Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prodex | Structured version Visualization version GIF version |
Description: A product is a set. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodex | ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-prod 15321 | . 2 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6320 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2848 | 1 ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∨ wo 844 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 Vcvv 3409 ⦋csb 3807 ⊆ wss 3860 ifcif 4423 class class class wbr 5036 ↦ cmpt 5116 ℩cio 6297 –1-1-onto→wf1o 6339 ‘cfv 6340 (class class class)co 7156 0cc0 10588 1c1 10589 · cmul 10593 ℕcn 11687 ℤcz 12033 ℤ≥cuz 12295 ...cfz 12952 seqcseq 13431 ⇝ cli 14902 ∏cprod 15320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-nul 5180 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-sn 4526 df-pr 4528 df-uni 4802 df-iota 6299 df-prod 15321 |
This theorem is referenced by: risefacval 15423 fallfacval 15424 prmoval 16438 fprodsubrecnncnvlem 42960 fprodaddrecnncnvlem 42962 etransclem13 43300 ovnlecvr 43608 ovncvrrp 43614 hoidmvval 43627 vonioolem1 43730 |
Copyright terms: Public domain | W3C validator |