Step | Hyp | Ref
| Expression |
1 | | nnuz 12861 |
. . 3
β’ β =
(β€β₯β1) |
2 | | 1zzd 12589 |
. . 3
β’ (π β 1 β
β€) |
3 | | fprodaddrecnncnvlem.k |
. . . 4
β’
β²ππ |
4 | | fprodaddrecnncnvlem.a |
. . . 4
β’ (π β π΄ β Fin) |
5 | | fprodaddrecnncnvlem.b |
. . . 4
β’ ((π β§ π β π΄) β π΅ β β) |
6 | | fprodaddrecnncnvlem.f |
. . . 4
β’ πΉ = (π₯ β β β¦ βπ β π΄ (π΅ + π₯)) |
7 | 3, 4, 5, 6 | fprodadd2cncf 44608 |
. . 3
β’ (π β πΉ β (ββcnββ)) |
8 | | 1rp 12974 |
. . . . . . . 8
β’ 1 β
β+ |
9 | 8 | a1i 11 |
. . . . . . 7
β’ (π β β β 1 β
β+) |
10 | | nnrp 12981 |
. . . . . . 7
β’ (π β β β π β
β+) |
11 | 9, 10 | rpdivcld 13029 |
. . . . . 6
β’ (π β β β (1 /
π) β
β+) |
12 | 11 | rpcnd 13014 |
. . . . 5
β’ (π β β β (1 /
π) β
β) |
13 | 12 | adantl 482 |
. . . 4
β’ ((π β§ π β β) β (1 / π) β
β) |
14 | | fprodaddrecnncnvlem.g |
. . . 4
β’ πΊ = (π β β β¦ (1 / π)) |
15 | 13, 14 | fmptd 7110 |
. . 3
β’ (π β πΊ:ββΆβ) |
16 | | 1cnd 11205 |
. . . . 5
β’ (π β 1 β
β) |
17 | | divcnv 15795 |
. . . . 5
β’ (1 β
β β (π β
β β¦ (1 / π))
β 0) |
18 | 16, 17 | syl 17 |
. . . 4
β’ (π β (π β β β¦ (1 / π)) β 0) |
19 | 14 | a1i 11 |
. . . . 5
β’ (π β πΊ = (π β β β¦ (1 / π))) |
20 | 19 | breq1d 5157 |
. . . 4
β’ (π β (πΊ β 0 β (π β β β¦ (1 / π)) β 0)) |
21 | 18, 20 | mpbird 256 |
. . 3
β’ (π β πΊ β 0) |
22 | | 0cnd 11203 |
. . 3
β’ (π β 0 β
β) |
23 | 1, 2, 7, 15, 21, 22 | climcncf 24407 |
. 2
β’ (π β (πΉ β πΊ) β (πΉβ0)) |
24 | | nfv 1917 |
. . . . . . . 8
β’
β²π π₯ β β |
25 | 3, 24 | nfan 1902 |
. . . . . . 7
β’
β²π(π β§ π₯ β β) |
26 | 4 | adantr 481 |
. . . . . . 7
β’ ((π β§ π₯ β β) β π΄ β Fin) |
27 | 5 | adantlr 713 |
. . . . . . . 8
β’ (((π β§ π₯ β β) β§ π β π΄) β π΅ β β) |
28 | | simplr 767 |
. . . . . . . 8
β’ (((π β§ π₯ β β) β§ π β π΄) β π₯ β β) |
29 | 27, 28 | addcld 11229 |
. . . . . . 7
β’ (((π β§ π₯ β β) β§ π β π΄) β (π΅ + π₯) β β) |
30 | 25, 26, 29 | fprodclf 15932 |
. . . . . 6
β’ ((π β§ π₯ β β) β βπ β π΄ (π΅ + π₯) β β) |
31 | 30, 6 | fmptd 7110 |
. . . . 5
β’ (π β πΉ:ββΆβ) |
32 | | fcompt 7127 |
. . . . 5
β’ ((πΉ:ββΆβ β§
πΊ:ββΆβ)
β (πΉ β πΊ) = (π β β β¦ (πΉβ(πΊβπ)))) |
33 | 31, 15, 32 | syl2anc 584 |
. . . 4
β’ (π β (πΉ β πΊ) = (π β β β¦ (πΉβ(πΊβπ)))) |
34 | | fprodaddrecnncnvlem.s |
. . . . . 6
β’ π = (π β β β¦ βπ β π΄ (π΅ + (1 / π))) |
35 | 34 | a1i 11 |
. . . . 5
β’ (π β π = (π β β β¦ βπ β π΄ (π΅ + (1 / π)))) |
36 | | id 22 |
. . . . . . . . . 10
