MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem4 Structured version   Visualization version   GIF version

Theorem prmgaplem4 16380
Description: Lemma for prmgap 16385. (Contributed by AV, 10-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem4.a 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
Assertion
Ref Expression
prmgaplem4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4007 . . . . 5 {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ
21a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ)
3 prmssnn 16010 . . . . 5 ℙ ⊆ ℕ
4 nnssre 11629 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3924 . . . 4 ℙ ⊆ ℝ
62, 5sstrdi 3927 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ)
7 fzfid 13336 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁...𝑃) ∈ Fin)
8 breq2 5034 . . . . . . . 8 (𝑝 = 𝑖 → (𝑁 < 𝑝𝑁 < 𝑖))
9 breq1 5033 . . . . . . . 8 (𝑝 = 𝑖 → (𝑝𝑃𝑖𝑃))
108, 9anbi12d 633 . . . . . . 7 (𝑝 = 𝑖 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑖𝑖𝑃)))
1110elrab 3628 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ↔ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)))
12 nnz 11992 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
13 prmz 16009 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1412, 13anim12i 615 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
15143adant3 1129 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
16 prmz 16009 . . . . . . . . . . 11 (𝑖 ∈ ℙ → 𝑖 ∈ ℤ)
1716adantr 484 . . . . . . . . . 10 ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ ℤ)
1815, 17anim12i 615 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
19 df-3an 1086 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
2018, 19sylibr 237 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ))
21 nnre 11632 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantr 484 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
235sseli 3911 . . . . . . . . . . . . 13 (𝑖 ∈ ℙ → 𝑖 ∈ ℝ)
24 ltle 10718 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑁 < 𝑖𝑁𝑖))
2522, 23, 24syl2an 598 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → (𝑁 < 𝑖𝑁𝑖))
2625anim1d 613 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃)))
2726ex 416 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
28273adant3 1129 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
2928imp32 422 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁𝑖𝑖𝑃))
30 elfz2 12892 . . . . . . . 8 (𝑖 ∈ (𝑁...𝑃) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑁𝑖𝑖𝑃)))
3120, 29, 30sylanbrc 586 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → 𝑖 ∈ (𝑁...𝑃))
3231ex 416 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ (𝑁...𝑃)))
3311, 32syl5bi 245 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → 𝑖 ∈ (𝑁...𝑃)))
3433ssrdv 3921 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ (𝑁...𝑃))
357, 34ssfid 8725 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin)
36 breq2 5034 . . . . . 6 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
37 breq1 5033 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝑃𝑃𝑃))
3836, 37anbi12d 633 . . . . 5 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑃𝑃𝑃)))
39 simp2 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ ℙ)
40 prmnn 16008 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4140nnred 11640 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4241leidd 11195 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃𝑃)
4342anim1ci 618 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
44433adant1 1127 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
4538, 39, 44elrabd 3630 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)})
4645ne0d 4251 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)
47 prmgaplem4.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
48 sseq1 3940 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ))
49 eleq1 2877 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin))
50 neeq1 3049 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
5148, 49, 503anbi123d 1433 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)))
5247, 51ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
536, 35, 46, 52syl3anbrc 1340 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
54 fiminre 11576 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
5553, 54syl 17 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   class class class wbr 5030  (class class class)co 7135  Fincfn 8492  cr 10525   < clt 10664  cle 10665  cn 11625  cz 11969  ...cfz 12885  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-prm 16006
This theorem is referenced by:  prmgaplem6  16382
  Copyright terms: Public domain W3C validator