| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmz | Structured version Visualization version GIF version | ||
| Description: A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
| Ref | Expression |
|---|---|
| prmz | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 16711 | . 2 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 2 | 1 | nnzd 12640 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) |
| Copyright terms: Public domain | W3C validator |