Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval | Structured version Visualization version GIF version |
Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoidmvval.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
hoidmvval.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoidmvval.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
hoidmvval.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
hoidmvval | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidmvval.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
2 | oveq2 7158 | . . . 4 ⊢ (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋)) | |
3 | eqeq1 2762 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅)) | |
4 | prodeq1 15311 | . . . . 5 ⊢ (𝑥 = 𝑋 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) | |
5 | 3, 4 | ifbieq2d 4446 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
6 | 2, 2, 5 | mpoeq123dv 7223 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
7 | hoidmvval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
8 | ovex 7183 | . . . . 5 ⊢ (ℝ ↑m 𝑋) ∈ V | |
9 | 8, 8 | mpoex 7782 | . . . 4 ⊢ (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V) |
11 | 1, 6, 7, 10 | fvmptd3 6782 | . 2 ⊢ (𝜑 → (𝐿‘𝑋) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
12 | fveq1 6657 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) | |
13 | 12 | adantr 484 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎‘𝑘) = (𝐴‘𝑘)) |
14 | fveq1 6657 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝑏‘𝑘) = (𝐵‘𝑘)) | |
15 | 14 | adantl 485 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑏‘𝑘) = (𝐵‘𝑘)) |
16 | 13, 15 | oveq12d 7168 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
17 | 16 | fveq2d 6662 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
18 | 17 | prodeq2ad 42600 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
19 | 18 | ifeq2d 4440 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
20 | 19 | adantl 485 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
21 | hoidmvval.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
22 | reex 10666 | . . . . 5 ⊢ ℝ ∈ V | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ V) |
24 | elmapg 8429 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) | |
25 | 23, 7, 24 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
26 | 21, 25 | mpbird 260 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
27 | hoidmvval.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
28 | elmapg 8429 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) | |
29 | 23, 7, 28 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
30 | 27, 29 | mpbird 260 | . 2 ⊢ (𝜑 → 𝐵 ∈ (ℝ ↑m 𝑋)) |
31 | c0ex 10673 | . . . 4 ⊢ 0 ∈ V | |
32 | prodex 15309 | . . . 4 ⊢ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ V | |
33 | 31, 32 | ifex 4470 | . . 3 ⊢ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V |
34 | 33 | a1i 11 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V) |
35 | 11, 20, 26, 30, 34 | ovmpod 7297 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4225 ifcif 4420 ↦ cmpt 5112 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 ↑m cmap 8416 Fincfn 8527 ℝcr 10574 0cc0 10575 [,)cico 12781 ∏cprod 15307 volcvol 24163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-seq 13419 df-prod 15308 |
This theorem is referenced by: hoidmvcl 43587 hoidmv0val 43588 hoidmvn0val 43589 hsphoidmvle 43591 |
Copyright terms: Public domain | W3C validator |