| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem16 | Structured version Visualization version GIF version | ||
| Description: Lemma for prtex 38918, prter2 38919 and prter3 38920. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
| Ref | Expression |
|---|---|
| prtlem16 | ⊢ dom ∼ = ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑧 ∈ V | |
| 2 | 1 | eldm 5840 | . . 3 ⊢ (𝑧 ∈ dom ∼ ↔ ∃𝑤 𝑧 ∼ 𝑤) |
| 3 | prtlem13.1 | . . . . 5 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
| 4 | 3 | prtlem13 38906 | . . . 4 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| 5 | 4 | exbii 1849 | . . 3 ⊢ (∃𝑤 𝑧 ∼ 𝑤 ↔ ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| 6 | elunii 4864 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) | |
| 7 | 6 | ancoms 458 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
| 8 | 7 | adantrr 717 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑧 ∈ ∪ 𝐴) |
| 9 | 8 | rexlimiva 3125 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
| 10 | 9 | exlimiv 1931 | . . . 4 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
| 11 | eluni2 4863 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝐴 ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣) | |
| 12 | elequ1 2118 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
| 13 | 12 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣))) |
| 14 | pm4.24 563 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑣 ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣)) | |
| 15 | 13, 14 | bitr4di 289 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ 𝑣)) |
| 16 | 15 | rexbidv 3156 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣)) |
| 17 | 1, 16 | spcev 3561 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| 18 | 11, 17 | sylbi 217 | . . . 4 ⊢ (𝑧 ∈ ∪ 𝐴 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| 19 | 10, 18 | impbii 209 | . . 3 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ ∪ 𝐴) |
| 20 | 2, 5, 19 | 3bitri 297 | . 2 ⊢ (𝑧 ∈ dom ∼ ↔ 𝑧 ∈ ∪ 𝐴) |
| 21 | 20 | eqriv 2728 | 1 ⊢ dom ∼ = ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 ∪ cuni 4859 class class class wbr 5091 {copab 5153 dom cdm 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-dm 5626 |
| This theorem is referenced by: prtlem400 38908 prter1 38917 |
| Copyright terms: Public domain | W3C validator |