MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfnfcls Structured version   Visualization version   GIF version

Theorem flimfnfcls 23087
Description: A filter converges to a point iff every finer filter clusters there. Along with fclsfnflim 23086, this theorem illustrates the duality between convergence and clustering. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x 𝑋 = 𝐽
Assertion
Ref Expression
flimfnfcls (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝑔,𝑋

Proof of Theorem flimfnfcls
Dummy variables 𝑜 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimfcls 23085 . . . . 5 (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔)
2 flimtop 23024 . . . . . . . . 9 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
3 flimfnfcls.x . . . . . . . . . 10 𝑋 = 𝐽
43toptopon 21974 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
52, 4sylib 217 . . . . . . . 8 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ (TopOn‘𝑋))
65ad2antrr 722 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐽 ∈ (TopOn‘𝑋))
7 simplr 765 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝑔 ∈ (Fil‘𝑋))
8 simpr 484 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐹𝑔)
9 flimss2 23031 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝐹𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔))
106, 7, 8, 9syl3anc 1369 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔))
11 simpll 763 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fLim 𝐹))
1210, 11sseldd 3918 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fLim 𝑔))
131, 12sselid 3915 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fClus 𝑔))
1413ex 412 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) → (𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
1514ralrimiva 3107 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
16 sseq2 3943 . . . . . 6 (𝑔 = 𝐹 → (𝐹𝑔𝐹𝐹))
17 oveq2 7263 . . . . . . 7 (𝑔 = 𝐹 → (𝐽 fClus 𝑔) = (𝐽 fClus 𝐹))
1817eleq2d 2824 . . . . . 6 (𝑔 = 𝐹 → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus 𝐹)))
1916, 18imbi12d 344 . . . . 5 (𝑔 = 𝐹 → ((𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹))))
2019rspcv 3547 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹))))
21 ssid 3939 . . . . . 6 𝐹𝐹
22 id 22 . . . . . 6 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)))
2321, 22mpi 20 . . . . 5 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fClus 𝐹))
24 fclstop 23070 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
253fclselbas 23075 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴𝑋)
2624, 25jca 511 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐴𝑋))
2723, 26syl 17 . . . 4 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐽 ∈ Top ∧ 𝐴𝑋))
2820, 27syl6 35 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐽 ∈ Top ∧ 𝐴𝑋)))
29 disjdif 4402 . . . . . . . . . . . . . 14 (𝑜 ∩ (𝑋𝑜)) = ∅
30 simpll 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ∈ (Fil‘𝑋))
31 simplrl 773 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐽 ∈ Top)
323topopn 21963 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ Top → 𝑋𝐽)
3331, 32syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑋𝐽)
34 pwexg 5296 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
35 rabexg 5250 . . . . . . . . . . . . . . . . . . . . . 22 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V)
3633, 34, 353syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V)
37 unexg 7577 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V)
3830, 36, 37syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V)
39 ssfii 9108 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
41 filsspw 22910 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
42 ssrab2 4009 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋)
4441, 43unssd 4116 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋)
4544ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋)
46 ssun2 4103 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})
47 sseq2 3943 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑋𝑜) → ((𝑋𝑜) ⊆ 𝑥 ↔ (𝑋𝑜) ⊆ (𝑋𝑜)))
48 difss 4062 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑜) ⊆ 𝑋
49 elpw2g 5263 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋𝐽 → ((𝑋𝑜) ∈ 𝒫 𝑋 ↔ (𝑋𝑜) ⊆ 𝑋))
5033, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((𝑋𝑜) ∈ 𝒫 𝑋 ↔ (𝑋𝑜) ⊆ 𝑋))
5148, 50mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ 𝒫 𝑋)
52 ssid 3939 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑜) ⊆ (𝑋𝑜)
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ⊆ (𝑋𝑜))
5447, 51, 53elrabd 3619 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})
5546, 54sselid 3915 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))
5655ne0d 4266 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅)
57 sseq2 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑧 → ((𝑋𝑜) ⊆ 𝑥 ↔ (𝑋𝑜) ⊆ 𝑧))
5857elrab 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ↔ (𝑧 ∈ 𝒫 𝑋 ∧ (𝑋𝑜) ⊆ 𝑧))
5958simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} → (𝑋𝑜) ⊆ 𝑧)
6059ad2antll 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑋𝑜) ⊆ 𝑧)
61 sslin 4165 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝑜) ⊆ 𝑧 → (𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧))
6260, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧))
63 simprrr 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ 𝑜𝐹)
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ¬ 𝑜𝐹)
65 inssdif0 4300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦𝑋) ⊆ 𝑜 ↔ (𝑦 ∩ (𝑋𝑜)) = ∅)
66 simplll 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝐹 ∈ (Fil‘𝑋))
67 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝑦𝐹)
68 filelss 22911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
6966, 67, 68syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝑦𝑋)
70 df-ss 3900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦𝑋 ↔ (𝑦𝑋) = 𝑦)
7169, 70sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑋) = 𝑦)
7271sseq1d 3948 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦𝑋) ⊆ 𝑜𝑦𝑜))
7330ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝐹 ∈ (Fil‘𝑋))
74 simplrl 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑦𝐹)
75 elssuni 4868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑜𝐽𝑜 𝐽)
7675, 3sseqtrrdi 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑜𝐽𝑜𝑋)
7776ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑜𝑋)
7877ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑜𝑋)
79 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑦𝑜)
80 filss 22912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑜𝑋𝑦𝑜)) → 𝑜𝐹)
8173, 74, 78, 79, 80syl13anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑜𝐹)
