Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem16 Structured version   Visualization version   GIF version

Theorem prtlem16 38907
Description: Lemma for prtex 38918, prter2 38919 and prter3 38920. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem16 dom = 𝐴
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem16
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . 4 𝑧 ∈ V
21eldm 5840 . . 3 (𝑧 ∈ dom ↔ ∃𝑤 𝑧 𝑤)
3 prtlem13.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43prtlem13 38906 . . . 4 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
54exbii 1849 . . 3 (∃𝑤 𝑧 𝑤 ↔ ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
6 elunii 4864 . . . . . . . 8 ((𝑧𝑣𝑣𝐴) → 𝑧 𝐴)
76ancoms 458 . . . . . . 7 ((𝑣𝐴𝑧𝑣) → 𝑧 𝐴)
87adantrr 717 . . . . . 6 ((𝑣𝐴 ∧ (𝑧𝑣𝑤𝑣)) → 𝑧 𝐴)
98rexlimiva 3125 . . . . 5 (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) → 𝑧 𝐴)
109exlimiv 1931 . . . 4 (∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣) → 𝑧 𝐴)
11 eluni2 4863 . . . . 5 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
12 elequ1 2118 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑣𝑧𝑣))
1312anbi2d 630 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣𝑧𝑣)))
14 pm4.24 563 . . . . . . . 8 (𝑧𝑣 ↔ (𝑧𝑣𝑧𝑣))
1513, 14bitr4di 289 . . . . . . 7 (𝑤 = 𝑧 → ((𝑧𝑣𝑤𝑣) ↔ 𝑧𝑣))
1615rexbidv 3156 . . . . . 6 (𝑤 = 𝑧 → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣𝐴 𝑧𝑣))
171, 16spcev 3561 . . . . 5 (∃𝑣𝐴 𝑧𝑣 → ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
1811, 17sylbi 217 . . . 4 (𝑧 𝐴 → ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
1910, 18impbii 209 . . 3 (∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ 𝑧 𝐴)
202, 5, 193bitri 297 . 2 (𝑧 ∈ dom 𝑧 𝐴)
2120eqriv 2728 1 dom = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056   cuni 4859   class class class wbr 5091  {copab 5153  dom cdm 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-dm 5626
This theorem is referenced by:  prtlem400  38908  prter1  38917
  Copyright terms: Public domain W3C validator