MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1peu Structured version   Visualization version   GIF version

Theorem ig1peu 26117
Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1peu.p 𝑃 = (Poly1𝑅)
ig1peu.u 𝑈 = (LIdeal‘𝑃)
ig1peu.z 0 = (0g𝑃)
ig1peu.m 𝑀 = (Monic1p𝑅)
ig1peu.d 𝐷 = (deg1𝑅)
Assertion
Ref Expression
ig1peu ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Distinct variable groups:   𝐷,𝑔   𝑔,𝐼   𝑔,𝑀   𝑃,𝑔   𝑅,𝑔   𝑈,𝑔   0 ,𝑔

Proof of Theorem ig1peu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2 ig1peu.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑃)
31, 2lidlss 21159 . . . . . . . . . 10 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
433ad2ant2 1134 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ⊆ (Base‘𝑃))
54ssdifd 4096 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }))
6 imass2 6058 . . . . . . . 8 ((𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
75, 6syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
8 drngring 20661 . . . . . . . . 9 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
983ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑅 ∈ Ring)
10 ig1peu.d . . . . . . . . 9 𝐷 = (deg1𝑅)
11 ig1peu.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
12 ig1peu.z . . . . . . . . 9 0 = (0g𝑃)
1310, 11, 12, 1deg1n0ima 26031 . . . . . . . 8 (𝑅 ∈ Ring → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
149, 13syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
157, 14sstrd 3942 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℕ0)
16 nn0uz 12784 . . . . . 6 0 = (ℤ‘0)
1715, 16sseqtrdi 3972 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
1811ply1ring 22170 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
199, 18syl 17 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Ring)
20 simp2 1137 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼𝑈)
212, 12lidl0cl 21167 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
2219, 20, 21syl2anc 584 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 0𝐼)
2322snssd 4762 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼)
24 simp3 1138 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
2524necomd 2985 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼)
26 pssdifn0 4319 . . . . . . 7 (({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼) → (𝐼 ∖ { 0 }) ≠ ∅)
2723, 25, 26syl2anc 584 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ≠ ∅)
2810, 11, 1deg1xrf 26023 . . . . . . . . . 10 𝐷:(Base‘𝑃)⟶ℝ*
29 ffn 6659 . . . . . . . . . 10 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3028, 29ax-mp 5 . . . . . . . . 9 𝐷 Fn (Base‘𝑃)
3130a1i 11 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐷 Fn (Base‘𝑃))
324ssdifssd 4098 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
33 fnimaeq0 6622 . . . . . . . 8 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃)) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3431, 32, 33syl2anc 584 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3534necon3bid 2974 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅ ↔ (𝐼 ∖ { 0 }) ≠ ∅))
3627, 35mpbird 257 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅)
37 infssuzcl 12840 . . . . 5 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3817, 36, 37syl2anc 584 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3931, 32fvelimabd 6904 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })) ↔ ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4038, 39mpbid 232 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
4119adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑃 ∈ Ring)
42 simpl2 1193 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼𝑈)
439adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring)
44 eqid 2733 . . . . . . . . . . 11 (algSc‘𝑃) = (algSc‘𝑃)
45 eqid 2733 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4611, 44, 45, 1ply1sclf 22209 . . . . . . . . . 10 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
4743, 46syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
48 simpl1 1192 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ DivRing)
4932sselda 3931 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Base‘𝑃))
50 eldifsni 4743 . . . . . . . . . . . . . 14 ( ∈ (𝐼 ∖ { 0 }) → 0 )
5150adantl 481 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 0 )
52 eqid 2733 . . . . . . . . . . . . . 14 (Unic1p𝑅) = (Unic1p𝑅)
5311, 1, 12, 52drnguc1p 26116 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ ∈ (Base‘𝑃) ∧ 0 ) → ∈ (Unic1p𝑅))
5448, 49, 51, 53syl3anc 1373 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Unic1p𝑅))
55 eqid 2733 . . . . . . . . . . . . 13 (Unit‘𝑅) = (Unit‘𝑅)
5610, 55, 52uc1pldg 26091 . . . . . . . . . . . 12 ( ∈ (Unic1p𝑅) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
5754, 56syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
58 eqid 2733 . . . . . . . . . . . 12 (invr𝑅) = (invr𝑅)
5955, 58unitinvcl 20318 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1)‘(𝐷)) ∈ (Unit‘𝑅)) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6043, 57, 59syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6145, 55unitcl 20303 . . . . . . . . . 10 (((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6260, 61syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6347, 62ffvelcdmd 7027 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃))
64 eldifi 4082 . . . . . . . . 9 ( ∈ (𝐼 ∖ { 0 }) → 𝐼)
6564adantl 481 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼)
66 eqid 2733 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
672, 1, 66lidlmcl 21172 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃) ∧ 𝐼)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
6841, 42, 63, 65, 67syl22anc 838 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
69 ig1peu.m . . . . . . . . 9 𝑀 = (Monic1p𝑅)
7052, 69, 11, 66, 44, 10, 58uc1pmon1p 26094 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ∈ (Unic1p𝑅)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7143, 54, 70syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7268, 71elind 4151 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀))
73 eqid 2733 . . . . . . . . . 10 (RLReg‘𝑅) = (RLReg‘𝑅)
7473, 55unitrrg 20628 . . . . . . . . 9 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7543, 74syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7675, 60sseldd 3932 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅))
7710, 11, 73, 1, 66, 44deg1mul3 26058 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅) ∧ ∈ (Base‘𝑃)) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
7843, 76, 49, 77syl3anc 1373 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
79 fveqeq2 6840 . . . . . . 7 (𝑔 = (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) → ((𝐷𝑔) = (𝐷) ↔ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)))
