Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem16 Structured version   Visualization version   GIF version

Theorem prtlem16 36810
Description: Lemma for prtex 36821, prter2 36822 and prter3 36823. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem16 dom = 𝐴
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem16
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . 4 𝑧 ∈ V
21eldm 5798 . . 3 (𝑧 ∈ dom ↔ ∃𝑤 𝑧 𝑤)
3 prtlem13.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43prtlem13 36809 . . . 4 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
54exbii 1851 . . 3 (∃𝑤 𝑧 𝑤 ↔ ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
6 elunii 4841 . . . . . . . 8 ((𝑧𝑣𝑣𝐴) → 𝑧 𝐴)
76ancoms 458 . . . . . . 7 ((𝑣𝐴𝑧𝑣) → 𝑧 𝐴)
87adantrr 713 . . . . . 6 ((𝑣𝐴 ∧ (𝑧𝑣𝑤𝑣)) → 𝑧 𝐴)
98rexlimiva 3209 . . . . 5 (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) → 𝑧 𝐴)
109exlimiv 1934 . . . 4 (∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣) → 𝑧 𝐴)
11 eluni2 4840 . . . . 5 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
12 elequ1 2115 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑣𝑧𝑣))
1312anbi2d 628 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣𝑧𝑣)))
14 pm4.24 563 . . . . . . . 8 (𝑧𝑣 ↔ (𝑧𝑣𝑧𝑣))
1513, 14bitr4di 288 . . . . . . 7 (𝑤 = 𝑧 → ((𝑧𝑣𝑤𝑣) ↔ 𝑧𝑣))
1615rexbidv 3225 . . . . . 6 (𝑤 = 𝑧 → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣𝐴 𝑧𝑣))
171, 16spcev 3535 . . . . 5 (∃𝑣𝐴 𝑧𝑣 → ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
1811, 17sylbi 216 . . . 4 (𝑧 𝐴 → ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
1910, 18impbii 208 . . 3 (∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ 𝑧 𝐴)
202, 5, 193bitri 296 . 2 (𝑧 ∈ dom 𝑧 𝐴)
2120eqriv 2735 1 dom = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064   cuni 4836   class class class wbr 5070  {copab 5132  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-dm 5590
This theorem is referenced by:  prtlem400  36811  prter1  36820
  Copyright terms: Public domain W3C validator