![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval | Structured version Visualization version GIF version |
Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvval.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
hoidmvval.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoidmvval.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
hoidmvval.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
hoidmvval | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidmvval.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
2 | oveq2 7412 | . . . 4 ⊢ (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋)) | |
3 | eqeq1 2737 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅)) | |
4 | prodeq1 15849 | . . . . 5 ⊢ (𝑥 = 𝑋 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) | |
5 | 3, 4 | ifbieq2d 4553 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
6 | 2, 2, 5 | mpoeq123dv 7479 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
7 | hoidmvval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
8 | ovex 7437 | . . . . 5 ⊢ (ℝ ↑m 𝑋) ∈ V | |
9 | 8, 8 | mpoex 8061 | . . . 4 ⊢ (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V) |
11 | 1, 6, 7, 10 | fvmptd3 7017 | . 2 ⊢ (𝜑 → (𝐿‘𝑋) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
12 | fveq1 6887 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) | |
13 | 12 | adantr 482 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎‘𝑘) = (𝐴‘𝑘)) |
14 | fveq1 6887 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝑏‘𝑘) = (𝐵‘𝑘)) | |
15 | 14 | adantl 483 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑏‘𝑘) = (𝐵‘𝑘)) |
16 | 13, 15 | oveq12d 7422 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
17 | 16 | fveq2d 6892 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
18 | 17 | prodeq2ad 44243 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
19 | 18 | ifeq2d 4547 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
20 | 19 | adantl 483 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
21 | hoidmvval.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
22 | reex 11197 | . . . . 5 ⊢ ℝ ∈ V | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ V) |
24 | elmapg 8829 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) | |
25 | 23, 7, 24 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
26 | 21, 25 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
27 | hoidmvval.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
28 | elmapg 8829 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) | |
29 | 23, 7, 28 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
30 | 27, 29 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵 ∈ (ℝ ↑m 𝑋)) |
31 | c0ex 11204 | . . . 4 ⊢ 0 ∈ V | |
32 | prodex 15847 | . . . 4 ⊢ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ V | |
33 | 31, 32 | ifex 4577 | . . 3 ⊢ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V |
34 | 33 | a1i 11 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V) |
35 | 11, 20, 26, 30, 34 | ovmpod 7555 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4321 ifcif 4527 ↦ cmpt 5230 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ∈ cmpo 7406 ↑m cmap 8816 Fincfn 8935 ℝcr 11105 0cc0 11106 [,)cico 13322 ∏cprod 15845 volcvol 24962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-seq 13963 df-prod 15846 |
This theorem is referenced by: hoidmvcl 45233 hoidmv0val 45234 hoidmvn0val 45235 hsphoidmvle 45237 |
Copyright terms: Public domain | W3C validator |