Step | Hyp | Ref
| Expression |
1 | | etransclem13.x |
. . 3
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
2 | | etransclem13.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℕ) |
3 | | etransclem13.m |
. . 3
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
4 | | etransclem13.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
5 | | eqid 2738 |
. . 3
⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
6 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑗 ∈ (0...𝑀)(((𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑗 ∈ (0...𝑀)(((𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥)) |
7 | 1, 2, 3, 4, 5, 6 | etransclem4 43779 |
. 2
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑗 ∈ (0...𝑀)(((𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥))) |
8 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀)) |
9 | | cnex 10952 |
. . . . . . . . 9
⊢ ℂ
∈ V |
10 | 9 | ssex 5245 |
. . . . . . . 8
⊢ (𝑋 ⊆ ℂ → 𝑋 ∈ V) |
11 | | mptexg 7097 |
. . . . . . . 8
⊢ (𝑋 ∈ V → (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
12 | 1, 10, 11 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
13 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
14 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 − 𝑗) = (𝑦 − 𝑗)) |
15 | 14 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
16 | 15 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
17 | 16 | mpteq2i 5179 |
. . . . . . 7
⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
18 | 17 | fvmpt2 6886 |
. . . . . 6
⊢ ((𝑗 ∈ (0...𝑀) ∧ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) → ((𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
19 | 8, 13, 18 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → ((𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
20 | 19 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
21 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑥 = 𝑌 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
22 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑥 = 𝑌 ∧ 𝑦 = 𝑥) → 𝑥 = 𝑌) |
23 | 21, 22 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑥 = 𝑌 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑌) |
24 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝑦 − 𝑗) = (𝑌 − 𝑗)) |
25 | 24 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
26 | 23, 25 | syl 17 |
. . . . . 6
⊢ ((𝑥 = 𝑌 ∧ 𝑦 = 𝑥) → ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
27 | 26 | adantll 711 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 = 𝑌) ∧ 𝑦 = 𝑥) → ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
28 | 27 | adantlr 712 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑦 = 𝑥) → ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
29 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) |
30 | | etransclem13.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
31 | 30 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑌 ∈ 𝑋) |
32 | 29, 31 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 ∈ 𝑋) |
33 | 32 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥 ∈ 𝑋) |
34 | | ovexd 7310 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V) |
35 | 20, 28, 33, 34 | fvmptd 6882 |
. . 3
⊢ (((𝜑 ∧ 𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥) = ((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
36 | 35 | prodeq2dv 15633 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → ∏𝑗 ∈ (0...𝑀)(((𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥) = ∏𝑗 ∈ (0...𝑀)((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
37 | | prodex 15617 |
. . 3
⊢
∏𝑗 ∈
(0...𝑀)((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V |
38 | 37 | a1i 11 |
. 2
⊢ (𝜑 → ∏𝑗 ∈ (0...𝑀)((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V) |
39 | 7, 36, 30, 38 | fvmptd 6882 |
1
⊢ (𝜑 → (𝐹‘𝑌) = ∏𝑗 ∈ (0...𝑀)((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |