Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lema Structured version   Visualization version   GIF version

Theorem hgt750lema 32349
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750lemb.2 (𝜑 → 2 ≤ 𝑁)
hgt750lemb.a 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
hgt750lema.f 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
Assertion
Ref Expression
hgt750lema (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Distinct variable groups:   𝑧,𝑂   𝐴,𝑐,𝑑,𝑛   𝑁,𝑐,𝑛   𝜑,𝑐,𝑛   𝑛,𝐹   𝑁,𝑎,𝑑,𝑐,𝑛   𝑂,𝑎,𝑐,𝑑,𝑛   𝜑,𝑎,𝑑
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑎)   𝐹(𝑧,𝑎,𝑐,𝑑)   𝑁(𝑧)

Proof of Theorem hgt750lema
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13547 . . . 4 (0..^3) ∈ Fin
21a1i 11 . . 3 (𝜑 → (0..^3) ∈ Fin)
3 hgt750leme.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43nnnn0d 12150 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5 3nn0 12108 . . . . . . 7 3 ∈ ℕ0
65a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℕ0)
7 ssidd 3924 . . . . . 6 (𝜑 → ℕ ⊆ ℕ)
84, 6, 7reprfi2 32315 . . . . 5 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
9 ssrab2 3993 . . . . . 6 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
109a1i 11 . . . . 5 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
118, 10ssfid 8898 . . . 4 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
1211adantr 484 . . 3 ((𝜑𝑎 ∈ (0..^3)) → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
13 vmaf 26001 . . . . . 6 Λ:ℕ⟶ℝ
1413a1i 11 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
15 ssidd 3924 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
164nn0zd 12280 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
185a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
19 simpr 488 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
209, 19sseldi 3899 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
2115, 17, 18, 20reprf 32304 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
22 c0ex 10827 . . . . . . . . 9 0 ∈ V
2322tpid1 4684 . . . . . . . 8 0 ∈ {0, 1, 2}
24 fzo0to3tp 13328 . . . . . . . 8 (0..^3) = {0, 1, 2}
2523, 24eleqtrri 2837 . . . . . . 7 0 ∈ (0..^3)
2625a1i 11 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
2721, 26ffvelrnd 6905 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
2814, 27ffvelrnd 6905 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
29 1ex 10829 . . . . . . . . . 10 1 ∈ V
3029tpid2 4686 . . . . . . . . 9 1 ∈ {0, 1, 2}
3130, 24eleqtrri 2837 . . . . . . . 8 1 ∈ (0..^3)
3231a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
3321, 32ffvelrnd 6905 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
3414, 33ffvelrnd 6905 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
35 2ex 11907 . . . . . . . . . 10 2 ∈ V
3635tpid3 4689 . . . . . . . . 9 2 ∈ {0, 1, 2}
3736, 24eleqtrri 2837 . . . . . . . 8 2 ∈ (0..^3)
3837a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
3921, 38ffvelrnd 6905 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
4014, 39ffvelrnd 6905 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
4134, 40remulcld 10863 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
4228, 41remulcld 10863 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
43 vmage0 26003 . . . . 5 ((𝑛‘0) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘0)))
4427, 43syl 17 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘0)))
45 vmage0 26003 . . . . . 6 ((𝑛‘1) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘1)))
4633, 45syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘1)))
47 vmage0 26003 . . . . . 6 ((𝑛‘2) ∈ ℕ → 0 ≤ (Λ‘(𝑛‘2)))
4839, 47syl 17 . . . . 5 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ (Λ‘(𝑛‘2)))
4934, 40, 46, 48mulge0d 11409 . . . 4 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))
5028, 41, 44, 49mulge0d 11409 . . 3 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 0 ≤ ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
512, 12, 42, 50fsumiunle 30863 . 2 (𝜑 → Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
52 eqid 2737 . . . 4 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}
53 inss2 4144 . . . . . 6 (𝑂 ∩ ℙ) ⊆ ℙ
54 prmssnn 16233 . . . . . 6 ℙ ⊆ ℕ
5553, 54sstri 3910 . . . . 5 (𝑂 ∩ ℙ) ⊆ ℕ
5655a1i 11 . . . 4 (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ)
