Step | Hyp | Ref
| Expression |
1 | | flimfcls 23085 |
. . . . 5
⊢ (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔) |
2 | | flimtop 23024 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) |
3 | | flimfnfcls.x |
. . . . . . . . . 10
⊢ 𝑋 = ∪
𝐽 |
4 | 3 | toptopon 21974 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
5 | 2, 4 | sylib 217 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ (TopOn‘𝑋)) |
6 | 5 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐽 ∈ (TopOn‘𝑋)) |
7 | | simplr 765 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝑔 ∈ (Fil‘𝑋)) |
8 | | simpr 484 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐹 ⊆ 𝑔) |
9 | | flimss2 23031 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔)) |
10 | 6, 7, 8, 9 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔)) |
11 | | simpll 763 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐴 ∈ (𝐽 fLim 𝐹)) |
12 | 10, 11 | sseldd 3918 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐴 ∈ (𝐽 fLim 𝑔)) |
13 | 1, 12 | sselid 3915 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐴 ∈ (𝐽 fClus 𝑔)) |
14 | 13 | ex 412 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) → (𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔))) |
15 | 14 | ralrimiva 3107 |
. 2
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔))) |
16 | | sseq2 3943 |
. . . . . 6
⊢ (𝑔 = 𝐹 → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ 𝐹)) |
17 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑔 = 𝐹 → (𝐽 fClus 𝑔) = (𝐽 fClus 𝐹)) |
18 | 17 | eleq2d 2824 |
. . . . . 6
⊢ (𝑔 = 𝐹 → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus 𝐹))) |
19 | 16, 18 | imbi12d 344 |
. . . . 5
⊢ (𝑔 = 𝐹 → ((𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)))) |
20 | 19 | rspcv 3547 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)))) |
21 | | ssid 3939 |
. . . . . 6
⊢ 𝐹 ⊆ 𝐹 |
22 | | id 22 |
. . . . . 6
⊢ ((𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹))) |
23 | 21, 22 | mpi 20 |
. . . . 5
⊢ ((𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fClus 𝐹)) |
24 | | fclstop 23070 |
. . . . . 6
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) |
25 | 3 | fclselbas 23075 |
. . . . . 6
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ 𝑋) |
26 | 24, 25 | jca 511 |
. . . . 5
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) |
27 | 23, 26 | syl 17 |
. . . 4
⊢ ((𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) |
28 | 20, 27 | syl6 35 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋))) |
29 | | disjdif 4402 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∩ (𝑋 ∖ 𝑜)) = ∅ |
30 | | simpll 763 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐹 ∈ (Fil‘𝑋)) |
31 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐽 ∈ Top) |
32 | 3 | topopn 21963 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝑋 ∈ 𝐽) |
34 | | pwexg 5296 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) |
35 | | rabexg 5250 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(𝒫 𝑋 ∈
V → {𝑥 ∈
𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ V) |
36 | 33, 34, 35 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ V) |
37 | | unexg 7577 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ V) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ∈ V) |
38 | 30, 36, 37 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ∈ V) |
39 | | ssfii 9108 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ∈ V → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) |
41 | | filsspw 22910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
42 | | ssrab2 4009 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋 |
43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋) |
44 | 41, 43 | unssd 4116 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋) |
45 | 44 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋) |
46 | | ssun2 4103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ⊆ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) |
47 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = (𝑋 ∖ 𝑜) → ((𝑋 ∖ 𝑜) ⊆ 𝑥 ↔ (𝑋 ∖ 𝑜) ⊆ (𝑋 ∖ 𝑜))) |
48 | | difss 4062 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑋 ∖ 𝑜) ⊆ 𝑋 |
49 | | elpw2g 5263 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑋 ∈ 𝐽 → ((𝑋 ∖ 𝑜) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑜) ⊆ 𝑋)) |
50 | 33, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ((𝑋 ∖ 𝑜) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑜) ⊆ 𝑋)) |
51 | 48, 50 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ∈ 𝒫 𝑋) |
52 | | ssid 3939 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑋 ∖ 𝑜) ⊆ (𝑋 ∖ 𝑜) |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ⊆ (𝑋 ∖ 𝑜)) |