β’ (π β β β π β
β) |
37 | 14 | fvmpt2 7006 |
. . . . . . . . . 10
β’ ((π β β β§ (1 / π) β β) β (πΊβπ) = (1 / π)) |
38 | 36, 12, 37 | syl2anc 584 |
. . . . . . . . 9
β’ (π β β β (πΊβπ) = (1 / π)) |
39 | 38 | fveq2d 6892 |
. . . . . . . 8
β’ (π β β β (πΉβ(πΊβπ)) = (πΉβ(1 / π))) |
40 | 39 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β β) β (πΉβ(πΊβπ)) = (πΉβ(1 / π))) |
41 | | oveq2 7413 |
. . . . . . . . 9
β’ (π₯ = (1 / π) β (π΅ + π₯) = (π΅ + (1 / π))) |
42 | 41 | prodeq2ad 44294 |
. . . . . . . 8
β’ (π₯ = (1 / π) β βπ β π΄ (π΅ + π₯) = βπ β π΄ (π΅ + (1 / π))) |
43 | | prodex 15847 |
. . . . . . . . 9
β’
βπ β
π΄ (π΅ + (1 / π)) β V |
44 | 43 | a1i 11 |
. . . . . . . 8
β’ ((π β§ π β β) β βπ β π΄ (π΅ + (1 / π)) β V) |
45 | 6, 42, 13, 44 | fvmptd3 7018 |
. . . . . . 7
β’ ((π β§ π β β) β (πΉβ(1 / π)) = βπ β π΄ (π΅ + (1 / π))) |
46 | 40, 45 | eqtr2d 2773 |
. . . . . 6
β’ ((π β§ π β β) β βπ β π΄ (π΅ + (1 / π)) = (πΉβ(πΊβπ))) |
47 | 46 | mpteq2dva 5247 |
. . . . 5
β’ (π β (π β β β¦ βπ β π΄ (π΅ + (1 / π))) = (π β β β¦ (πΉβ(πΊβπ)))) |
48 | 35, 47 | eqtrd 2772 |
. . . 4
β’ (π β π = (π β β β¦ (πΉβ(πΊβπ)))) |
49 | 33, 48 | eqtr4d 2775 |
. . 3
β’ (π β (πΉ β πΊ) = π) |
50 | 6 | a1i 11 |
. . . 4
β’ (π β πΉ = (π₯ β β β¦ βπ β π΄ (π΅ + π₯))) |
51 | | nfv 1917 |
. . . . . . 7
β’
β²π π₯ = 0 |
52 | 3, 51 | nfan 1902 |
. . . . . 6
β’
β²π(π β§ π₯ = 0) |
53 | | oveq2 7413 |
. . . . . . . . 9
β’ (π₯ = 0 β (π΅ + π₯) = (π΅ + 0)) |
54 | 53 | ad2antlr 725 |
. . . . . . . 8
β’ (((π β§ π₯ = 0) β§ π β π΄) β (π΅ + π₯) = (π΅ + 0)) |
55 | 5 | addridd 11410 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β (π΅ + 0) = π΅) |
56 | 55 | adantlr 713 |
. . . . . . . 8
β’ (((π β§ π₯ = 0) β§ π β π΄) β (π΅ + 0) = π΅) |
57 | 54, 56 | eqtrd 2772 |
. . . . . . 7
β’ (((π β§ π₯ = 0) β§ π β π΄) β (π΅ + π₯) = π΅) |
58 | 57 | ex 413 |
. . . . . 6
β’ ((π β§ π₯ = 0) β (π β π΄ β (π΅ + π₯) = π΅)) |
59 | 52, 58 | ralrimi 3254 |
. . . . 5
β’ ((π β§ π₯ = 0) β βπ β π΄ (π΅ + π₯) = π΅) |
60 | 59 | prodeq2d 15862 |
. . . 4
β’ ((π β§ π₯ = 0) β βπ β π΄ (π΅ + π₯) = βπ β π΄ π΅) |
61 | | prodex 15847 |
. . . . 5
β’
βπ β
π΄ π΅ β V |
62 | 61 | a1i 11 |
. . . 4
β’ (π β βπ β π΄ π΅ β V) |
63 | 50, 60, 22, 62 | fvmptd 7002 |
. . 3
β’ (π β (πΉβ0) = βπ β π΄ π΅) |
64 | 49, 63 | breq12d 5160 |
. 2
β’ (π β ((πΉ β πΊ) β (πΉβ0) β π β βπ β π΄ π΅)) |
65 | 23, 64 | mpbid 231 |
1
β’ (π β π β βπ β π΄ π΅) |