Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachgtde Structured version   Visualization version   GIF version

Theorem tgoldbachgtde 34644
Description: Lemma for tgoldbachgtd 34646. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
tgoldbachgtda.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
tgoldbachgtda.n (𝜑𝑁𝑂)
tgoldbachgtda.0 (𝜑 → (10↑27) ≤ 𝑁)
tgoldbachgtda.h (𝜑𝐻:ℕ⟶(0[,)+∞))
tgoldbachgtda.k (𝜑𝐾:ℕ⟶(0[,)+∞))
tgoldbachgtda.1 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
tgoldbachgtda.2 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
tgoldbachgtda.3 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Assertion
Ref Expression
tgoldbachgtde (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
Distinct variable groups:   𝑚,𝐻,𝑛,𝑥   𝑚,𝐾,𝑛,𝑥   𝑚,𝑁,𝑛,𝑥,𝑧   𝑚,𝑂,𝑛,𝑧   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝐻(𝑧)   𝐾(𝑧)   𝑂(𝑥)

Proof of Theorem tgoldbachgtde
StepHypRef Expression
1 tgoldbachgtda.o . . . . . . . . 9 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2 tgoldbachgtda.n . . . . . . . . 9 (𝜑𝑁𝑂)
3 tgoldbachgtda.0 . . . . . . . . 9 (𝜑 → (10↑27) ≤ 𝑁)
41, 2, 3tgoldbachgnn 34643 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12445 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
6 3nn0 12402 . . . . . . . 8 3 ∈ ℕ0
76a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℕ0)
8 ssidd 3959 . . . . . . 7 (𝜑 → ℕ ⊆ ℕ)
95, 7, 8reprfi2 34607 . . . . . 6 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
10 diffi 9089 . . . . . 6 ((ℕ(repr‘3)𝑁) ∈ Fin → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
119, 10syl 17 . . . . 5 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
12 difssd 4088 . . . . . . 7 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ⊆ (ℕ(repr‘3)𝑁))
1312sselda 3935 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
14 vmaf 27027 . . . . . . . . . 10 Λ:ℕ⟶ℝ
1514a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → Λ:ℕ⟶ℝ)
16 ssidd 3959 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
175nn0zd 12497 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
1817adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
196a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
20 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
2116, 18, 19, 20reprf 34596 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
22 c0ex 11109 . . . . . . . . . . . . 13 0 ∈ V
2322tpid1 4720 . . . . . . . . . . . 12 0 ∈ {0, 1, 2}
24 fzo0to3tp 13655 . . . . . . . . . . . 12 (0..^3) = {0, 1, 2}
2523, 24eleqtrri 2827 . . . . . . . . . . 11 0 ∈ (0..^3)
2625a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 0 ∈ (0..^3))
2721, 26ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘0) ∈ ℕ)
2815, 27ffvelcdmd 7019 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘0)) ∈ ℝ)
29 tgoldbachgtda.h . . . . . . . . . . 11 (𝜑𝐻:ℕ⟶(0[,)+∞))
30 rge0ssre 13359 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
31 fss 6668 . . . . . . . . . . 11 ((𝐻:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐻:ℕ⟶ℝ)
3229, 30, 31sylancl 586 . . . . . . . . . 10 (𝜑𝐻:ℕ⟶ℝ)
3332adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝐻:ℕ⟶ℝ)
3433, 27ffvelcdmd 7019 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐻‘(𝑛‘0)) ∈ ℝ)
3528, 34remulcld 11145 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
36 1ex 11111 . . . . . . . . . . . . . 14 1 ∈ V
3736tpid2 4722 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
3837, 24eleqtrri 2827 . . . . . . . . . . . 12 1 ∈ (0..^3)
3938a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 1 ∈ (0..^3))
4021, 39ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘1) ∈ ℕ)
4115, 40ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘1)) ∈ ℝ)
42 tgoldbachgtda.k . . . . . . . . . . . 12 (𝜑𝐾:ℕ⟶(0[,)+∞))
43 fss 6668 . . . . . . . . . . . 12 ((𝐾:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐾:ℕ⟶ℝ)
