![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem16 | Structured version Visualization version GIF version |
Description: Lemma for prtex 37745, prter2 37746 and prter3 37747. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem16 | ⊢ dom ∼ = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | 1 | eldm 5900 | . . 3 ⊢ (𝑧 ∈ dom ∼ ↔ ∃𝑤 𝑧 ∼ 𝑤) |
3 | prtlem13.1 | . . . . 5 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
4 | 3 | prtlem13 37733 | . . . 4 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
5 | 4 | exbii 1850 | . . 3 ⊢ (∃𝑤 𝑧 ∼ 𝑤 ↔ ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
6 | elunii 4913 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) | |
7 | 6 | ancoms 459 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
8 | 7 | adantrr 715 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑧 ∈ ∪ 𝐴) |
9 | 8 | rexlimiva 3147 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
10 | 9 | exlimiv 1933 | . . . 4 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
11 | eluni2 4912 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝐴 ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣) | |
12 | elequ1 2113 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
13 | 12 | anbi2d 629 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣))) |
14 | pm4.24 564 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑣 ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣)) | |
15 | 13, 14 | bitr4di 288 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ 𝑣)) |
16 | 15 | rexbidv 3178 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣)) |
17 | 1, 16 | spcev 3596 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
18 | 11, 17 | sylbi 216 | . . . 4 ⊢ (𝑧 ∈ ∪ 𝐴 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
19 | 10, 18 | impbii 208 | . . 3 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ ∪ 𝐴) |
20 | 2, 5, 19 | 3bitri 296 | . 2 ⊢ (𝑧 ∈ dom ∼ ↔ 𝑧 ∈ ∪ 𝐴) |
21 | 20 | eqriv 2729 | 1 ⊢ dom ∼ = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 ∪ cuni 4908 class class class wbr 5148 {copab 5210 dom cdm 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-dm 5686 |
This theorem is referenced by: prtlem400 37735 prter1 37744 |
Copyright terms: Public domain | W3C validator |