Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval Structured version   Visualization version   GIF version

Theorem hoidmvval 43582
Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval.x (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
hoidmvval (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval
StepHypRef Expression
1 hoidmvval.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 oveq2 7158 . . . 4 (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋))
3 eqeq1 2762 . . . . 5 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
4 prodeq1 15311 . . . . 5 (𝑥 = 𝑋 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
53, 4ifbieq2d 4446 . . . 4 (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
62, 2, 5mpoeq123dv 7223 . . 3 (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
7 hoidmvval.x . . 3 (𝜑𝑋 ∈ Fin)
8 ovex 7183 . . . . 5 (ℝ ↑m 𝑋) ∈ V
98, 8mpoex 7782 . . . 4 (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V
109a1i 11 . . 3 (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) ∈ V)
111, 6, 7, 10fvmptd3 6782 . 2 (𝜑 → (𝐿𝑋) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
12 fveq1 6657 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
1312adantr 484 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑘) = (𝐴𝑘))
14 fveq1 6657 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑘) = (𝐵𝑘))
1514adantl 485 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑏𝑘) = (𝐵𝑘))
1613, 15oveq12d 7168 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑘)[,)(𝑏𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
1716fveq2d 6662 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1817prodeq2ad 42600 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1918ifeq2d 4440 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
2019adantl 485 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
21 hoidmvval.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
22 reex 10666 . . . . 5 ℝ ∈ V
2322a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
24 elmapg 8429 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2523, 7, 24syl2anc 587 . . 3 (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ))
2621, 25mpbird 260 . 2 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
27 hoidmvval.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
28 elmapg 8429 . . . 4 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2923, 7, 28syl2anc 587 . . 3 (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3027, 29mpbird 260 . 2 (𝜑𝐵 ∈ (ℝ ↑m 𝑋))
31 c0ex 10673 . . . 4 0 ∈ V
32 prodex 15309 . . . 4 𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ V
3331, 32ifex 4470 . . 3 if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V
3433a1i 11 . 2 (𝜑 → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ V)
3511, 20, 26, 30, 34ovmpod 7297 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  c0 4225  ifcif 4420  cmpt 5112  wf 6331  cfv 6335  (class class class)co 7150  cmpo 7152  m cmap 8416  Fincfn 8527  cr 10574  0cc0 10575  [,)cico 12781  cprod 15307  volcvol 24163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-seq 13419  df-prod 15308
This theorem is referenced by:  hoidmvcl  43587  hoidmv0val  43588  hoidmvn0val  43589  hsphoidmvle  43591
  Copyright terms: Public domain W3C validator