Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodaddrecnncnvlem Structured version   Visualization version   GIF version

Theorem fprodaddrecnncnvlem 45890
Description: The sequence 𝑆 of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodaddrecnncnvlem.k 𝑘𝜑
fprodaddrecnncnvlem.a (𝜑𝐴 ∈ Fin)
fprodaddrecnncnvlem.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodaddrecnncnvlem.s 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
fprodaddrecnncnvlem.f 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵 + 𝑥))
fprodaddrecnncnvlem.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
Assertion
Ref Expression
fprodaddrecnncnvlem (𝜑𝑆 ⇝ ∏𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑛,𝐹   𝑛,𝐺   𝑘,𝑛,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝑆(𝑥,𝑘,𝑛)   𝐹(𝑥,𝑘)   𝐺(𝑥,𝑘)

Proof of Theorem fprodaddrecnncnvlem
StepHypRef Expression
1 nnuz 12778 . . 3 ℕ = (ℤ‘1)
2 1zzd 12506 . . 3 (𝜑 → 1 ∈ ℤ)
3 fprodaddrecnncnvlem.k . . . 4 𝑘𝜑
4 fprodaddrecnncnvlem.a . . . 4 (𝜑𝐴 ∈ Fin)
5 fprodaddrecnncnvlem.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
6 fprodaddrecnncnvlem.f . . . 4 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵 + 𝑥))
73, 4, 5, 6fprodadd2cncf 45887 . . 3 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
8 1rp 12897 . . . . . . . 8 1 ∈ ℝ+
98a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
10 nnrp 12905 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
119, 10rpdivcld 12954 . . . . . 6 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1211rpcnd 12939 . . . . 5 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℂ)
1312adantl 481 . . . 4 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℂ)
14 fprodaddrecnncnvlem.g . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
1513, 14fmptd 7048 . . 3 (𝜑𝐺:ℕ⟶ℂ)
16 1cnd 11110 . . . . 5 (𝜑 → 1 ∈ ℂ)
17 divcnv 15760 . . . . 5 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
1816, 17syl 17 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
1914a1i 11 . . . . 5 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)))
2019breq1d 5102 . . . 4 (𝜑 → (𝐺 ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0))
2118, 20mpbird 257 . . 3 (𝜑𝐺 ⇝ 0)
22 0cnd 11108 . . 3 (𝜑 → 0 ∈ ℂ)
231, 2, 7, 15, 21, 22climcncf 24791 . 2 (𝜑 → (𝐹𝐺) ⇝ (𝐹‘0))
24 nfv 1914 . . . . . . . 8 𝑘 𝑥 ∈ ℂ
253, 24nfan 1899 . . . . . . 7 𝑘(𝜑𝑥 ∈ ℂ)
264adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ Fin)
275adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → 𝑥 ∈ ℂ)
2927, 28addcld 11134 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → (𝐵 + 𝑥) ∈ ℂ)
3025, 26, 29fprodclf 15899 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ∏𝑘𝐴 (𝐵 + 𝑥) ∈ ℂ)
3130, 6fmptd 7048 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
32 fcompt 7067 . . . . 5 ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → (𝐹𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
3331, 15, 32syl2anc 584 . . . 4 (𝜑 → (𝐹𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
34 fprodaddrecnncnvlem.s . . . . . 6 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
3534a1i 11 . . . . 5 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 + (1 / 𝑛))))
36 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
3714fvmpt2 6941 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (1 / 𝑛) ∈ ℂ) → (𝐺𝑛) = (1 / 𝑛))
3836, 12, 37syl2anc 584 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐺𝑛) = (1 / 𝑛))
3938fveq2d 6826 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐹‘(𝐺𝑛)) = (𝐹‘(1 / 𝑛)))
4039adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹‘(𝐺𝑛)) = (𝐹‘(1 / 𝑛)))
41 oveq2 7357 . . . . . . . . 9 (𝑥 = (1 / 𝑛) → (𝐵 + 𝑥) = (𝐵 + (1 / 𝑛)))
4241prodeq2ad 45573 . . . . . . . 8 (𝑥 = (1 / 𝑛) → ∏𝑘𝐴 (𝐵 + 𝑥) = ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
43 prodex 15812 . . . . . . . . 9 𝑘𝐴 (𝐵 + (1 / 𝑛)) ∈ V
4443a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝐴 (𝐵 + (1 / 𝑛)) ∈ V)
456, 42, 13, 44fvmptd3 6953 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹‘(1 / 𝑛)) = ∏𝑘𝐴 (𝐵 + (1 / 𝑛)))
4640, 45eqtr2d 2765 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝐴 (𝐵 + (1 / 𝑛)) = (𝐹‘(𝐺𝑛)))
4746mpteq2dva 5185 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 + (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
4835, 47eqtrd 2764 . . . 4 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
4933, 48eqtr4d 2767 . . 3 (𝜑 → (𝐹𝐺) = 𝑆)
506a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵 + 𝑥)))
51 nfv 1914 . . . . . . 7 𝑘 𝑥 = 0
523, 51nfan 1899 . . . . . 6 𝑘(𝜑𝑥 = 0)
53 oveq2 7357 . . . . . . . . 9 (𝑥 = 0 → (𝐵 + 𝑥) = (𝐵 + 0))
5453ad2antlr 727 . . . . . . . 8 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵 + 𝑥) = (𝐵 + 0))
555addridd 11316 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐵 + 0) = 𝐵)
5655adantlr 715 . . . . . . . 8 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵 + 0) = 𝐵)
5754, 56eqtrd 2764 . . . . . . 7 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵 + 𝑥) = 𝐵)
5857ex 412 . . . . . 6 ((𝜑𝑥 = 0) → (𝑘𝐴 → (𝐵 + 𝑥) = 𝐵))
5952, 58ralrimi 3227 . . . . 5 ((𝜑𝑥 = 0) → ∀𝑘𝐴 (𝐵 + 𝑥) = 𝐵)
6059prodeq2d 15828 . . . 4 ((𝜑𝑥 = 0) → ∏𝑘𝐴 (𝐵 + 𝑥) = ∏𝑘𝐴 𝐵)
61 prodex 15812 . . . . 5 𝑘𝐴 𝐵 ∈ V
6261a1i 11 . . . 4 (𝜑 → ∏𝑘𝐴 𝐵 ∈ V)
6350, 60, 22, 62fvmptd 6937 . . 3 (𝜑 → (𝐹‘0) = ∏𝑘𝐴 𝐵)
6449, 63breq12d 5105 . 2 (𝜑 → ((𝐹𝐺) ⇝ (𝐹‘0) ↔ 𝑆 ⇝ ∏𝑘𝐴 𝐵))
6523, 64mpbid 232 1 (𝜑𝑆 ⇝ ∏𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  Vcvv 3436   class class class wbr 5092  cmpt 5173  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   / cdiv 11777  cn 12128  +crp 12893  cli 15391  cprod 15810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-prod 15811  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769
This theorem is referenced by:  fprodaddrecnncnv  45891
  Copyright terms: Public domain W3C validator