0 ∈ V
2322tpid1 4728 . . . . . . . 8 0 ∈ {0, 1, 2}
24 fzo0to3tp 13689 . . . . . . . 8 (0..^3) = {0, 1, 2}
2523, 24eleqtrri 2827 . . . . . . 7 0 ∈ (0..^3)
2625a1i 11 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
2721, 26ffvelcdmd 7039 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
2814, 27ffvelcdmd 7039 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
29 1ex 11146 . . . . . . . . . 10 1 ∈ V
3029tpid2 4730 . . . . . . . . 9 1 ∈ {0, 1, 2}
3130, 24eleqtrri 2827 . . . . . . . 8 1 ∈ (0..^3)
3231a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
3321, 32ffvelcdmd 7039 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
3414, 33ffvelcdmd 7039 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
35 2ex 12239 . . . . . . . . . 10 2 ∈ V
3635tpid3 4733 . . . . . . . . 9 2 ∈ {0, 1, 2}
3736, 24eleqtrri 2827 . . . . . . . 8 2 ∈ (0..^3)
3837a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
3921, 38ffvelcdmd 7039 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
4014, 39ffvelcdmd 7039 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
4134, 40remulcld 11180 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
4228, 41remulcld 11180 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
43 vmage0 27064 . . . . 5 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
4427, 43syl 17 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘0)))
45 vmage0 27064 . . . . . 6 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
4633, 45syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘1)))
47 vmage0 27064 . . . . . 6 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
4839, 47syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘2)))
4934, 40, 46, 48mulge0d 11731 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
5028, 41, 44, 49mulge0d 11731 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
512, 12, 42, 50fsumiunle 32804 . 2 (𝜑 → Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
52 eqid 2729 . . . 4 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}
53 inss2 4197 . . . . . 6 (𝑂 ∩ ℙ) ⊆ ℙ
54 prmssnn 16622 . . . . . 6 ℙ ⊆ ℕ
5553, 54sstri 3953 . . . . 5 (𝑂 ∩ ℙ) ⊆ ℕ
5655a1i 11 . . . 4 (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ)
5752, 7, 56, 4, 6reprdifc 34611 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) = 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
5857sumeq1d 15642 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
59 ssrab2 4039 . . . . . . . 8 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
6059a1i 11 . . . . . . 7 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
618, 60ssfid 9188 . . . . . 6 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
6213a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
63 ssidd 3967 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
6416adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
655a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
6660sselda 3943 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
6763, 64, 65, 66reprf 34596 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
6825a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
6967, 68ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
7062, 69ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
7131a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
7267, 71ffvelcdmd 7039 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
7362, 72ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
7437a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
7567, 74ffvelcdmd 7039 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
7662, 75ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
7773, 76remulcld 11180 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
7870, 77remulcld 11180 . . . . . 6 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
7961, 78fsumrecl 15676 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
8079recnd 11178 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
81 fsumconst 15732 . . . 4 (((0..^3) ∈ Fin ∧ Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ) → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
822, 80, 81syl2anc 584 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
83 fveq1 6839 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (𝑛‘0) = ((𝐹𝑒)‘0))
8483fveq2d 6844 . . . . . . 7 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘0)) = (Λ‘((𝐹𝑒)‘0)))
85 fveq1 6839 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘1) = ((𝐹𝑒)‘1))
8685fveq2d 6844 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘1)) = (Λ‘((𝐹𝑒)‘1)))
87 fveq1 6839 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘2) = ((𝐹𝑒)‘2))
8887fveq2d 6844 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘2)) = (Λ‘((𝐹𝑒)‘2)))
8986, 88oveq12d 7387 . . . . . . 7 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) = ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))))
9084, 89oveq12d 7387 . . . . . 6 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
