| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodaddrecnncnvlem | Structured version Visualization version GIF version | ||
| Description: The sequence 𝑆 of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| fprodaddrecnncnvlem.k | ⊢ Ⅎ𝑘𝜑 |
| fprodaddrecnncnvlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodaddrecnncnvlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fprodaddrecnncnvlem.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
| fprodaddrecnncnvlem.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) |
| fprodaddrecnncnvlem.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
| Ref | Expression |
|---|---|
| fprodaddrecnncnvlem | ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12895 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12623 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | fprodaddrecnncnvlem.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 4 | fprodaddrecnncnvlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | fprodaddrecnncnvlem.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 6 | fprodaddrecnncnvlem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) | |
| 7 | 3, 4, 5, 6 | fprodadd2cncf 45935 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
| 8 | 1rp 13012 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ+) |
| 10 | nnrp 13020 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
| 11 | 9, 10 | rpdivcld 13068 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+) |
| 12 | 11 | rpcnd 13053 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℂ) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℂ) |
| 14 | fprodaddrecnncnvlem.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
| 15 | 13, 14 | fmptd 7104 | . . 3 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
| 16 | 1cnd 11230 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 17 | divcnv 15869 | . . . . 5 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
| 19 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))) |
| 20 | 19 | breq1d 5129 | . . . 4 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)) |
| 21 | 18, 20 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) |
| 22 | 0cnd 11228 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 23 | 1, 2, 7, 15, 21, 22 | climcncf 24844 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘0)) |
| 24 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝑥 ∈ ℂ | |
| 25 | 3, 24 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℂ) |
| 26 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ Fin) |
| 27 | 5 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 28 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
| 29 | 27, 28 | addcld 11254 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) ∈ ℂ) |
| 30 | 25, 26, 29 | fprodclf 16008 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) ∈ ℂ) |
| 31 | 30, 6 | fmptd 7104 | . . . . 5 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 32 | fcompt 7123 | . . . . 5 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) | |
| 33 | 31, 15, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 34 | fprodaddrecnncnvlem.s | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)))) |
| 36 | id 22 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
| 37 | 14 | fvmpt2 6997 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℕ ∧ (1 / 𝑛) ∈ ℂ) → (𝐺‘𝑛) = (1 / 𝑛)) |
| 38 | 36, 12, 37 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (1 / 𝑛)) |
| 39 | 38 | fveq2d 6880 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
| 40 | 39 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
| 41 | oveq2 7413 | . . . . . . . . 9 ⊢ (𝑥 = (1 / 𝑛) → (𝐵 + 𝑥) = (𝐵 + (1 / 𝑛))) | |
| 42 | 41 | prodeq2ad 45621 | . . . . . . . 8 ⊢ (𝑥 = (1 / 𝑛) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) = ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
| 43 | prodex 15921 | . . . . . . . . 9 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) ∈ V | |
| 44 | 43 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) ∈ V) |
| 45 | 6, 42, 13, 44 | fvmptd3 7009 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(1 / 𝑛)) = ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) |
| 46 | 40, 45 | eqtr2d 2771 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛)) = (𝐹‘(𝐺‘𝑛))) |
| 47 | 46 | mpteq2dva 5214 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 48 | 35, 47 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 49 | 33, 48 | eqtr4d 2773 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = 𝑆) |
| 50 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥))) |
| 51 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑥 = 0 | |
| 52 | 3, 51 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 = 0) |
| 53 | oveq2 7413 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝐵 + 𝑥) = (𝐵 + 0)) | |
| 54 | 53 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) = (𝐵 + 0)) |
| 55 | 5 | addridd 11435 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 + 0) = 𝐵) |
| 56 | 55 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 0) = 𝐵) |
| 57 | 54, 56 | eqtrd 2770 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝑥) = 𝐵) |
| 58 | 57 | ex 412 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑘 ∈ 𝐴 → (𝐵 + 𝑥) = 𝐵)) |
| 59 | 52, 58 | ralrimi 3240 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∀𝑘 ∈ 𝐴 (𝐵 + 𝑥) = 𝐵) |
| 60 | 59 | prodeq2d 15937 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥) = ∏𝑘 ∈ 𝐴 𝐵) |
| 61 | prodex 15921 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V | |
| 62 | 61 | a1i 11 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ V) |
| 63 | 50, 60, 22, 62 | fvmptd 6993 | . . 3 ⊢ (𝜑 → (𝐹‘0) = ∏𝑘 ∈ 𝐴 𝐵) |
| 64 | 49, 63 | breq12d 5132 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ⇝ (𝐹‘0) ↔ 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵)) |
| 65 | 23, 64 | mpbid 232 | 1 ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 ↦ cmpt 5201 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℂcc 11127 0cc0 11129 1c1 11130 + caddc 11132 / cdiv 11894 ℕcn 12240 ℝ+crp 13008 ⇝ cli 15500 ∏cprod 15919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-prod 15920 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-cnp 23166 df-tx 23500 df-hmeo 23693 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 |
| This theorem is referenced by: fprodaddrecnncnv 45939 |
| Copyright terms: Public domain | W3C validator |