54 | 47, 51, 53 | elrabd 3619 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) |
55 | 46, 54 | sselid 3915 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ∈ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) |
56 | 55 | ne0d 4266 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ≠ ∅) |
57 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 𝑧 → ((𝑋 ∖ 𝑜) ⊆ 𝑥 ↔ (𝑋 ∖ 𝑜) ⊆ 𝑧)) |
58 | 57 | elrab 3617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ↔ (𝑧 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑜) ⊆ 𝑧)) |
59 | 58 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} → (𝑋 ∖ 𝑜) ⊆ 𝑧) |
60 | 59 | ad2antll 725 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑋 ∖ 𝑜) ⊆ 𝑧) |
61 | | sslin 4165 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∖ 𝑜) ⊆ 𝑧 → (𝑦 ∩ (𝑋 ∖ 𝑜)) ⊆ (𝑦 ∩ 𝑧)) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋 ∖ 𝑜)) ⊆ (𝑦 ∩ 𝑧)) |
63 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ¬ 𝑜 ∈ 𝐹) |
64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → ¬ 𝑜 ∈ 𝐹) |
65 | | inssdif0 4300 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∩ 𝑋) ⊆ 𝑜 ↔ (𝑦 ∩ (𝑋 ∖ 𝑜)) = ∅) |
66 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → 𝐹 ∈ (Fil‘𝑋)) |
67 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → 𝑦 ∈ 𝐹) |
68 | | filelss 22911 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝑋) |
69 | 66, 67, 68 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → 𝑦 ⊆ 𝑋) |
70 | | df-ss 3900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ⊆ 𝑋 ↔ (𝑦 ∩ 𝑋) = 𝑦) |
71 | 69, 70 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ∩ 𝑋) = 𝑦) |
72 | 71 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → ((𝑦 ∩ 𝑋) ⊆ 𝑜 ↔ 𝑦 ⊆ 𝑜)) |
73 | 30 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝐹 ∈ (Fil‘𝑋)) |
74 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝑦 ∈ 𝐹) |
75 | | elssuni 4868 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽) |
76 | 75, 3 | sseqtrrdi 3968 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑜 ∈ 𝐽 → 𝑜 ⊆ 𝑋) |
77 | 76 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝑜 ⊆ 𝑋) |
78 | 77 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝑜 ⊆ 𝑋) |
79 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝑦 ⊆ 𝑜) |
80 | | filss 22912 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐹 ∧ 𝑜 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑜)) → 𝑜 ∈ 𝐹) |
81 | 73, 74, 78, 79, 80 | syl13anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝑜 ∈ 𝐹) |
82 | 81 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ⊆ 𝑜 → 𝑜 ∈ 𝐹)) |
83 | 72, 82 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → ((𝑦 ∩ 𝑋) ⊆ 𝑜 → 𝑜 ∈ 𝐹)) |
84 | 65, 83 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → ((𝑦 ∩ (𝑋 ∖ 𝑜)) = ∅ → 𝑜 ∈ 𝐹)) |
85 | 84 | necon3bd 2956 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (¬ 𝑜 ∈ 𝐹 → (𝑦 ∩ (𝑋 ∖ 𝑜)) ≠ ∅)) |
86 | 64, 85 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋 ∖ 𝑜)) ≠ ∅) |
87 | | ssn0 4331 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∩ (𝑋 ∖ 𝑜)) ⊆ (𝑦 ∩ 𝑧) ∧ (𝑦 ∩ (𝑋 ∖ 𝑜)) ≠ ∅) → (𝑦 ∩ 𝑧) ≠ ∅) |
88 | 62, 86, 87 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ∩ 𝑧) ≠ ∅) |
89 | 88 | ralrimivva 3114 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} (𝑦 ∩ 𝑧) ≠ ∅) |
90 | | filfbas 22907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
91 | 30, 90 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐹 ∈ (fBas‘𝑋)) |
92 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ⊆ 𝑋) |
93 | | filtop 22914 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
94 | 30, 93 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝑋 ∈ 𝐹) |
95 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑜 = 𝑋 → (𝑜 ∈ 𝐹 ↔ 𝑋 ∈ 𝐹)) |
96 | 94, 95 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑜 = 𝑋 → 𝑜 ∈ 𝐹)) |
97 | 96 | necon3bd 2956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (¬ 𝑜 ∈ 𝐹 → 𝑜 ≠ 𝑋)) |
98 | 63, 97 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝑜 ≠ 𝑋) |
99 | | pssdifn0 4296 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑜 ⊆ 𝑋 ∧ 𝑜 ≠ 𝑋) → (𝑋 ∖ 𝑜) ≠ ∅) |
100 | 77, 98, 99 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ≠ ∅) |
101 | | supfil 22954 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∈ 𝐽 ∧ (𝑋 ∖ 𝑜) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑜) ≠ ∅) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋)) |
102 | 33, 92, 100, 101 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋)) |
103 | | filfbas 22907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) |
105 | | fbunfip 22928 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ↔ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} (𝑦 ∩ 𝑧) ≠ ∅)) |
