|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval | Structured version Visualization version GIF version | ||
| Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| hoidmvval.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | 
| hoidmvval.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | 
| hoidmvval.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | 
| hoidmvval.x | ⊢ (𝜑 → 𝑋 ∈ Fin) | 
| Ref | Expression | 
|---|---|
| hoidmvval | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hoidmvval.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
| 2 | oveq2 7439 | . . . 4 ⊢ (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋)) | |
| 3 | eqeq1 2741 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅)) | |
| 4 | prodeq1 15943 | . . . . 5 ⊢ (𝑥 = 𝑋 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) | |
| 5 | 3, 4 | ifbieq2d 4552 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) | 
| 6 | 2, 2, 5 | mpoeq123dv 7508 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | 
| 7 | hoidmvval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 8 | ovex 7464 | . . . . 5 ⊢ (ℝ ↑m 𝑋) ∈ V | |
| 9 | 8, 8 | mpoex 8104 | . . . 4 ⊢ (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V | 
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V) | 
| 11 | 1, 6, 7, 10 | fvmptd3 7039 | . 2 ⊢ (𝜑 → (𝐿‘𝑋) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | 
| 12 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) | |
| 13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎‘𝑘) = (𝐴‘𝑘)) | 
| 14 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝑏‘𝑘) = (𝐵‘𝑘)) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑏‘𝑘) = (𝐵‘𝑘)) | 
| 16 | 13, 15 | oveq12d 7449 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 17 | 16 | fveq2d 6910 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 18 | 17 | prodeq2ad 45607 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 19 | 18 | ifeq2d 4546 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) | 
| 20 | 19 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) | 
| 21 | hoidmvval.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 22 | reex 11246 | . . . . 5 ⊢ ℝ ∈ V | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ V) | 
| 24 | elmapg 8879 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) | |
| 25 | 23, 7, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) | 
| 26 | 21, 25 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) | 
| 27 | hoidmvval.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 28 | elmapg 8879 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) | |
| 29 | 23, 7, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) | 
| 30 | 27, 29 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵 ∈ (ℝ ↑m 𝑋)) | 
| 31 | c0ex 11255 | . . . 4 ⊢ 0 ∈ V | |
| 32 | prodex 15941 | . . . 4 ⊢ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ V | |
| 33 | 31, 32 | ifex 4576 | . . 3 ⊢ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V | 
| 34 | 33 | a1i 11 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V) | 
| 35 | 11, 20, 26, 30, 34 | ovmpod 7585 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∅c0 4333 ifcif 4525 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8866 Fincfn 8985 ℝcr 11154 0cc0 11155 [,)cico 13389 ∏cprod 15939 volcvol 25498 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-seq 14043 df-prod 15940 | 
| This theorem is referenced by: hoidmvcl 46597 hoidmv0val 46598 hoidmvn0val 46599 hsphoidmvle 46601 | 
| Copyright terms: Public domain | W3C validator |