Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval Structured version   Visualization version   GIF version

Theorem hoidmvval 42879
Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval.x (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
hoidmvval (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval
StepHypRef Expression
1 hoidmvval.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 oveq2 7164 . . . 4 (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋))
3 eqeq1 2825 . . . . 5 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
4 prodeq1 15263 . . . . 5 (𝑥 = 𝑋 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
53, 4ifbieq2d 4492 . . . 4 (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
62, 2, 5mpoeq123dv 7229 . . 3 (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
7 hoidmvval.x . . 3 (𝜑𝑋 ∈ Fin)
8 ovex 7189 . . . . 5 (ℝ ↑m 𝑋) ∈ V
98, 8mpoex 7777 . . . 4 (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V
109a1i 11 . . 3 (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V)
111, 6, 7, 10fvmptd3 6791 . 2 (𝜑 → (𝐿𝑋) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
12 fveq1 6669 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
1312adantr 483 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑘) = (𝐴𝑘))
14 fveq1 6669 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
1514adantl 484 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏𝑘) = (𝐵𝑘))
1613, 15oveq12d 7174 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑘)[,)(𝑏𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
1716fveq2d 6674 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1817prodeq2ad 41893 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1918ifeq2d 4486 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
2019adantl 484 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
21 hoidmvval.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
22 reex 10628 . . . . 5 ℝ ∈ V
2322a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
24 elmapg 8419 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2523, 7, 24syl2anc 586 . . 3 (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2621, 25mpbird 259 . 2 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
27 hoidmvval.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
28 elmapg 8419 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2923, 7, 28syl2anc 586 . . 3 (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3027, 29mpbird 259 . 2 (𝜑𝐵 ∈ (ℝ ↑m 𝑋))
31 c0ex 10635 . . . 4 0 ∈ V
32 prodex 15261 . . . 4 𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ V
3331, 32ifex 4515 . . 3 if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V
3433a1i 11 . 2 (𝜑 → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V)
3511, 20, 26, 30, 34ovmpod 7302 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  c0 4291  ifcif 4467  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  Fincfn 8509  cr 10536  0cc0 10537  [,)cico 12741  cprod 15259  volcvol 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-seq 13371  df-prod 15260
This theorem is referenced by:  hoidmvcl  42884  hoidmv0val  42885  hoidmvn0val  42886  hsphoidmvle  42888
  Copyright terms: Public domain W3C validator