Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgtde Structured version   Visualization version   GIF version

Theorem tgoldbachgtde 32640
Description: Lemma for tgoldbachgtd 32642. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgtda.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgtda.n (𝜑𝑁𝑂)
tgoldbachgtda.0 (𝜑 → (10↑27) ≤ 𝑁)
tgoldbachgtda.h (𝜑𝐻:ℕ⟶(0[,)+∞))
tgoldbachgtda.k (𝜑𝐾:ℕ⟶(0[,)+∞))
tgoldbachgtda.1 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
tgoldbachgtda.2 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
tgoldbachgtda.3 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Assertion
Ref Expression
tgoldbachgtde (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
Distinct variable groups:   𝑚,𝐻,𝑛,𝑥   𝑚,𝐾,𝑛,𝑥   𝑚,𝑁,𝑛,𝑥,𝑧   𝑚,𝑂,𝑛,𝑧   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝐻(𝑧)   𝐾(𝑧)   𝑂(𝑥)

Proof of Theorem tgoldbachgtde
StepHypRef Expression
1 tgoldbachgtda.o . . . . . . . . 9 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2 tgoldbachgtda.n . . . . . . . . 9 (𝜑𝑁𝑂)
3 tgoldbachgtda.0 . . . . . . . . 9 (𝜑 → (10↑27) ≤ 𝑁)
41, 2, 3tgoldbachgnn 32639 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12293 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
6 3nn0 12251 . . . . . . . 8 3 ∈ ℕ0
76a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℕ0)
8 ssidd 3944 . . . . . . 7 (𝜑 → ℕ ⊆ ℕ)
95, 7, 8reprfi2 32603 . . . . . 6 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
10 diffi 8962 . . . . . 6 ((ℕ(repr‘3)𝑁) ∈ Fin → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
119, 10syl 17 . . . . 5 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
12 difssd 4067 . . . . . . 7 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ⊆ (ℕ(repr‘3)𝑁))
1312sselda 3921 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
14 vmaf 26268 . . . . . . . . . 10 Λ:ℕ⟶ℝ
1514a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → Λ:ℕ⟶ℝ)
16 ssidd 3944 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
175nn0zd 12424 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
1817adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
196a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
20 simpr 485 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
2116, 18, 19, 20reprf 32592 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
22 c0ex 10969 . . . . . . . . . . . . 13 0 ∈ V
2322tpid1 4704 . . . . . . . . . . . 12 0 ∈ {0, 1, 2}
24 fzo0to3tp 13473 . . . . . . . . . . . 12 (0..^3) = {0, 1, 2}
2523, 24eleqtrri 2838 . . . . . . . . . . 11 0 ∈ (0..^3)
2625a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 0 ∈ (0..^3))
2721, 26ffvelrnd 6962 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘0) ∈ ℕ)
2815, 27ffvelrnd 6962 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘0)) ∈ ℝ)
29 tgoldbachgtda.h . . . . . . . . . . 11 (𝜑𝐻:ℕ⟶(0[,)+∞))
30 rge0ssre 13188 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
31 fss 6617 . . . . . . . . . . 11 ((𝐻:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐻:ℕ⟶ℝ)
3229, 30, 31sylancl 586 . . . . . . . . . 10 (𝜑𝐻:ℕ⟶ℝ)
3332adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝐻:ℕ⟶ℝ)
3433, 27ffvelrnd 6962 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐻‘(𝑛‘0)) ∈ ℝ)
3528, 34remulcld 11005 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
36 1ex 10971 . . . . . . . . . . . . . 14 1 ∈ V
3736tpid2 4706 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
3837, 24eleqtrri 2838 . . . . . . . . . . . 12 1 ∈ (0..^3)
3938a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 1 ∈ (0..^3))
4021, 39ffvelrnd 6962 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘1) ∈ ℕ)
4115, 40ffvelrnd 6962 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘1)) ∈ ℝ)
42 tgoldbachgtda.k . . . . . . . . . . . 12 (𝜑𝐾:ℕ⟶(0[,)+∞))