5752, 7, 56, 4, 6reprdifc 32319 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) = 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)})
5857sumeq1d 15265 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 𝑎 ∈ (0..^3){𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
59 ssrab2 3993 . . . . . . . 8 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
6059a1i 11 . . . . . . 7 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
618, 60ssfid 8898 . . . . . 6 (𝜑 → {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
6213a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
63 ssidd 3924 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
6416adantr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
655a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
6660sselda 3901 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
6763, 64, 65, 66reprf 32304 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
6825a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
6967, 68ffvelrnd 6905 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
7062, 69ffvelrnd 6905 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
7131a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
7267, 71ffvelrnd 6905 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
7362, 72ffvelrnd 6905 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
7437a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
7567, 74ffvelrnd 6905 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
7662, 75ffvelrnd 6905 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
7773, 76remulcld 10863 . . . . . . 7 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
7870, 77remulcld 10863 . . . . . 6 ((𝜑𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
7961, 78fsumrecl 15298 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
8079recnd 10861 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
81 fsumconst 15354 . . . 4 (((0..^3) ∈ Fin ∧ Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ) → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
822, 80, 81syl2anc 587 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
83 fveq1 6716 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (𝑛‘0) = ((𝐹𝑒)‘0))
8483fveq2d 6721 . . . . . . 7 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘0)) = (Λ‘((𝐹𝑒)‘0)))
85 fveq1 6716 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘1) = ((𝐹𝑒)‘1))
8685fveq2d 6721 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘1)) = (Λ‘((𝐹𝑒)‘1)))
87 fveq1 6716 . . . . . . . . 9 (𝑛 = (𝐹𝑒) → (𝑛‘2) = ((𝐹𝑒)‘2))
8887fveq2d 6721 . . . . . . . 8 (𝑛 = (𝐹𝑒) → (Λ‘(𝑛‘2)) = (Λ‘((𝐹𝑒)‘2)))
8986, 88oveq12d 7231 . . . . . . 7 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) = ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))))
9084, 89oveq12d 7231 . . . . . 6 (𝑛 = (𝐹𝑒) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
91 3nn 11909 . . . . . . . . . 10 3 ∈ ℕ
9291a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℕ)
9392ralrimivw 3106 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (0..^3)3 ∈ ℕ)
9493r19.21bi 3130 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 3 ∈ ℕ)
9516adantr 484 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑁 ∈ ℤ)
96 ssidd 3924 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → ℕ ⊆ ℕ)
97 simpr 488 . . . . . . 7 ((𝜑𝑎 ∈ (0..^3)) → 𝑎 ∈ (0..^3))
98 fveq1 6716 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐‘0) = (𝑑‘0))
9998eleq1d 2822 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
10099notbid 321 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)))
101100cbvrabv 3402 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}
102 fveq1 6716 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑎) = (𝑑𝑎))
103102eleq1d 2822 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
104103notbid 321 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)))
105104cbvrabv 3402 . . . . . . 7 {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} = {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑𝑎) ∈ (𝑂 ∩ ℙ)}
106 eqid 2737 . . . . . . 7 if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})) = if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))
107 hgt750lema.f . . . . . . 7 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
