| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodaddrecnncnvlem | Structured version Visualization version GIF version | ||
| Description: The sequence 𝑆 of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| fprodaddrecnncnvlem.k | ⊢ Ⅎ𝑘𝜑 |
| fprodaddrecnncnvlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodaddrecnncnvlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fprodaddrecnncnvlem.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
| fprodaddrecnncnvlem.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) |
| fprodaddrecnncnvlem.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
| Ref | Expression |
|---|---|
| fprodaddrecnncnvlem | ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12778 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12506 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | fprodaddrecnncnvlem.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 4 | fprodaddrecnncnvlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | fprodaddrecnncnvlem.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 6 | fprodaddrecnncnvlem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) | |
| 7 | 3, 4, 5, 6 | fprodadd2cncf 45887 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
| 8 | 1rp 12897 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ+) |
| 10 | nnrp 12905 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
| 11 | 9, 10 | rpdivcld 12954 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+) |
| 12 | 11 | rpcnd 12939 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℂ) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℂ) |
| 14 | fprodaddrecnncnvlem.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
| 15 | 13, 14 | fmptd 7048 | . . 3 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
| 16 | 1cnd 11110 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 17 | divcnv 15760 | . . . . 5 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
| 19 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))) |
| 20 | 19 | breq1d 5102 | . . . 4 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)) |
| 21 | 18, 20 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) |
| 22 | 0cnd 11108 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 23 | 1, 2, 7, 15, 21, 22 | climcncf 24791 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘0)) |
| 24 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝑥 ∈ ℂ | |
| 25 | 3, 24 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℂ) |
| 26 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ Fin) |
| 27 | 5 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 28 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
| 29 | 27, 28 | addcld 11134 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) ∈ ℂ) |
| 30 | 25, 26, 29 | fprodclf 15899 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) ∈ ℂ) |
| 31 | 30, 6 | fmptd 7048 | . . . . 5 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 32 | fcompt 7067 | . . . . 5 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) | |
| 33 | 31, 15, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 34 | fprodaddrecnncnvlem.s | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)))) |
| 36 | id 22 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
| 37 | 14 | fvmpt2 6941 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℕ ∧ (1 / 𝑛) ∈ ℂ) → (𝐺‘𝑛) = (1 / 𝑛)) |
| 38 | 36, 12, 37 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (1 / 𝑛)) |
| 39 | 38 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
| 40 | 39 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
| 41 | oveq2 7357 | . . . . . . . . 9 ⊢ (𝑥 = (1 / 𝑛) → (𝐵 + 𝑥) = (𝐵 + (1 / 𝑛))) | |
| 42 | 41 | prodeq2ad 45573 | . . . . . . . 8 ⊢ (𝑥 = (1 / 𝑛) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) = ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
| 43 | prodex 15812 | . . . . . . . . 9 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) ∈ V | |
| 44 | 43 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) ∈ V) |
| 45 | 6, 42, 13, 44 | fvmptd3 6953 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(1 / 𝑛)) = ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
| 46 | 40, 45 | eqtr2d 2765 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) = (𝐹‘(𝐺‘𝑛))) |
| 47 | 46 | mpteq2dva 5185 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 48 | 35, 47 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 49 | 33, 48 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = 𝑆) |
| 50 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥))) |
| 51 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑥 = 0 | |
| 52 | 3, 51 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 = 0) |
| 53 | oveq2 7357 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝐵 + 𝑥) = (𝐵 + 0)) | |
| 54 | 53 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) = (𝐵 + 0)) |
| 55 | 5 | addridd 11316 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 + 0) = 𝐵) |
| 56 | 55 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 0) = 𝐵) |
| 57 | 54, 56 | eqtrd 2764 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) = 𝐵) |
| 58 | 57 | ex 412 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑘 ∈ 𝐴 → (𝐵 + 𝑥) = 𝐵)) |
| 59 | 52, 58 | ralrimi 3227 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∀𝑘 ∈ 𝐴 (𝐵 + 𝑥) = 𝐵) |
| 60 | 59 | prodeq2d 15828 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) = ∏𝑘 ∈ 𝐴 𝐵) |
| 61 | prodex 15812 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V | |
| 62 | 61 | a1i 11 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ V) |
| 63 | 50, 60, 22, 62 | fvmptd 6937 | . . 3 ⊢ (𝜑 → (𝐹‘0) = ∏𝑘 ∈ 𝐴 𝐵) |
| 64 | 49, 63 | breq12d 5105 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ⇝ (𝐹‘0) ↔ 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵)) |
| 65 | 23, 64 | mpbid 232 | 1 ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 ↦ cmpt 5173 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 / cdiv 11777 ℕcn 12128 ℝ+crp 12893 ⇝ cli 15391 ∏cprod 15810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-prod 15811 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cn 23112 df-cnp 23113 df-tx 23447 df-hmeo 23640 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 |
| This theorem is referenced by: fprodaddrecnncnv 45891 |
| Copyright terms: Public domain | W3C validator |