43 fss 6617 . . . . . . . . . . . 12 ((𝐾:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐾:ℕ⟶ℝ)
4442, 30, 43sylancl 586 . . . . . . . . . . 11 (𝜑𝐾:ℕ⟶ℝ)
4544adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝐾:ℕ⟶ℝ)
4645, 40ffvelrnd 6962 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐾‘(𝑛‘1)) ∈ ℝ)
4741, 46remulcld 11005 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
48 2ex 12050 . . . . . . . . . . . . . 14 2 ∈ V
4948tpid3 4709 . . . . . . . . . . . . 13 2 ∈ {0, 1, 2}
5049, 24eleqtrri 2838 . . . . . . . . . . . 12 2 ∈ (0..^3)
5150a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 2 ∈ (0..^3))
5221, 51ffvelrnd 6962 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘2) ∈ ℕ)
5315, 52ffvelrnd 6962 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘2)) ∈ ℝ)
5445, 52ffvelrnd 6962 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐾‘(𝑛‘2)) ∈ ℝ)
5553, 54remulcld 11005 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
5647, 55remulcld 11005 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
5735, 56remulcld 11005 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
5813, 57syldan 591 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
5911, 58fsumrecl 15446 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
60 0nn0 12248 . . . . . . 7 0 ∈ ℕ0
61 qssre 12699 . . . . . . . 8 ℚ ⊆ ℝ
62 4nn0 12252 . . . . . . . . . . . 12 4 ∈ ℕ0
63 2nn0 12250 . . . . . . . . . . . . 13 2 ∈ ℕ0
64 nn0ssq 12697 . . . . . . . . . . . . . . . 16 0 ⊆ ℚ
65 8nn0 12256 . . . . . . . . . . . . . . . 16 8 ∈ ℕ0
6664, 65sselii 3918 . . . . . . . . . . . . . . 15 8 ∈ ℚ
6762, 66dp2clq 31155 . . . . . . . . . . . . . 14 48 ∈ ℚ
6863, 67dp2clq 31155 . . . . . . . . . . . . 13 248 ∈ ℚ
6963, 68dp2clq 31155 . . . . . . . . . . . 12 2248 ∈ ℚ
7062, 69dp2clq 31155 . . . . . . . . . . 11 42248 ∈ ℚ
7160, 70dp2clq 31155 . . . . . . . . . 10 042248 ∈ ℚ
7260, 71dp2clq 31155 . . . . . . . . 9 0042248 ∈ ℚ
7360, 72dp2clq 31155 . . . . . . . 8 00042248 ∈ ℚ
7461, 73sselii 3918 . . . . . . 7 00042248 ∈ ℝ
75 dpcl 31165 . . . . . . 7 ((0 ∈ ℕ000042248 ∈ ℝ) → (0.00042248) ∈ ℝ)
7660, 74, 75mp2an 689 . . . . . 6 (0.00042248) ∈ ℝ
7776a1i 11 . . . . 5 (𝜑 → (0.00042248) ∈ ℝ)
784nnred 11988 . . . . . 6 (𝜑𝑁 ∈ ℝ)
7978resqcld 13965 . . . . 5 (𝜑 → (𝑁↑2) ∈ ℝ)
8077, 79remulcld 11005 . . . 4 (𝜑 → ((0.00042248) · (𝑁↑2)) ∈ ℝ)
819, 57fsumrecl 15446 . . . 4 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
82 7nn0 12255 . . . . . . . . 9 7 ∈ ℕ0
836, 67dp2clq 31155 . . . . . . . . . 10 348 ∈ ℚ
8461, 83sselii 3918 . . . . . . . . 9 348 ∈ ℝ
85 dpcl 31165 . . . . . . . . 9 ((7 ∈ ℕ0348 ∈ ℝ) → (7.348) ∈ ℝ)
8682, 84, 85mp2an 689 . . . . . . . 8 (7.348) ∈ ℝ
8786a1i 11 . . . . . . 7 (𝜑 → (7.348) ∈ ℝ)
884nnrpd 12770 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
8988relogcld 25778 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
905nn0ge0d 12296 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑁)
9178, 90resqrtcld 15129 . . . . . . . 8 (𝜑 → (√‘𝑁) ∈ ℝ)
9288sqrtgt0d 15124 . . . . . . . . 9 (𝜑 → 0 < (√‘𝑁))
9392gt0ne0d 11539 . . . . . . . 8 (𝜑 → (√‘𝑁) ≠ 0)
9489, 91, 93redivcld 11803 . . . . . . 7 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ)
9587, 94remulcld 11005 . . . . . 6 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) ∈ ℝ)
9695, 79remulcld 11005 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) ∈ ℝ)
97 tgoldbachgtda.1 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
98 tgoldbachgtda.2 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
991, 4, 3, 29, 42, 97, 98hgt750leme 32638 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
100 2z 12352 . . . . . . . 8 2 ∈ ℤ
101100a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
10288, 101rpexpcld 13962 . . . . . 6 (𝜑 → (𝑁↑2) ∈ ℝ+)
103 hgt750lem 32631 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (10↑27) ≤ 𝑁) → ((7.348) · ((log‘𝑁) / (√‘𝑁))) < (0.00042248))
