Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval Structured version   Visualization version   GIF version

Theorem hoidmvval 41434
Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval.x (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
hoidmvval (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval
StepHypRef Expression
1 hoidmvval.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
21a1i 11 . . 3 (𝜑𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))))
3 oveq2 6852 . . . . 5 (𝑥 = 𝑋 → (ℝ ↑𝑚 𝑥) = (ℝ ↑𝑚 𝑋))
4 eqeq1 2769 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
5 prodeq1 14925 . . . . . 6 (𝑥 = 𝑋 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
64, 5ifbieq2d 4270 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
73, 3, 6mpt2eq123dv 6917 . . . 4 (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
87adantl 473 . . 3 ((𝜑𝑥 = 𝑋) → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
9 hoidmvval.x . . 3 (𝜑𝑋 ∈ Fin)
10 ovex 6876 . . . . 5 (ℝ ↑𝑚 𝑋) ∈ V
1110, 10mpt2ex 7450 . . . 4 (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V
1211a1i 11 . . 3 (𝜑 → (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V)
132, 8, 9, 12fvmptd 6479 . 2 (𝜑 → (𝐿𝑋) = (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
14 fveq1 6376 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
1514adantr 472 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑘) = (𝐴𝑘))
16 fveq1 6376 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
1716adantl 473 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏𝑘) = (𝐵𝑘))
1815, 17oveq12d 6862 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑘)[,)(𝑏𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
1918fveq2d 6381 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2019prodeq2ad 40465 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2120ifeq2d 4264 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
2221adantl 473 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
23 hoidmvval.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
24 reex 10282 . . . . 5 ℝ ∈ V
2524a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
26 elmapg 8075 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2725, 9, 26syl2anc 579 . . 3 (𝜑 → (𝐴 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2823, 27mpbird 248 . 2 (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))
29 hoidmvval.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
30 elmapg 8075 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3125, 9, 30syl2anc 579 . . 3 (𝜑 → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3229, 31mpbird 248 . 2 (𝜑𝐵 ∈ (ℝ ↑𝑚 𝑋))
33 c0ex 10289 . . . 4 0 ∈ V
34 prodex 14923 . . . 4 𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ V
3533, 34ifex 4293 . . 3 if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V
3635a1i 11 . 2 (𝜑 → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V)
3713, 22, 28, 32, 36ovmpt2d 6988 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  c0 4081  ifcif 4245  cmpt 4890  wf 6066  cfv 6070  (class class class)co 6844  cmpt2 6846  𝑚 cmap 8062  Fincfn 8162  cr 10190  0cc0 10191  [,)cico 12382  cprod 14921  volcvol 23524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-map 8064  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-n0 11541  df-z 11627  df-uz 11890  df-fz 12537  df-seq 13012  df-prod 14922
This theorem is referenced by:  hoidmvcl  41439  hoidmv0val  41440  hoidmvn0val  41441  hsphoidmvle  41443
  Copyright terms: Public domain W3C validator