91 3nn 12241 . . . . . . . . . 10 3 ∈ ℕ
9291a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℕ)
9392ralrimivw 3129 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (0..^3)3 ∈ ℕ)
9493r19.21bi 3227 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 3 ∈ ℕ)
9516adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑁 ∈ ℤ)
96 ssidd 3967 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → ℕ ⊆ ℕ)
97 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑎 ∈ (0..^3))
98 fveq1 6839 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐‘0) = (𝑑‘0))
9998eleq1d 2813 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
10099notbid 318 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
101100cbvrabv 3413 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}
102 fveq1 6839 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑎) = (𝑑𝑎))
103102eleq1d 2813 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
104103notbid 318 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
105104cbvrabv 3413 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)}
106 eqid 2729 . . . . . . 7 if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})) = if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))
107 hgt750lema.f . . . . . . 7 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
10894, 95, 96, 97, 101, 105, 106, 107reprpmtf1o 34610 . . . . . 6 ((𝜑𝑎 ∈ (0..^3)) → 𝐹:{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}–1-1-onto→{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
109 eqidd 2730 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝐹𝑒) = (𝐹𝑒))
11078adantlr 715 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
111110recnd 11178 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
11290, 12, 108, 109, 111fsumf1o 15665 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
113 fveq2 6840 . . . . . . . . . 10 (𝑒 = 𝑛 → (𝐹𝑒) = (𝐹𝑛))
114113fveq1d 6842 . . . . . . . . 9 (𝑒 = 𝑛 → ((𝐹𝑒)‘0) = ((𝐹𝑛)‘0))
115114fveq2d 6844 . . . . . . . 8 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘0)) = (Λ‘((𝐹𝑛)‘0)))
116113fveq1d 6842 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘1) = ((𝐹𝑛)‘1))
117116fveq2d 6844 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘1)) = (Λ‘((𝐹𝑛)‘1)))
118113fveq1d 6842 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘2) = ((𝐹𝑛)‘2))
119118fveq2d 6844 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘2)) = (Λ‘((𝐹𝑛)‘2)))
120117, 119oveq12d 7387 . . . . . . . 8 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))) = ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
121115, 120oveq12d 7387 . . . . . . 7 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
122121cbvsumv 15638 . . . . . 6 Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
123122a1i 11 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
124 ovexd 7404 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (0..^3) ∈ V)
12597adantr 480 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑎 ∈ (0..^3))
126124, 125, 26, 106pmtridf1o 33066 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})):(0..^3)–1-1-onto→(0..^3))
127107, 126, 21, 14, 19hgt750lemg 34638 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
128127sumeq2dv 15644 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
129112, 123, 1283eqtrrd 2769 . . . 4 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
130129sumeq2dv 15644 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
131 hashfzo0 14371 . . . . . . 7 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1325, 131ax-mp 5 . . . . . 6 (♯‘(0..^3)) = 3
133132a1i 11 . . . . 5 (𝜑 → (♯‘(0..^3)) = 3)
134133eqcomd 2735 . . . 4 (𝜑 → 3 = (♯‘(0..^3)))
135 hgt750lemb.a . . . . . 6 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
136135a1i 11 . . . . 5 (𝜑𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
137136sumeq1d 15642 . . . 4 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
138134, 137oveq12d 7387 . . 3 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
13982, 130, 1383eqtr4rd 2775 . 2 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
14051, 58, 1393brtr4d 5134 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cdif 3908  cin 3910  wss 3911  ifcif 4484  {cpr 4587  {ctp 4589   ciun 4951   class class class wbr 5102  cmpt 5183   I cid 5525  cres 5633  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185  cn 12162  2c2 12217  3c3 12218  0cn0 12418  cz 12505  ..^cfzo 13591  chash 14271  Σcsu 15628  cdvds 16198  cprime 16617  pmTrspcpmtr 19355  Λcvma 27035  reprcrepr 34592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-dju 9830  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-prod 15846  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-pmtr 19356  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-vma 27041  df-repr 34593
This theorem is referenced by:  hgt750leme  34642
  Copyright terms: Public domain W3C validator