Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem16 | Structured version Visualization version GIF version |
Description: Lemma for prtex 36506, prter2 36507 and prter3 36508. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem16 | ⊢ dom ∼ = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3401 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | 1 | eldm 5737 | . . 3 ⊢ (𝑧 ∈ dom ∼ ↔ ∃𝑤 𝑧 ∼ 𝑤) |
3 | prtlem13.1 | . . . . 5 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
4 | 3 | prtlem13 36494 | . . . 4 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
5 | 4 | exbii 1854 | . . 3 ⊢ (∃𝑤 𝑧 ∼ 𝑤 ↔ ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
6 | elunii 4798 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) | |
7 | 6 | ancoms 462 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
8 | 7 | adantrr 717 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑧 ∈ ∪ 𝐴) |
9 | 8 | rexlimiva 3190 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
10 | 9 | exlimiv 1936 | . . . 4 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
11 | eluni2 4797 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝐴 ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣) | |
12 | elequ1 2120 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
13 | 12 | anbi2d 632 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣))) |
14 | pm4.24 567 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑣 ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣)) | |
15 | 13, 14 | bitr4di 292 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ 𝑣)) |
16 | 15 | rexbidv 3206 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣)) |
17 | 1, 16 | spcev 3508 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
18 | 11, 17 | sylbi 220 | . . . 4 ⊢ (𝑧 ∈ ∪ 𝐴 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
19 | 10, 18 | impbii 212 | . . 3 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ ∪ 𝐴) |
20 | 2, 5, 19 | 3bitri 300 | . 2 ⊢ (𝑧 ∈ dom ∼ ↔ 𝑧 ∈ ∪ 𝐴) |
21 | 20 | eqriv 2735 | 1 ⊢ dom ∼ = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2113 ∃wrex 3054 ∪ cuni 4793 class class class wbr 5027 {copab 5089 dom cdm 5519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3399 df-dif 3844 df-un 3846 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-dm 5529 |
This theorem is referenced by: prtlem400 36496 prter1 36505 |
Copyright terms: Public domain | W3C validator |