4442, 30, 43sylancl 586 . . . . . . . . . . 11 (𝜑𝐾:ℕ⟶ℝ)
4544adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝐾:ℕ⟶ℝ)
4645, 40ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐾‘(𝑛‘1)) ∈ ℝ)
4741, 46remulcld 11145 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
48 2ex 12205 . . . . . . . . . . . . . 14 2 ∈ V
4948tpid3 4725 . . . . . . . . . . . . 13 2 ∈ {0, 1, 2}
5049, 24eleqtrri 2827 . . . . . . . . . . . 12 2 ∈ (0..^3)
5150a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 2 ∈ (0..^3))
5221, 51ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘2) ∈ ℕ)
5315, 52ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (Λ‘(𝑛‘2)) ∈ ℝ)
5445, 52ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝐾‘(𝑛‘2)) ∈ ℝ)
5553, 54remulcld 11145 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
5647, 55remulcld 11145 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
5735, 56remulcld 11145 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
5813, 57syldan 591 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
5911, 58fsumrecl 15641 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
60 0nn0 12399 . . . . . . 7 0 ∈ ℕ0
61 qssre 12860 . . . . . . . 8 ℚ ⊆ ℝ
62 4nn0 12403 . . . . . . . . . . . 12 4 ∈ ℕ0
63 2nn0 12401 . . . . . . . . . . . . 13 2 ∈ ℕ0
64 nn0ssq 12858 . . . . . . . . . . . . . . . 16 0 ⊆ ℚ
65 8nn0 12407 . . . . . . . . . . . . . . . 16 8 ∈ ℕ0
6664, 65sselii 3932 . . . . . . . . . . . . . . 15 8 ∈ ℚ
6762, 66dp2clq 32830 . . . . . . . . . . . . . 14 48 ∈ ℚ
6863, 67dp2clq 32830 . . . . . . . . . . . . 13 248 ∈ ℚ
6963, 68dp2clq 32830 . . . . . . . . . . . 12 2248 ∈ ℚ
7062, 69dp2clq 32830 . . . . . . . . . . 11 42248 ∈ ℚ
7160, 70dp2clq 32830 . . . . . . . . . 10 042248 ∈ ℚ
7260, 71dp2clq 32830 . . . . . . . . 9 0042248 ∈ ℚ
7360, 72dp2clq 32830 . . . . . . . 8 00042248 ∈ ℚ
7461, 73sselii 3932 . . . . . . 7 00042248 ∈ ℝ
75 dpcl 32840 . . . . . . 7 ((0 ∈ ℕ000042248 ∈ ℝ) → (0.00042248) ∈ ℝ)
7660, 74, 75mp2an 692 . . . . . 6 (0.00042248) ∈ ℝ
7776a1i 11 . . . . 5 (𝜑 → (0.00042248) ∈ ℝ)
784nnred 12143 . . . . . 6 (𝜑𝑁 ∈ ℝ)
7978resqcld 14032 . . . . 5 (𝜑 → (𝑁↑2) ∈ ℝ)
8077, 79remulcld 11145 . . . 4 (𝜑 → ((0.00042248) · (𝑁↑2)) ∈ ℝ)
819, 57fsumrecl 15641 . . . 4 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
82 7nn0 12406 . . . . . . . . 9 7 ∈ ℕ0
836, 67dp2clq 32830 . . . . . . . . . 10 348 ∈ ℚ
8461, 83sselii 3932 . . . . . . . . 9 348 ∈ ℝ
85 dpcl 32840 . . . . . . . . 9 ((7 ∈ ℕ0348 ∈ ℝ) → (7.348) ∈ ℝ)
8682, 84, 85mp2an 692 . . . . . . . 8 (7.348) ∈ ℝ
8786a1i 11 . . . . . . 7 (𝜑 → (7.348) ∈ ℝ)
884nnrpd 12935 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
8988relogcld 26530 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
905nn0ge0d 12448 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑁)
9178, 90resqrtcld 15325 . . . . . . . 8 (𝜑 → (√‘𝑁) ∈ ℝ)
9288sqrtgt0d 15320 . . . . . . . . 9 (𝜑 → 0 < (√‘𝑁))
9392gt0ne0d 11684 . . . . . . . 8 (𝜑 → (√‘𝑁) ≠ 0)
9489, 91, 93redivcld 11952 . . . . . . 7 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ)
9587, 94remulcld 11145 . . . . . 6 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) ∈ ℝ)
9695, 79remulcld 11145 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) ∈ ℝ)
97 tgoldbachgtda.1 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
98 tgoldbachgtda.2 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
991, 4, 3, 29, 42, 97, 98hgt750leme 34642 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
100 2z 12507 . . . . . . . 8 2 ∈ ℤ
101100a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
10288, 101rpexpcld 14154 . . . . . 6 (𝜑 → (𝑁↑2) ∈ ℝ+)
103 hgt750lem 34635 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (10↑27) ≤ 𝑁) → ((7.348) · ((log‘𝑁) / (√‘𝑁))) < (0.00042248))
1045, 3, 103syl2anc 584 . . . . . 6 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) < (0.00042248))