1045, 3, 103syl2anc 584 . . . . . 6 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) < (0.00042248))
10595, 77, 102, 104ltmul1dd 12827 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) < ((0.00042248) · (𝑁↑2)))
10659, 96, 80, 99, 105lelttrd 11133 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < ((0.00042248) · (𝑁↑2)))
107 tgoldbachgtda.3 . . . . 5 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
10832, 44, 5circlemethhgt 32623 . . . . 5 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
109107, 108breqtrrd 5102 . . . 4 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
11059, 80, 81, 106, 109ltletrd 11135 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
11159, 81posdifd 11562 . . 3 (𝜑 → (Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ↔ 0 < (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))))
112110, 111mpbid 231 . 2 (𝜑 → 0 < (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))))
113 inss2 4163 . . . . . . . 8 (𝑂 ∩ ℙ) ⊆ ℙ
114 prmssnn 16381 . . . . . . . 8 ℙ ⊆ ℕ
115113, 114sstri 3930 . . . . . . 7 (𝑂 ∩ ℙ) ⊆ ℕ
116115a1i 11 . . . . . 6 (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ)
1178, 17, 7, 116reprss 32597 . . . . 5 (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ⊆ (ℕ(repr‘3)𝑁))
1189, 117ssfid 9042 . . . 4 (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin)
119117sselda 3921 . . . . 5 ((𝜑𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
12057recnd 11003 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
121119, 120syldan 591 . . . 4 ((𝜑𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
122118, 121fsumcl 15445 . . 3 (𝜑 → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
12359recnd 11003 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
124 disjdif 4405 . . . . 5 (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∩ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = ∅
125124a1i 11 . . . 4 (𝜑 → (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∩ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = ∅)
126 undif 4415 . . . . . 6 (((𝑂 ∩ ℙ)(repr‘3)𝑁) ⊆ (ℕ(repr‘3)𝑁) ↔ (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = (ℕ(repr‘3)𝑁))
127117, 126sylib 217 . . . . 5 (𝜑 → (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = (ℕ(repr‘3)𝑁))
128127eqcomd 2744 . . . 4 (𝜑 → (ℕ(repr‘3)𝑁) = (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))))
129125, 128, 9, 120fsumsplit 15453 . . 3 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = (Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) + Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))))
130122, 123, 129mvrraddd 11387 . 2 (𝜑 → (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) = Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
131112, 130breqtrd 5100 1 (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {ctp 4565   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  5c5 12031  7c7 12033  8c8 12034  9c9 12035  0cn0 12233  cz 12319  cdc 12437  cq 12688  (,)cioo 13079  [,)cico 13081  ..^cfzo 13382  cexp 13782  csqrt 14944  Σcsu 15397  expce 15771  πcpi 15776  cdvds 15963  cprime 16376  citg 24782  logclog 25710  Λcvma 26241  cdp2 31145  .cdp 31162  reprcrepr 32588  vtscvts 32615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-cc 10191  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-ros335 32625  ax-ros336 32626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-r1 9522  df-rank 9523  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-pmtr 19050  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-cxp 25713  df-atan 26017  df-cht 26246  df-vma 26247  df-chp 26248  df-dp2 31146  df-dp 31163  df-repr 32589  df-vts 32616
This theorem is referenced by:  tgoldbachgtda  32641
  Copyright terms: Public domain W3C validator