10894, 95, 96, 97, 101, 105, 106, 107reprpmtf1o 32318 . . . . . 6 ((𝜑𝑎 ∈ (0..^3)) → 𝐹:{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}–1-1-onto→{𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
109 eqidd 2738 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (𝐹𝑒) = (𝐹𝑒))
11078adantlr 715 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
111110recnd 10861 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
11290, 12, 108, 109, 111fsumf1o 15287 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))))
113 fveq2 6717 . . . . . . . . . 10 (𝑒 = 𝑛 → (𝐹𝑒) = (𝐹𝑛))
114113fveq1d 6719 . . . . . . . . 9 (𝑒 = 𝑛 → ((𝐹𝑒)‘0) = ((𝐹𝑛)‘0))
115114fveq2d 6721 . . . . . . . 8 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘0)) = (Λ‘((𝐹𝑛)‘0)))
116113fveq1d 6719 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘1) = ((𝐹𝑛)‘1))
117116fveq2d 6721 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘1)) = (Λ‘((𝐹𝑛)‘1)))
118113fveq1d 6719 . . . . . . . . . 10 (𝑒 = 𝑛 → ((𝐹𝑒)‘2) = ((𝐹𝑛)‘2))
119118fveq2d 6721 . . . . . . . . 9 (𝑒 = 𝑛 → (Λ‘((𝐹𝑒)‘2)) = (Λ‘((𝐹𝑛)‘2)))
120117, 119oveq12d 7231 . . . . . . . 8 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2))) = ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
121115, 120oveq12d 7231 . . . . . . 7 (𝑒 = 𝑛 → ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
122121cbvsumv 15260 . . . . . 6 Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2))))
123122a1i 11 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑒)‘0)) · ((Λ‘((𝐹𝑒)‘1)) · (Λ‘((𝐹𝑒)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))))
124 ovexd 7248 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → (0..^3) ∈ V)
12597adantr 484 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → 𝑎 ∈ (0..^3))
126124, 125, 26, 106pmtridf1o 31080 . . . . . . 7 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})):(0..^3)–1-1-onto→(0..^3))
127107, 126, 21, 14, 19hgt750lemg 32346 . . . . . 6 (((𝜑𝑎 ∈ (0..^3)) ∧ 𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
128127sumeq2dv 15267 . . . . 5 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘((𝐹𝑛)‘0)) · ((Λ‘((𝐹𝑛)‘1)) · (Λ‘((𝐹𝑛)‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
129112, 123, 1283eqtrrd 2782 . . . 4 ((𝜑𝑎 ∈ (0..^3)) → Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
130129sumeq2dv 15267 . . 3 (𝜑 → Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
131 hashfzo0 13997 . . . . . . 7 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
1325, 131ax-mp 5 . . . . . 6 (♯‘(0..^3)) = 3
133132a1i 11 . . . . 5 (𝜑 → (♯‘(0..^3)) = 3)
134133eqcomd 2743 . . . 4 (𝜑 → 3 = (♯‘(0..^3)))
135 hgt750lemb.a . . . . . 6 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
136135a1i 11 . . . . 5 (𝜑𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)})
137136sumeq1d 15265 . . . 4 (𝜑 → Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
138134, 137oveq12d 7231 . . 3 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = ((♯‘(0..^3)) · Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
13982, 130, 1383eqtr4rd 2788 . 2 (𝜑 → (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) = Σ𝑎 ∈ (0..^3)Σ𝑛 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
14051, 58, 1393brtr4d 5085 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  cdif 3863  cin 3865  wss 3866  ifcif 4439  {cpr 4543  {ctp 4545   ciun 4904   class class class wbr 5053  cmpt 5135   I cid 5454  cres 5553  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  Fincfn 8626  cc 10727  cr 10728  0cc0 10729  1c1 10730   · cmul 10734  cle 10868  cn 11830  2c2 11885  3c3 11886  0cn0 12090  cz 12176  ..^cfzo 13238  chash 13896  Σcsu 15249  cdvds 15815  cprime 16228  pmTrspcpmtr 18833  Λcvma 25974  reprcrepr 32300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-reg 9208  ax-inf2 9256  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-r1 9380  df-rank 9381  df-dju 9517  df-card 9555  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-prod 15468  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-gcd 16054  df-prm 16229  df-pc 16390  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-pmtr 18834  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-vma 25980  df-repr 32301
This theorem is referenced by:  hgt750leme  32350
  Copyright terms: Public domain W3C validator