![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem16 | Structured version Visualization version GIF version |
Description: Lemma for prtex 38263, prter2 38264 and prter3 38265. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem16 | ⊢ dom ∼ = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3472 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | 1 | eldm 5894 | . . 3 ⊢ (𝑧 ∈ dom ∼ ↔ ∃𝑤 𝑧 ∼ 𝑤) |
3 | prtlem13.1 | . . . . 5 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
4 | 3 | prtlem13 38251 | . . . 4 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
5 | 4 | exbii 1842 | . . 3 ⊢ (∃𝑤 𝑧 ∼ 𝑤 ↔ ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
6 | elunii 4907 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) | |
7 | 6 | ancoms 458 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
8 | 7 | adantrr 714 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑧 ∈ ∪ 𝐴) |
9 | 8 | rexlimiva 3141 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
10 | 9 | exlimiv 1925 | . . . 4 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
11 | eluni2 4906 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝐴 ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣) | |
12 | elequ1 2105 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
13 | 12 | anbi2d 628 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣))) |
14 | pm4.24 563 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑣 ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣)) | |
15 | 13, 14 | bitr4di 289 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ 𝑣)) |
16 | 15 | rexbidv 3172 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣)) |
17 | 1, 16 | spcev 3590 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
18 | 11, 17 | sylbi 216 | . . . 4 ⊢ (𝑧 ∈ ∪ 𝐴 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
19 | 10, 18 | impbii 208 | . . 3 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ ∪ 𝐴) |
20 | 2, 5, 19 | 3bitri 297 | . 2 ⊢ (𝑧 ∈ dom ∼ ↔ 𝑧 ∈ ∪ 𝐴) |
21 | 20 | eqriv 2723 | 1 ⊢ dom ∼ = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3064 ∪ cuni 4902 class class class wbr 5141 {copab 5203 dom cdm 5669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-dm 5679 |
This theorem is referenced by: prtlem400 38253 prter1 38262 |
Copyright terms: Public domain | W3C validator |