| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prodex | Structured version Visualization version GIF version | ||
| Description: A product is a set. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodex | ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prod 15920 | . 2 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 2 | iotaex 6504 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2830 | 1 ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 Vcvv 3459 ⦋csb 3874 ⊆ wss 3926 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ℩cio 6482 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 · cmul 11134 ℕcn 12240 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13524 seqcseq 14019 ⇝ cli 15500 ∏cprod 15919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6484 df-prod 15920 |
| This theorem is referenced by: risefacval 16024 fallfacval 16025 prmoval 17053 fprodsubrecnncnvlem 45936 fprodaddrecnncnvlem 45938 etransclem13 46276 ovnlecvr 46587 ovncvrrp 46593 hoidmvval 46606 vonioolem1 46709 |
| Copyright terms: Public domain | W3C validator |