Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodsubrecnncnvlem Structured version   Visualization version   GIF version

Theorem fprodsubrecnncnvlem 42475
Description: The sequence 𝑆 of finite products, where every factor is subtracted an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodsubrecnncnvlem.k 𝑘𝜑
fprodsubrecnncnvlem.a (𝜑𝐴 ∈ Fin)
fprodsubrecnncnvlem.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodsubrecnncnvlem.s 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 − (1 / 𝑛)))
fprodsubrecnncnvlem.f 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵𝑥))
fprodsubrecnncnvlem.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
Assertion
Ref Expression
fprodsubrecnncnvlem (𝜑𝑆 ⇝ ∏𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑛,𝐹   𝑛,𝐺   𝑘,𝑛,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝑆(𝑥,𝑘,𝑛)   𝐹(𝑥,𝑘)   𝐺(𝑥,𝑘)

Proof of Theorem fprodsubrecnncnvlem
StepHypRef Expression
1 nnuz 12278 . . 3 ℕ = (ℤ‘1)
2 1zzd 12010 . . 3 (𝜑 → 1 ∈ ℤ)
3 fprodsubrecnncnvlem.k . . . 4 𝑘𝜑
4 fprodsubrecnncnvlem.a . . . 4 (𝜑𝐴 ∈ Fin)
5 fprodsubrecnncnvlem.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
6 fprodsubrecnncnvlem.f . . . 4 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵𝑥))
73, 4, 5, 6fprodsub2cncf 42473 . . 3 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
8 1rp 12390 . . . . . . . 8 1 ∈ ℝ+
98a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
10 nnrp 12397 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
119, 10rpdivcld 12445 . . . . . 6 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1211rpcnd 12430 . . . . 5 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℂ)
1312adantl 485 . . . 4 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℂ)
14 fprodsubrecnncnvlem.g . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
1513, 14fmptd 6869 . . 3 (𝜑𝐺:ℕ⟶ℂ)
16 1cnd 10634 . . . . 5 (𝜑 → 1 ∈ ℂ)
17 divcnv 15208 . . . . 5 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
1816, 17syl 17 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
1914a1i 11 . . . . 5 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)))
2019breq1d 5062 . . . 4 (𝜑 → (𝐺 ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0))
2118, 20mpbird 260 . . 3 (𝜑𝐺 ⇝ 0)
22 0cnd 10632 . . 3 (𝜑 → 0 ∈ ℂ)
231, 2, 7, 15, 21, 22climcncf 23508 . 2 (𝜑 → (𝐹𝐺) ⇝ (𝐹‘0))
24 nfv 1916 . . . . . . . 8 𝑘 𝑥 ∈ ℂ
253, 24nfan 1901 . . . . . . 7 𝑘(𝜑𝑥 ∈ ℂ)
264adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ Fin)
275adantlr 714 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → 𝑥 ∈ ℂ)
2927, 28subcld 10995 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝐴) → (𝐵𝑥) ∈ ℂ)
3025, 26, 29fprodclf 15346 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ∏𝑘𝐴 (𝐵𝑥) ∈ ℂ)
3130, 6fmptd 6869 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
32 fcompt 6886 . . . . 5 ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → (𝐹𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
3331, 15, 32syl2anc 587 . . . 4 (𝜑 → (𝐹𝐺) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
34 fprodsubrecnncnvlem.s . . . . . 6 𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 − (1 / 𝑛)))
3534a1i 11 . . . . 5 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 − (1 / 𝑛))))
36 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
3714fvmpt2 6770 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (1 / 𝑛) ∈ ℂ) → (𝐺𝑛) = (1 / 𝑛))
3836, 12, 37syl2anc 587 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐺𝑛) = (1 / 𝑛))
3938fveq2d 6665 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐹‘(𝐺𝑛)) = (𝐹‘(1 / 𝑛)))
4039adantl 485 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹‘(𝐺𝑛)) = (𝐹‘(1 / 𝑛)))
41 oveq2 7157 . . . . . . . . 9 (𝑥 = (1 / 𝑛) → (𝐵𝑥) = (𝐵 − (1 / 𝑛)))
4241prodeq2ad 42160 . . . . . . . 8 (𝑥 = (1 / 𝑛) → ∏𝑘𝐴 (𝐵𝑥) = ∏𝑘𝐴 (𝐵 − (1 / 𝑛)))
43 prodex 15261 . . . . . . . . 9 𝑘𝐴 (𝐵 − (1 / 𝑛)) ∈ V
4443a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝐴 (𝐵 − (1 / 𝑛)) ∈ V)
456, 42, 13, 44fvmptd3 6782 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹‘(1 / 𝑛)) = ∏𝑘𝐴 (𝐵 − (1 / 𝑛)))
4640, 45eqtr2d 2860 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∏𝑘𝐴 (𝐵 − (1 / 𝑛)) = (𝐹‘(𝐺𝑛)))
4746mpteq2dva 5147 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∏𝑘𝐴 (𝐵 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
4835, 47eqtrd 2859 . . . 4 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ (𝐹‘(𝐺𝑛))))
4933, 48eqtr4d 2862 . . 3 (𝜑 → (𝐹𝐺) = 𝑆)
506a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘𝐴 (𝐵𝑥)))
51 nfv 1916 . . . . . . 7 𝑘 𝑥 = 0
523, 51nfan 1901 . . . . . 6 𝑘(𝜑𝑥 = 0)
53 oveq2 7157 . . . . . . . . 9 (𝑥 = 0 → (𝐵𝑥) = (𝐵 − 0))
5453ad2antlr 726 . . . . . . . 8 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵𝑥) = (𝐵 − 0))
555subid1d 10984 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐵 − 0) = 𝐵)
5655adantlr 714 . . . . . . . 8 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵 − 0) = 𝐵)
5754, 56eqtrd 2859 . . . . . . 7 (((𝜑𝑥 = 0) ∧ 𝑘𝐴) → (𝐵𝑥) = 𝐵)
5857ex 416 . . . . . 6 ((𝜑𝑥 = 0) → (𝑘𝐴 → (𝐵𝑥) = 𝐵))
5952, 58ralrimi 3210 . . . . 5 ((𝜑𝑥 = 0) → ∀𝑘𝐴 (𝐵𝑥) = 𝐵)
6059prodeq2d 15276 . . . 4 ((𝜑𝑥 = 0) → ∏𝑘𝐴 (𝐵𝑥) = ∏𝑘𝐴 𝐵)
61 prodex 15261 . . . . 5 𝑘𝐴 𝐵 ∈ V
6261a1i 11 . . . 4 (𝜑 → ∏𝑘𝐴 𝐵 ∈ V)
6350, 60, 22, 62fvmptd 6766 . . 3 (𝜑 → (𝐹‘0) = ∏𝑘𝐴 𝐵)
6449, 63breq12d 5065 . 2 (𝜑 → ((𝐹𝐺) ⇝ (𝐹‘0) ↔ 𝑆 ⇝ ∏𝑘𝐴 𝐵))
6523, 64mpbid 235 1 (𝜑𝑆 ⇝ ∏𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2115  Vcvv 3480   class class class wbr 5052  cmpt 5132  ccom 5546  wf 6339  cfv 6343  (class class class)co 7149  Fincfn 8505  cc 10533  0cc0 10535  1c1 10536  cmin 10868   / cdiv 11295  cn 11634  +crp 12386  cli 14841  cprod 15259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-icc 12742  df-fz 12895  df-fzo 13038  df-fl 13166  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-prod 15260  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486
This theorem is referenced by:  fprodsubrecnncnv  42476
  Copyright terms: Public domain W3C validator