Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmz | Structured version Visualization version GIF version |
Description: A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
Ref | Expression |
---|---|
prmz | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16388 | . 2 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | nnzd 12434 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
Copyright terms: Public domain | W3C validator |