Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem13 Structured version   Visualization version   GIF version

Theorem etransclem13 46276
Description: 𝐹 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem13.x (𝜑𝑋 ⊆ ℂ)
etransclem13.p (𝜑𝑃 ∈ ℕ)
etransclem13.m (𝜑𝑀 ∈ ℕ0)
etransclem13.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem13.y (𝜑𝑌𝑋)
Assertion
Ref Expression
etransclem13 (𝜑 → (𝐹𝑌) = ∏𝑗 ∈ (0...𝑀)((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝑗,𝑋,𝑥   𝑗,𝑌,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem13
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 etransclem13.x . . 3 (𝜑𝑋 ⊆ ℂ)
2 etransclem13.p . . 3 (𝜑𝑃 ∈ ℕ)
3 etransclem13.m . . 3 (𝜑𝑀 ∈ ℕ0)
4 etransclem13.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
5 eqid 2735 . . 3 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
6 eqid 2735 . . 3 (𝑥𝑋 ↦ ∏𝑗 ∈ (0...𝑀)(((𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑗 ∈ (0...𝑀)(((𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥))
71, 2, 3, 4, 5, 6etransclem4 46267 . 2 (𝜑𝐹 = (𝑥𝑋 ↦ ∏𝑗 ∈ (0...𝑀)(((𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥)))
8 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
9 cnex 11210 . . . . . . . . 9 ℂ ∈ V
109ssex 5291 . . . . . . . 8 (𝑋 ⊆ ℂ → 𝑋 ∈ V)
11 mptexg 7213 . . . . . . . 8 (𝑋 ∈ V → (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
121, 10, 113syl 18 . . . . . . 7 (𝜑 → (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
1312adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
14 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑗) = (𝑦𝑗))
1514oveq1d 7420 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1615cbvmptv 5225 . . . . . . . 8 (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1716mpteq2i 5217 . . . . . . 7 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
1817fvmpt2 6997 . . . . . 6 ((𝑗 ∈ (0...𝑀) ∧ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) → ((𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗) = (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
198, 13, 18syl2anc 584 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗) = (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
2019adantlr 715 . . . 4 (((𝜑𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗) = (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
21 simpr 484 . . . . . . . 8 ((𝑥 = 𝑌𝑦 = 𝑥) → 𝑦 = 𝑥)
22 simpl 482 . . . . . . . 8 ((𝑥 = 𝑌𝑦 = 𝑥) → 𝑥 = 𝑌)
2321, 22eqtrd 2770 . . . . . . 7 ((𝑥 = 𝑌𝑦 = 𝑥) → 𝑦 = 𝑌)
24 oveq1 7412 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝑗) = (𝑌𝑗))
2524oveq1d 7420 . . . . . . 7 (𝑦 = 𝑌 → ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
2623, 25syl 17 . . . . . 6 ((𝑥 = 𝑌𝑦 = 𝑥) → ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
2726adantll 714 . . . . 5 (((𝜑𝑥 = 𝑌) ∧ 𝑦 = 𝑥) → ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
2827adantlr 715 . . . 4 ((((𝜑𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑦 = 𝑥) → ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
29 simpr 484 . . . . . 6 ((𝜑𝑥 = 𝑌) → 𝑥 = 𝑌)
30 etransclem13.y . . . . . . 7 (𝜑𝑌𝑋)
3130adantr 480 . . . . . 6 ((𝜑𝑥 = 𝑌) → 𝑌𝑋)
3229, 31eqeltrd 2834 . . . . 5 ((𝜑𝑥 = 𝑌) → 𝑥𝑋)
3332adantr 480 . . . 4 (((𝜑𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥𝑋)
34 ovexd 7440 . . . 4 (((𝜑𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V)
3520, 28, 33, 34fvmptd 6993 . . 3 (((𝜑𝑥 = 𝑌) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥) = ((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
3635prodeq2dv 15938 . 2 ((𝜑𝑥 = 𝑌) → ∏𝑗 ∈ (0...𝑀)(((𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))‘𝑗)‘𝑥) = ∏𝑗 ∈ (0...𝑀)((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
37 prodex 15921 . . 3 𝑗 ∈ (0...𝑀)((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V
3837a1i 11 . 2 (𝜑 → ∏𝑗 ∈ (0...𝑀)((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V)
397, 36, 30, 38fvmptd 6993 1 (𝜑 → (𝐹𝑌) = ∏𝑗 ∈ (0...𝑀)((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  ifcif 4500  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   · cmul 11134  cmin 11466  cn 12240  0cn0 12501  ...cfz 13524  cexp 14079  cprod 15919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-prod 15920
This theorem is referenced by:  etransclem18  46281  etransclem23  46286  etransclem46  46309
  Copyright terms: Public domain W3C validator