MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodex Structured version   Visualization version   GIF version

Theorem prodex 15938
Description: A product is a set. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodex 𝑘𝐴 𝐵 ∈ V

Proof of Theorem prodex
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 15937 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 iotaex 6536 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∈ V
31, 2eqeltri 2835 1 𝑘𝐴 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  Vcvv 3478  csb 3908  wss 3963  ifcif 4531   class class class wbr 5148  cmpt 5231  cio 6514  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   · cmul 11158  cn 12264  cz 12611  cuz 12876  ...cfz 13544  seqcseq 14039  cli 15517  cprod 15936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-sn 4632  df-pr 4634  df-uni 4913  df-iota 6516  df-prod 15937
This theorem is referenced by:  risefacval  16041  fallfacval  16042  prmoval  17067  fprodsubrecnncnvlem  45863  fprodaddrecnncnvlem  45865  etransclem13  46203  ovnlecvr  46514  ovncvrrp  46520  hoidmvval  46533  vonioolem1  46636
  Copyright terms: Public domain W3C validator