MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem4 Structured version   Visualization version   GIF version

Theorem prmgaplem4 16989
Description: Lemma for prmgap 16994. (Contributed by AV, 10-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem4.a 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
Assertion
Ref Expression
prmgaplem4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4077 . . . . 5 {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ
21a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ)
3 prmssnn 16615 . . . . 5 ℙ ⊆ ℕ
4 nnssre 12218 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3991 . . . 4 ℙ ⊆ ℝ
62, 5sstrdi 3994 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ)
7 fzfid 13940 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁...𝑃) ∈ Fin)
8 breq2 5152 . . . . . . . 8 (𝑝 = 𝑖 → (𝑁 < 𝑝𝑁 < 𝑖))
9 breq1 5151 . . . . . . . 8 (𝑝 = 𝑖 → (𝑝𝑃𝑖𝑃))
108, 9anbi12d 631 . . . . . . 7 (𝑝 = 𝑖 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑖𝑖𝑃)))
1110elrab 3683 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ↔ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)))
12 nnz 12581 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
13 prmz 16614 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1412, 13anim12i 613 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
15143adant3 1132 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
16 prmz 16614 . . . . . . . . . . 11 (𝑖 ∈ ℙ → 𝑖 ∈ ℤ)
1716adantr 481 . . . . . . . . . 10 ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ ℤ)
1815, 17anim12i 613 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
19 df-3an 1089 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
2018, 19sylibr 233 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ))
21 nnre 12221 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
235sseli 3978 . . . . . . . . . . . . 13 (𝑖 ∈ ℙ → 𝑖 ∈ ℝ)
24 ltle 11304 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑁 < 𝑖𝑁𝑖))
2522, 23, 24syl2an 596 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → (𝑁 < 𝑖𝑁𝑖))
2625anim1d 611 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃)))
2726ex 413 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
28273adant3 1132 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
2928imp32 419 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁𝑖𝑖𝑃))
30 elfz2 13493 . . . . . . . 8 (𝑖 ∈ (𝑁...𝑃) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑁𝑖𝑖𝑃)))
3120, 29, 30sylanbrc 583 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → 𝑖 ∈ (𝑁...𝑃))
3231ex 413 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ (𝑁...𝑃)))
3311, 32biimtrid 241 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → 𝑖 ∈ (𝑁...𝑃)))
3433ssrdv 3988 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ (𝑁...𝑃))
357, 34ssfid 9269 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin)
36 breq2 5152 . . . . . 6 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
37 breq1 5151 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝑃𝑃𝑃))
3836, 37anbi12d 631 . . . . 5 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑃𝑃𝑃)))
39 simp2 1137 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ ℙ)
40 prmnn 16613 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4140nnred 12229 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4241leidd 11782 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃𝑃)
4342anim1ci 616 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
44433adant1 1130 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
4538, 39, 44elrabd 3685 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)})
4645ne0d 4335 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)
47 prmgaplem4.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
48 sseq1 4007 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ))
49 eleq1 2821 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin))
50 neeq1 3003 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
5148, 49, 503anbi123d 1436 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)))
5247, 51ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
536, 35, 46, 52syl3anbrc 1343 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
54 fiminre 12163 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
5553, 54syl 17 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  wss 3948  c0 4322   class class class wbr 5148  (class class class)co 7411  Fincfn 8941  cr 11111   < clt 11250  cle 11251  cn 12214  cz 12560  ...cfz 13486  cprime 16610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-prm 16611
This theorem is referenced by:  prmgaplem6  16991
  Copyright terms: Public domain W3C validator