10595, 77, 102, 104ltmul1dd 12992 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) < ((0.00042248) · (𝑁↑2)))
10659, 96, 80, 99, 105lelttrd 11274 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < ((0.00042248) · (𝑁↑2)))
107 tgoldbachgtda.3 . . . . 5 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
10832, 44, 5circlemethhgt 34627 . . . . 5 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
109107, 108breqtrrd 5120 . . . 4 (𝜑 → ((0.00042248) · (𝑁↑2)) ≤ Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
11059, 80, 81, 106, 109ltletrd 11276 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
11159, 81posdifd 11707 . . 3 (𝜑 → (Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) < Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ↔ 0 < (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))))
112110, 111mpbid 232 . 2 (𝜑 → 0 < (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))))
113 inss2 4189 . . . . . . . 8 (𝑂 ∩ ℙ) ⊆ ℙ
114 prmssnn 16587 . . . . . . . 8 ℙ ⊆ ℕ
115113, 114sstri 3945 . . . . . . 7 (𝑂 ∩ ℙ) ⊆ ℕ
116115a1i 11 . . . . . 6 (𝜑 → (𝑂 ∩ ℙ) ⊆ ℕ)
1178, 17, 7, 116reprss 34601 . . . . 5 (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ⊆ (ℕ(repr‘3)𝑁))
1189, 117ssfid 9158 . . . 4 (𝜑 → ((𝑂 ∩ ℙ)(repr‘3)𝑁) ∈ Fin)
119117sselda 3935 . . . . 5 ((𝜑𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
12057recnd 11143 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
121119, 120syldan 591 . . . 4 ((𝜑𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
122118, 121fsumcl 15640 . . 3 (𝜑 → Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
12359recnd 11143 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℂ)
124 disjdif 4423 . . . . 5 (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∩ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = ∅
125124a1i 11 . . . 4 (𝜑 → (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∩ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = ∅)
126 undif 4433 . . . . . 6 (((𝑂 ∩ ℙ)(repr‘3)𝑁) ⊆ (ℕ(repr‘3)𝑁) ↔ (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = (ℕ(repr‘3)𝑁))
127117, 126sylib 218 . . . . 5 (𝜑 → (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) = (ℕ(repr‘3)𝑁))
128127eqcomd 2735 . . . 4 (𝜑 → (ℕ(repr‘3)𝑁) = (((𝑂 ∩ ℙ)(repr‘3)𝑁) ∪ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))))
129125, 128, 9, 120fsumsplit 15648 . . 3 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = (Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) + Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))))
130122, 123, 129mvrraddd 11532 . 2 (𝜑 → (Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) − Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) = Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
131112, 130breqtrd 5118 1 (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  {ctp 4581   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   · cmul 11014  +∞cpnf 11146   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  4c4 12185  5c5 12186  7c7 12188  8c8 12189  9c9 12190  0cn0 12384  cz 12471  cdc 12591  cq 12849  (,)cioo 13248  [,)cico 13250  ..^cfzo 13557  cexp 13968  csqrt 15140  Σcsu 15593  expce 15968  πcpi 15973  cdvds 16163  cprime 16582  citg 25517  logclog 26461  Λcvma 27000  cdp2 32820  .cdp 32837  reprcrepr 34592  vtscvts 34619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-cc 10329  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-ros335 34629  ax-ros336 34630
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-r1 9660  df-rank 9661  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-pmtr 19321  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-limc 25765  df-dv 25766  df-ulm 26284  df-log 26463  df-cxp 26464  df-atan 26775  df-cht 27005  df-vma 27006  df-chp 27007  df-dp2 32821  df-dp 32838  df-repr 34593  df-vts 34620
This theorem is referenced by:  tgoldbachgtda  34645
  Copyright terms: Public domain W3C validator