| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodsubrecnncnvlem | Structured version Visualization version GIF version | ||
| Description: The sequence 𝑆 of finite products, where every factor is subtracted an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| fprodsubrecnncnvlem.k | ⊢ Ⅎ𝑘𝜑 |
| fprodsubrecnncnvlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodsubrecnncnvlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fprodsubrecnncnvlem.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) |
| fprodsubrecnncnvlem.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥)) |
| fprodsubrecnncnvlem.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
| Ref | Expression |
|---|---|
| fprodsubrecnncnvlem | ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12812 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12540 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | fprodsubrecnncnvlem.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 4 | fprodsubrecnncnvlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | fprodsubrecnncnvlem.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 6 | fprodsubrecnncnvlem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥)) | |
| 7 | 3, 4, 5, 6 | fprodsub2cncf 45876 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
| 8 | 1rp 12931 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ+) |
| 10 | nnrp 12939 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+) | |
| 11 | 9, 10 | rpdivcld 12988 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+) |
| 12 | 11 | rpcnd 12973 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℂ) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℂ) |
| 14 | fprodsubrecnncnvlem.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | |
| 15 | 13, 14 | fmptd 7068 | . . 3 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
| 16 | 1cnd 11145 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 17 | divcnv 15795 | . . . . 5 ⊢ (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0) |
| 19 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))) |
| 20 | 19 | breq1d 5112 | . . . 4 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)) |
| 21 | 18, 20 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) |
| 22 | 0cnd 11143 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 23 | 1, 2, 7, 15, 21, 22 | climcncf 24769 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘0)) |
| 24 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝑥 ∈ ℂ | |
| 25 | 3, 24 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℂ) |
| 26 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ Fin) |
| 27 | 5 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 28 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
| 29 | 27, 28 | subcld 11509 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝐴) → (𝐵 − 𝑥) ∈ ℂ) |
| 30 | 25, 26, 29 | fprodclf 15934 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥) ∈ ℂ) |
| 31 | 30, 6 | fmptd 7068 | . . . . 5 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 32 | fcompt 7087 | . . . . 5 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) | |
| 33 | 31, 15, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 34 | fprodsubrecnncnvlem.s | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛)))) |
| 36 | id 22 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
| 37 | 14 | fvmpt2 6961 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℕ ∧ (1 / 𝑛) ∈ ℂ) → (𝐺‘𝑛) = (1 / 𝑛)) |
| 38 | 36, 12, 37 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (1 / 𝑛)) |
| 39 | 38 | fveq2d 6844 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
| 40 | 39 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(1 / 𝑛))) |
| 41 | oveq2 7377 | . . . . . . . . 9 ⊢ (𝑥 = (1 / 𝑛) → (𝐵 − 𝑥) = (𝐵 − (1 / 𝑛))) | |
| 42 | 41 | prodeq2ad 45563 | . . . . . . . 8 ⊢ (𝑥 = (1 / 𝑛) → ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥) = ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) |
| 43 | prodex 15847 | . . . . . . . . 9 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛)) ∈ V | |
| 44 | 43 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛)) ∈ V) |
| 45 | 6, 42, 13, 44 | fvmptd3 6973 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(1 / 𝑛)) = ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) |
| 46 | 40, 45 | eqtr2d 2765 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛)) = (𝐹‘(𝐺‘𝑛))) |
| 47 | 46 | mpteq2dva 5195 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 48 | 35, 47 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺‘𝑛)))) |
| 49 | 33, 48 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = 𝑆) |
| 50 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥))) |
| 51 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑥 = 0 | |
| 52 | 3, 51 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 = 0) |
| 53 | oveq2 7377 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝐵 − 𝑥) = (𝐵 − 0)) | |
| 54 | 53 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 − 𝑥) = (𝐵 − 0)) |
| 55 | 5 | subid1d 11498 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 − 0) = 𝐵) |
| 56 | 55 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 − 0) = 𝐵) |
| 57 | 54, 56 | eqtrd 2764 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 = 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 − 𝑥) = 𝐵) |
| 58 | 57 | ex 412 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 0) → (𝑘 ∈ 𝐴 → (𝐵 − 𝑥) = 𝐵)) |
| 59 | 52, 58 | ralrimi 3233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∀𝑘 ∈ 𝐴 (𝐵 − 𝑥) = 𝐵) |
| 60 | 59 | prodeq2d 15863 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 0) → ∏𝑘 ∈ 𝐴 (𝐵 − 𝑥) = ∏𝑘 ∈ 𝐴 𝐵) |
| 61 | prodex 15847 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 ∈ V | |
| 62 | 61 | a1i 11 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ V) |
| 63 | 50, 60, 22, 62 | fvmptd 6957 | . . 3 ⊢ (𝜑 → (𝐹‘0) = ∏𝑘 ∈ 𝐴 𝐵) |
| 64 | 49, 63 | breq12d 5115 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) ⇝ (𝐹‘0) ↔ 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵)) |
| 65 | 23, 64 | mpbid 232 | 1 ⊢ (𝜑 → 𝑆 ⇝ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ↦ cmpt 5183 ∘ ccom 5635 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 ℂcc 11042 0cc0 11044 1c1 11045 − cmin 11381 / cdiv 11811 ℕcn 12162 ℝ+crp 12927 ⇝ cli 15426 ∏cprod 15845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-prod 15846 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cn 23090 df-cnp 23091 df-tx 23425 df-hmeo 23618 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 |
| This theorem is referenced by: fprodsubrecnncnv 45879 |
| Copyright terms: Public domain | W3C validator |