8079rspcev 3574 . . . . . 6 (((((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀) ∧ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
8172, 78, 80syl2anc 584 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
82 eqeq2 2745 . . . . . 6 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ((𝐷𝑔) = (𝐷) ↔ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8382rexbidv 3158 . . . . 5 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷) ↔ ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8481, 83syl5ibcom 245 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8584rexlimdva 3135 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8640, 85mpd 15 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
87 eqid 2733 . . . . . . 7 (-g𝑃) = (-g𝑃)
889ad2antrr 726 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑅 ∈ Ring)
89 simprl 770 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (𝐼𝑀))
9089elin2d 4156 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝑀)
9190adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑔𝑀)
92 simprl 770 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
93 simprr 772 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (𝐼𝑀))
9493elin2d 4156 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑀)
9594adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑀)
96 simprr 772 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
9710, 69, 11, 87, 88, 91, 92, 95, 96deg1submon1p 26095 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
9897ex 412 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
9917ad2antrr 726 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
10030a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → 𝐷 Fn (Base‘𝑃))
10132ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
10219adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Ring)
103 simpl2 1193 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼𝑈)
10489elin1d 4155 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝐼)
10593elin1d 4155 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼)
1062, 87lidlsubcl 21171 . . . . . . . . . . . . 13 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑔𝐼𝐼)) → (𝑔(-g𝑃)) ∈ 𝐼)
107102, 103, 104, 105, 106syl22anc 838 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ 𝐼)
108107adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ 𝐼)
109 simpr 484 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ≠ 0 )
110 eldifsn 4739 . . . . . . . . . . 11 ((𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }) ↔ ((𝑔(-g𝑃)) ∈ 𝐼 ∧ (𝑔(-g𝑃)) ≠ 0 ))
111108, 109, 110sylanbrc 583 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }))
112 fnfvima 7176 . . . . . . . . . 10 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃) ∧ (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 })) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
113100, 101, 111, 112syl3anc 1373 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
114 infssuzle 12839 . . . . . . . . 9 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
11599, 113, 114syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
116115ex 412 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃)))))
117 imassrn 6027 . . . . . . . . . . 11 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ran 𝐷
118 frn 6666 . . . . . . . . . . . 12 (𝐷:(Base‘𝑃)⟶ℝ* → ran 𝐷 ⊆ ℝ*)
11928, 118ax-mp 5 . . . . . . . . . . 11 ran 𝐷 ⊆ ℝ*
120117, 119sstri 3941 . . . . . . . . . 10 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℝ*
121120, 38sselid 3929 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
122121adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
123 ringgrp 20166 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
12419, 123syl 17 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Grp)
125124adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Grp)
126 inss1 4188 . . . . . . . . . . . . 13 (𝐼𝑀) ⊆ 𝐼
127126, 4sstrid 3943 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼𝑀) ⊆ (Base‘𝑃))
128127adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐼𝑀) ⊆ (Base‘𝑃))
129128, 89sseldd 3932 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (Base‘𝑃))
130128, 93sseldd 3932 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (Base‘𝑃))
1311, 87grpsubcl 18943 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
132125, 129, 130, 131syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
13310, 11, 1deg1xrcl 26024 . . . . . . . . 9 ((𝑔(-g𝑃)) ∈ (Base‘𝑃) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
134132, 133syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
135122, 134xrlenltd 11188 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))) ↔ ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
136116, 135sylibd 239 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
137136necon4ad 2949 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (𝑔(-g𝑃)) = 0 ))
13898, 137syld 47 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝑔(-g𝑃)) = 0 ))
1391, 12, 87grpsubeq0 18949 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → ((𝑔(-g𝑃)) = 0𝑔 = ))
140125, 129, 130, 139syl3anc 1373 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) = 0𝑔 = ))
141138, 140sylibd 239 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
142141ralrimivva 3177 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
143 fveqeq2 6840 . . 3 (𝑔 = → ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
144143reu4 3687 . 2 (∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = )))
14586, 142, 144sylanbrc 583 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  ∃!wreu 3346  cdif 3896  cin 3898  wss 3899  c0 4284  {csn 4577   class class class wbr 5095  ran crn 5622  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  infcinf 9335  cr 11015  0cc0 11016  *cxr 11155   < clt 11156  cle 11157  0cn0 12391  cuz 12742  Basecbs 17130  .rcmulr 17172  0gc0g 17353  Grpcgrp 18856  -gcsg 18858  Ringcrg 20161  Unitcui 20283  invrcinvr 20315  RLRegcrlreg 20616  DivRingcdr 20654  LIdealclidl 21153  algSccascl 21799  Poly1cpl1 22099  coe1cco1 22100  deg1cdg1 25996  Monic1pcmn1 26068  Unic1pcuc1p 26069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-0g 17355  df-gsum 17356  df-prds 17361  df-pws 17363  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-ghm 19135  df-cntz 19239  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-subrng 20471  df-subrg 20495  df-rlreg 20619  df-drng 20656  df-lmod 20805  df-lss 20875  df-sra 21117  df-rgmod 21118  df-lidl 21155  df-cnfld 21302  df-ascl 21802  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-mdeg 25997  df-deg1 25998  df-mon1 26073  df-uc1p 26074
This theorem is referenced by:  ig1pval3  26120
  Copyright terms: Public domain W3C validator