106 | 91, 104, 105 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ↔ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} (𝑦 ∩ 𝑧) ≠ ∅)) |
107 | 89, 106 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) |
108 | | fsubbas 22926 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 ∈ 𝐹 → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
109 | 94, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
110 | 45, 56, 107, 109 | mpbir3and 1340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋)) |
111 | | ssfg 22931 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((fi‘(𝐹 ∪
{𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
112 | 110, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
113 | 40, 112 | sstrd 3927 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
114 | 113 | unssad 4117 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
115 | | fgcl 22937 |
. . . . . . . . . . . . . . . . . . 19
⊢
((fi‘(𝐹 ∪
{𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋)) |
116 | 110, 115 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋)) |
117 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
118 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → (𝐽 fClus 𝑔) = (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
119 | 118 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))))) |
120 | 117, 119 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → ((𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))))) |
121 | 120 | rspcv 3547 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))))) |
122 | 116, 121 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))))) |
123 | 114, 122 | mpid 44 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))))) |
124 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
125 | | simplrl 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → 𝑜 ∈ 𝐽) |
126 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐴 ∈ 𝑜) |
127 | 126 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → 𝐴 ∈ 𝑜) |
128 | 113, 55 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
129 | 128 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → (𝑋 ∖ 𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
130 | | fclsopni 23074 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ∧ (𝑋 ∖ 𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋 ∖ 𝑜)) ≠ ∅) |
131 | 124, 125,
127, 129, 130 | syl13anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋 ∖ 𝑜)) ≠ ∅) |
132 | 131 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) → (𝑜 ∩ (𝑋 ∖ 𝑜)) ≠ ∅)) |
133 | 123, 132 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝑜 ∩ (𝑋 ∖ 𝑜)) ≠ ∅)) |
134 | 133 | necon2bd 2958 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ((𝑜 ∩ (𝑋 ∖ 𝑜)) = ∅ → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)))) |
135 | 29, 134 | mpi 20 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔))) |
136 | 135 | anassrs 467 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹)) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔))) |
137 | 136 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) ∧ 𝐴 ∈ 𝑜) → (¬ 𝑜 ∈ 𝐹 → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)))) |
138 | 137 | con4d 115 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) ∧ 𝐴 ∈ 𝑜) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜 ∈ 𝐹)) |
139 | 138 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) → (𝐴 ∈ 𝑜 → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜 ∈ 𝐹))) |
140 | 139 | com23 86 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹))) |
141 | 140 | ralrimdva 3112 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹))) |
142 | | simprr 769 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
143 | 141, 142 | jctild 525 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹)))) |
144 | | simprl 767 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → 𝐽 ∈ Top) |
145 | 144, 4 | sylib 217 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
146 | | simpl 482 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → 𝐹 ∈ (Fil‘𝑋)) |
147 | | flimopn 23034 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹)))) |
148 | 145, 146,
147 | syl2anc 583 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹)))) |
149 | 143, 148 | sylibrd 258 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹))) |
150 | 149 | ex 412 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹)))) |
151 | 150 | com23 86 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim 𝐹)))) |
152 | 28, 151 | mpdd 43 |
. 2
⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹))) |
153 | 15, 152 | impbid2 225 |
1
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)))) |