Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem16 Structured version   Visualization version   GIF version

Theorem prtlem16 38381
Description: Lemma for prtex 38392, prter2 38393 and prter3 38394. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem16 dom = 𝐴
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem16
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3477 . . . 4 𝑧 ∈ V
21eldm 5907 . . 3 (𝑧 ∈ dom ↔ ∃𝑤 𝑧 𝑤)
3 prtlem13.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43prtlem13 38380 . . . 4 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
54exbii 1842 . . 3 (∃𝑤 𝑧 𝑤 ↔ ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
6 elunii 4917 . . . . . . . 8 ((𝑧𝑣𝑣𝐴) → 𝑧 𝐴)
76ancoms 457 . . . . . . 7 ((𝑣𝐴𝑧𝑣) → 𝑧 𝐴)
87adantrr 715 . . . . . 6 ((𝑣𝐴 ∧ (𝑧𝑣𝑤𝑣)) → 𝑧 𝐴)
98rexlimiva 3144 . . . . 5 (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) → 𝑧 𝐴)
109exlimiv 1925 . . . 4 (∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣) → 𝑧 𝐴)
11 eluni2 4916 . . . . 5 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
12 elequ1 2105 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑣𝑧𝑣))
1312anbi2d 628 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣𝑧𝑣)))
14 pm4.24 562 . . . . . . . 8 (𝑧𝑣 ↔ (𝑧𝑣𝑧𝑣))
1513, 14bitr4di 288 . . . . . . 7 (𝑤 = 𝑧 → ((𝑧𝑣𝑤𝑣) ↔ 𝑧𝑣))
1615rexbidv 3176 . . . . . 6 (𝑤 = 𝑧 → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣𝐴 𝑧𝑣))
171, 16spcev 3595 . . . . 5 (∃𝑣𝐴 𝑧𝑣 → ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
1811, 17sylbi 216 . . . 4 (𝑧 𝐴 → ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
1910, 18impbii 208 . . 3 (∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ 𝑧 𝐴)
202, 5, 193bitri 296 . 2 (𝑧 ∈ dom 𝑧 𝐴)
2120eqriv 2725 1 dom = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wex 1773  wcel 2098  wrex 3067   cuni 4912   class class class wbr 5152  {copab 5214  dom cdm 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-dm 5692
This theorem is referenced by:  prtlem400  38382  prter1  38391
  Copyright terms: Public domain W3C validator