Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem16 Structured version   Visualization version   GIF version

Theorem prtlem16 38988
Description: Lemma for prtex 38999, prter2 39000 and prter3 39001. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem16 dom = 𝐴
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem16
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3441 . . . 4 𝑧 ∈ V
21eldm 5844 . . 3 (𝑧 ∈ dom ↔ ∃𝑤 𝑧 𝑤)
3 prtlem13.1 . . . . 5 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43prtlem13 38987 . . . 4 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
54exbii 1849 . . 3 (∃𝑤 𝑧 𝑤 ↔ ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
6 elunii 4863 . . . . . . . 8 ((𝑧𝑣𝑣𝐴) → 𝑧 𝐴)
76ancoms 458 . . . . . . 7 ((𝑣𝐴𝑧𝑣) → 𝑧 𝐴)
87adantrr 717 . . . . . 6 ((𝑣𝐴 ∧ (𝑧𝑣𝑤𝑣)) → 𝑧 𝐴)
98rexlimiva 3126 . . . . 5 (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) → 𝑧 𝐴)
109exlimiv 1931 . . . 4 (∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣) → 𝑧 𝐴)
11 eluni2 4862 . . . . 5 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
12 elequ1 2120 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑣𝑧𝑣))
1312anbi2d 630 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣𝑧𝑣)))
14 pm4.24 563 . . . . . . . 8 (𝑧𝑣 ↔ (𝑧𝑣𝑧𝑣))
1513, 14bitr4di 289 . . . . . . 7 (𝑤 = 𝑧 → ((𝑧𝑣𝑤𝑣) ↔ 𝑧𝑣))
1615rexbidv 3157 . . . . . 6 (𝑤 = 𝑧 → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣𝐴 𝑧𝑣))
171, 16spcev 3557 . . . . 5 (∃𝑣𝐴 𝑧𝑣 → ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
1811, 17sylbi 217 . . . 4 (𝑧 𝐴 → ∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣))
1910, 18impbii 209 . . 3 (∃𝑤𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ 𝑧 𝐴)
202, 5, 193bitri 297 . 2 (𝑧 ∈ dom 𝑧 𝐴)
2120eqriv 2730 1 dom = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3057   cuni 4858   class class class wbr 5093  {copab 5155  dom cdm 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-dm 5629
This theorem is referenced by:  prtlem400  38989  prter1  38998
  Copyright terms: Public domain W3C validator