8281ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑜𝑜𝐹))
8372, 82sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦𝑋) ⊆ 𝑜𝑜𝐹))
8465, 83syl5bir 242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦 ∩ (𝑋𝑜)) = ∅ → 𝑜𝐹))
8584necon3bd 2956 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (¬ 𝑜𝐹 → (𝑦 ∩ (𝑋𝑜)) ≠ ∅))
8664, 85mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋𝑜)) ≠ ∅)
87 ssn0 4331 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧) ∧ (𝑦 ∩ (𝑋𝑜)) ≠ ∅) → (𝑦𝑧) ≠ ∅)
8862, 86, 87syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑧) ≠ ∅)
8988ralrimivva 3114 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅)
90 filfbas 22907 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
9130, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ∈ (fBas‘𝑋))
9248a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ⊆ 𝑋)
93 filtop 22914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
9430, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑋𝐹)
95 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑜 = 𝑋 → (𝑜𝐹𝑋𝐹))
9694, 95syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑜 = 𝑋𝑜𝐹))
9796necon3bd 2956 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (¬ 𝑜𝐹𝑜𝑋))
9863, 97mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑜𝑋)
99 pssdifn0 4296 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑜𝑋𝑜𝑋) → (𝑋𝑜) ≠ ∅)
10077, 98, 99syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ≠ ∅)
101 supfil 22954 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐽 ∧ (𝑋𝑜) ⊆ 𝑋 ∧ (𝑋𝑜) ≠ ∅) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋))
10233, 92, 100, 101syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋))
103 filfbas 22907 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋))
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋))
105 fbunfip 22928 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ↔ ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅))
10691, 104, 105syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ↔ ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅))
10789, 106mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
108 fsubbas 22926 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐹 → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
10994, 108syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
11045, 56, 107, 109mpbir3and 1340 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋))
111 ssfg 22931 . . . . . . . . . . . . . . . . . . . 20 ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
112110, 111syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
11340, 112sstrd 3927 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
114113unssad 4117 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
115 fgcl 22937 . . . . . . . . . . . . . . . . . . 19 ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋))
116110, 115syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋))
117 sseq2 3943 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐹𝑔𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
118 oveq2 7263 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐽 fClus 𝑔) = (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
119118eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))))
120117, 119imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → ((𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
121120rspcv 3547 . . . . . . . . . . . . . . . . . 18 ((𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
122116, 121syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
123114, 122mpid 44 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))))
124 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
125 simplrl 773 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝑜𝐽)
126 simprrl 777 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐴𝑜)
127126adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝐴𝑜)
128113, 55sseldd 3918 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
129128adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
130 fclsopni 23074 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))) ∧ (𝑜𝐽𝐴𝑜 ∧ (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅)
131124, 125, 127, 129, 130syl13anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅)
132131ex 412 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅))
133123, 132syld 47 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅))
134133necon2bd 2958 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((𝑜 ∩ (𝑋𝑜)) = ∅ → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
13529, 134mpi 20 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
136135anassrs 467 . . . . . . . . . . . 12 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹)) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
137136expr 456 . . . . . . . . . . 11 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (¬ 𝑜𝐹 → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
138137con4d 115 . . . . . . . . . 10 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜𝐹))
139138ex 412 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) → (𝐴𝑜 → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜𝐹)))
140139com23 86 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴𝑜𝑜𝐹)))
141140ralrimdva 3112 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → ∀𝑜𝐽 (𝐴𝑜𝑜𝐹)))
142 simprr 769 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐴𝑋)
143141, 142jctild 525 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
144 simprl 767 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐽 ∈ Top)
145144, 4sylib 217 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
146 simpl 482 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐹 ∈ (Fil‘𝑋))
147 flimopn 23034 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
148145, 146, 147syl2anc 583 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
149143, 148sylibrd 258 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹)))
150149ex 412 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹))))
151150com23 86 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim 𝐹))))
15228, 151mpdd 43 . 2 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹)))
15315, 152impbid2 225 1 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836  cfv 6418  (class class class)co 7255  ficfi 9099  fBascfbas 20498  filGencfg 20499  Topctop 21950  TopOnctopon 21967  Filcfil 22904   fLim cflim 22993   fClus cfcls 22995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-fil 22905  df-flim 22998  df-fcls 23000
This theorem is referenced by:  cnpfcf  23100
  Copyright terms: Public domain W3C validator