MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmex Structured version   Visualization version   GIF version

Theorem prmex 16611
Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmex ℙ ∈ V

Proof of Theorem prmex
StepHypRef Expression
1 nnex 12215 . 2 ℕ ∈ V
2 prmssnn 16610 . 2 ℙ ⊆ ℕ
31, 2ssexi 5322 1 ℙ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3475  cn 12209  cprime 16605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-1cn 11165  ax-addcl 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-nn 12210  df-prm 16606
This theorem is referenced by:  1arithlem1  16853  1arith  16857  ablfac1b  19935  vmaval  26607  sqff1o  26676  musum  26685  nnsum3primes4  46443  nnsum3primesprm  46445  nnsum3primesgbe  46447  nnsum4primesodd  46451  nnsum4primesoddALTV  46452  nnsum4primeseven  46455  nnsum4primesevenALTV  46456
  Copyright terms: Public domain W3C validator