Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval Structured version   Visualization version   GIF version

Theorem hoidmvval 46533
Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval.x (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
hoidmvval (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval
StepHypRef Expression
1 hoidmvval.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 oveq2 7439 . . . 4 (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋))
3 eqeq1 2739 . . . . 5 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
4 prodeq1 15940 . . . . 5 (𝑥 = 𝑋 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
53, 4ifbieq2d 4557 . . . 4 (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
62, 2, 5mpoeq123dv 7508 . . 3 (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
7 hoidmvval.x . . 3 (𝜑𝑋 ∈ Fin)
8 ovex 7464 . . . . 5 (ℝ ↑m 𝑋) ∈ V
98, 8mpoex 8103 . . . 4 (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V
109a1i 11 . . 3 (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V)
111, 6, 7, 10fvmptd3 7039 . 2 (𝜑 → (𝐿𝑋) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
12 fveq1 6906 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
1312adantr 480 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑘) = (𝐴𝑘))
14 fveq1 6906 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
1514adantl 481 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏𝑘) = (𝐵𝑘))
1613, 15oveq12d 7449 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑘)[,)(𝑏𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
1716fveq2d 6911 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1817prodeq2ad 45548 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1918ifeq2d 4551 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
2019adantl 481 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
21 hoidmvval.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
22 reex 11244 . . . . 5 ℝ ∈ V
2322a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
24 elmapg 8878 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2523, 7, 24syl2anc 584 . . 3 (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2621, 25mpbird 257 . 2 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
27 hoidmvval.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
28 elmapg 8878 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2923, 7, 28syl2anc 584 . . 3 (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3027, 29mpbird 257 . 2 (𝜑𝐵 ∈ (ℝ ↑m 𝑋))
31 c0ex 11253 . . . 4 0 ∈ V
32 prodex 15938 . . . 4 𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ V
3331, 32ifex 4581 . . 3 if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V
3433a1i 11 . 2 (𝜑 → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V)
3511, 20, 26, 30, 34ovmpod 7585 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  ifcif 4531  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984  cr 11152  0cc0 11153  [,)cico 13386  cprod 15936  volcvol 25512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-prod 15937
This theorem is referenced by:  hoidmvcl  46538  hoidmv0val  46539  hoidmvn0val  46540  hsphoidmvle  46542
  Copyright terms: Public domain W3C validator