MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem4 Structured version   Visualization version   GIF version

Theorem prmgaplem4 16966
Description: Lemma for prmgap 16971. (Contributed by AV, 10-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem4.a 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
Assertion
Ref Expression
prmgaplem4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4031 . . . . 5 {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ
21a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℙ)
3 prmssnn 16587 . . . . 5 ℙ ⊆ ℕ
4 nnssre 12132 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3945 . . . 4 ℙ ⊆ ℝ
62, 5sstrdi 3948 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ)
7 fzfid 13880 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁...𝑃) ∈ Fin)
8 breq2 5096 . . . . . . . 8 (𝑝 = 𝑖 → (𝑁 < 𝑝𝑁 < 𝑖))
9 breq1 5095 . . . . . . . 8 (𝑝 = 𝑖 → (𝑝𝑃𝑖𝑃))
108, 9anbi12d 632 . . . . . . 7 (𝑝 = 𝑖 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑖𝑖𝑃)))
1110elrab 3648 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ↔ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)))
12 nnz 12492 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
13 prmz 16586 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1412, 13anim12i 613 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
15143adant3 1132 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))
16 prmz 16586 . . . . . . . . . . 11 (𝑖 ∈ ℙ → 𝑖 ∈ ℤ)
1716adantr 480 . . . . . . . . . 10 ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ ℤ)
1815, 17anim12i 613 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
19 df-3an 1088 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑖 ∈ ℤ))
2018, 19sylibr 234 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ))
21 nnre 12135 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
235sseli 3931 . . . . . . . . . . . . 13 (𝑖 ∈ ℙ → 𝑖 ∈ ℝ)
24 ltle 11204 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑁 < 𝑖𝑁𝑖))
2522, 23, 24syl2an 596 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → (𝑁 < 𝑖𝑁𝑖))
2625anim1d 611 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑖 ∈ ℙ) → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃)))
2726ex 412 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
28273adant3 1132 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ ℙ → ((𝑁 < 𝑖𝑖𝑃) → (𝑁𝑖𝑖𝑃))))
2928imp32 418 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → (𝑁𝑖𝑖𝑃))
30 elfz2 13417 . . . . . . . 8 (𝑖 ∈ (𝑁...𝑃) ↔ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑁𝑖𝑖𝑃)))
3120, 29, 30sylanbrc 583 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) ∧ (𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃))) → 𝑖 ∈ (𝑁...𝑃))
3231ex 412 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ((𝑖 ∈ ℙ ∧ (𝑁 < 𝑖𝑖𝑃)) → 𝑖 ∈ (𝑁...𝑃)))
3311, 32biimtrid 242 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → 𝑖 ∈ (𝑁...𝑃)))
3433ssrdv 3941 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ (𝑁...𝑃))
357, 34ssfid 9158 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin)
36 breq2 5096 . . . . . 6 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
37 breq1 5095 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝑃𝑃𝑃))
3836, 37anbi12d 632 . . . . 5 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝𝑃) ↔ (𝑁 < 𝑃𝑃𝑃)))
39 simp2 1137 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ ℙ)
40 prmnn 16585 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4140nnred 12143 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4241leidd 11686 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃𝑃)
4342anim1ci 616 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
44433adant1 1130 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝑁 < 𝑃𝑃𝑃))
4538, 39, 44elrabd 3650 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → 𝑃 ∈ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)})
4645ne0d 4293 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)
47 prmgaplem4.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)}
48 sseq1 3961 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ))
49 eleq1 2816 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin))
50 neeq1 2987 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
5148, 49, 503anbi123d 1438 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅)))
5247, 51ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝𝑝𝑃)} ≠ ∅))
536, 35, 46, 52syl3anbrc 1344 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
54 fiminre 12072 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
5553, 54syl 17 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  wss 3903  c0 4284   class class class wbr 5092  (class class class)co 7349  Fincfn 8872  cr 11008   < clt 11149  cle 11150  cn 12128  cz 12471  ...cfz 13410  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-prm 16583
This theorem is referenced by:  prmgaplem6  16968
  Copyright terms: Public domain W3C validator