![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodex | Structured version Visualization version GIF version |
Description: A product is a set. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodex | ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-prod 15857 | . 2 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6516 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2828 | 1 ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 Vcvv 3473 ⦋csb 3893 ⊆ wss 3948 ifcif 4528 class class class wbr 5148 ↦ cmpt 5231 ℩cio 6493 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 · cmul 11121 ℕcn 12219 ℤcz 12565 ℤ≥cuz 12829 ...cfz 13491 seqcseq 13973 ⇝ cli 15435 ∏cprod 15856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6495 df-prod 15857 |
This theorem is referenced by: risefacval 15959 fallfacval 15960 prmoval 16973 fprodsubrecnncnvlem 44934 fprodaddrecnncnvlem 44936 etransclem13 45274 ovnlecvr 45585 ovncvrrp 45591 hoidmvval 45604 vonioolem1 45707 |
Copyright terms: Public domain | W3C validator |