MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmex Structured version   Visualization version   GIF version

Theorem prmex 16558
Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmex ℙ ∈ V

Proof of Theorem prmex
StepHypRef Expression
1 nnex 12164 . 2 ℕ ∈ V
2 prmssnn 16557 . 2 ℙ ⊆ ℕ
31, 2ssexi 5280 1 ℙ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3444  cn 12158  cprime 16552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-1cn 11114  ax-addcl 11116
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-nn 12159  df-prm 16553
This theorem is referenced by:  1arithlem1  16800  1arith  16804  ablfac1b  19854  vmaval  26478  sqff1o  26547  musum  26556  nnsum3primes4  46066  nnsum3primesprm  46068  nnsum3primesgbe  46070  nnsum4primesodd  46074  nnsum4primesoddALTV  46075  nnsum4primeseven  46078  nnsum4primesevenALTV  46079
  Copyright terms: Public domain W3C validator