| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidmvval | Structured version Visualization version GIF version | ||
| Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| hoidmvval.l | ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| hoidmvval.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| hoidmvval.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| hoidmvval.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| Ref | Expression |
|---|---|
| hoidmvval | ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoidmvval.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | |
| 2 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋)) | |
| 3 | eqeq1 2733 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅)) | |
| 4 | prodeq1 15873 | . . . . 5 ⊢ (𝑥 = 𝑋 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) | |
| 5 | 3, 4 | ifbieq2d 4515 | . . . 4 ⊢ (𝑥 = 𝑋 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
| 6 | 2, 2, 5 | mpoeq123dv 7464 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 7 | hoidmvval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 8 | ovex 7420 | . . . . 5 ⊢ (ℝ ↑m 𝑋) ∈ V | |
| 9 | 8, 8 | mpoex 8058 | . . . 4 ⊢ (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) ∈ V) |
| 11 | 1, 6, 7, 10 | fvmptd3 6991 | . 2 ⊢ (𝜑 → (𝐿‘𝑋) = (𝑎 ∈ (ℝ ↑m 𝑋), 𝑏 ∈ (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 12 | fveq1 6857 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) | |
| 13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎‘𝑘) = (𝐴‘𝑘)) |
| 14 | fveq1 6857 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝑏‘𝑘) = (𝐵‘𝑘)) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑏‘𝑘) = (𝐵‘𝑘)) |
| 16 | 13, 15 | oveq12d 7405 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 17 | 16 | fveq2d 6862 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 18 | 17 | prodeq2ad 45590 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 19 | 18 | ifeq2d 4509 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 20 | 19 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 21 | hoidmvval.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 22 | reex 11159 | . . . . 5 ⊢ ℝ ∈ V | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ V) |
| 24 | elmapg 8812 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) | |
| 25 | 23, 7, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
| 26 | 21, 25 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
| 27 | hoidmvval.b | . . 3 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
| 28 | elmapg 8812 | . . . 4 ⊢ ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) | |
| 29 | 23, 7, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
| 30 | 27, 29 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵 ∈ (ℝ ↑m 𝑋)) |
| 31 | c0ex 11168 | . . . 4 ⊢ 0 ∈ V | |
| 32 | prodex 15871 | . . . 4 ⊢ ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ V | |
| 33 | 31, 32 | ifex 4539 | . . 3 ⊢ if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V |
| 34 | 33 | a1i 11 | . 2 ⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ∈ V) |
| 35 | 11, 20, 26, 30, 34 | ovmpod 7541 | 1 ⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ifcif 4488 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 Fincfn 8918 ℝcr 11067 0cc0 11068 [,)cico 13308 ∏cprod 15869 volcvol 25364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-prod 15870 |
| This theorem is referenced by: hoidmvcl 46580 hoidmv0val 46581 hoidmvn0val 46582 hsphoidmvle 46584 |
| Copyright terms: Public domain | W3C validator |