Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑃) =
(Base‘𝑃) |
2 | | ig1peu.u |
. . . . . . . . . . 11
⊢ 𝑈 = (LIdeal‘𝑃) |
3 | 1, 2 | lidlss 20394 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) |
4 | 3 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝐼 ⊆ (Base‘𝑃)) |
5 | 4 | ssdifd 4071 |
. . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆
((Base‘𝑃) ∖ {
0
})) |
6 | | imass2 5999 |
. . . . . . . 8
⊢ ((𝐼 ∖ { 0 }) ⊆
((Base‘𝑃) ∖ {
0 })
→ (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 }))) |
7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 }))) |
8 | | drngring 19913 |
. . . . . . . . 9
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
9 | 8 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ Ring) |
10 | | ig1peu.d |
. . . . . . . . 9
⊢ 𝐷 = ( deg1
‘𝑅) |
11 | | ig1peu.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
12 | | ig1peu.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑃) |
13 | 10, 11, 12, 1 | deg1n0ima 25159 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆
ℕ0) |
14 | 9, 13 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆
ℕ0) |
15 | 7, 14 | sstrd 3927 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆
ℕ0) |
16 | | nn0uz 12549 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
17 | 15, 16 | sseqtrdi 3967 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆
(ℤ≥‘0)) |
18 | 11 | ply1ring 21329 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
19 | 9, 18 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝑃 ∈ Ring) |
20 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝐼 ∈ 𝑈) |
21 | 2, 12 | lidl0cl 20396 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 ∈ 𝐼) |
22 | 19, 20, 21 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 0 ∈ 𝐼) |
23 | 22 | snssd 4739 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → { 0 } ⊆
𝐼) |
24 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) |
25 | 24 | necomd 2998 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼) |
26 | | pssdifn0 4296 |
. . . . . . 7
⊢ (({ 0 } ⊆
𝐼 ∧ { 0 } ≠ 𝐼) → (𝐼 ∖ { 0 }) ≠
∅) |
27 | 23, 25, 26 | syl2anc 583 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ≠
∅) |
28 | 10, 11, 1 | deg1xrf 25151 |
. . . . . . . . . 10
⊢ 𝐷:(Base‘𝑃)⟶ℝ* |
29 | | ffn 6584 |
. . . . . . . . . 10
⊢ (𝐷:(Base‘𝑃)⟶ℝ* → 𝐷 Fn (Base‘𝑃)) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . 9
⊢ 𝐷 Fn (Base‘𝑃) |
31 | 30 | a1i 11 |
. . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝐷 Fn (Base‘𝑃)) |
32 | 4 | ssdifssd 4073 |
. . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆
(Base‘𝑃)) |
33 | | fnimaeq0 6550 |
. . . . . . . 8
⊢ ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆
(Base‘𝑃)) →
((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔
(𝐼 ∖ { 0 }) =
∅)) |
34 | 31, 32, 33 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔
(𝐼 ∖ { 0 }) =
∅)) |
35 | 34 | necon3bid 2987 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅ ↔
(𝐼 ∖ { 0 }) ≠
∅)) |
36 | 27, 35 | mpbird 256 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ≠
∅) |
37 | | infssuzcl 12601 |
. . . . 5
⊢ (((𝐷 “ (𝐼 ∖ { 0 })) ⊆
(ℤ≥‘0) ∧ (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅) →
inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
∈ (𝐷 “ (𝐼 ∖ { 0 }))) |
38 | 17, 36, 37 | syl2anc 583 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
∈ (𝐷 “ (𝐼 ∖ { 0 }))) |
39 | 31, 32 | fvelimabd 6824 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
∈ (𝐷 “ (𝐼 ∖ { 0 })) ↔ ∃ℎ ∈ (𝐼 ∖ { 0 })(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
40 | 38, 39 | mpbid 231 |
. . 3
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃ℎ ∈ (𝐼 ∖ { 0 })(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)) |
41 | 19 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → 𝑃 ∈ Ring) |
42 | | simpl2 1190 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → 𝐼 ∈ 𝑈) |
43 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring) |
44 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
45 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
46 | 11, 44, 45, 1 | ply1sclf 21366 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
47 | 43, 46 | syl 17 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
(algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
48 | | simpl1 1189 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈
DivRing) |
49 | 32 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → ℎ ∈ (Base‘𝑃)) |
50 | | eldifsni 4720 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ (𝐼 ∖ { 0 }) → ℎ ≠ 0 ) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → ℎ ≠ 0 ) |
52 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Unic1p‘𝑅) = (Unic1p‘𝑅) |
53 | 11, 1, 12, 52 | drnguc1p 25240 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ ℎ ∈ (Base‘𝑃) ∧ ℎ ≠ 0 ) → ℎ ∈
(Unic1p‘𝑅)) |
54 | 48, 49, 51, 53 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → ℎ ∈
(Unic1p‘𝑅)) |
55 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
56 | 10, 55, 52 | uc1pldg 25218 |
. . . . . . . . . . . 12
⊢ (ℎ ∈
(Unic1p‘𝑅)
→ ((coe1‘ℎ)‘(𝐷‘ℎ)) ∈ (Unit‘𝑅)) |
57 | 54, 56 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
((coe1‘ℎ)‘(𝐷‘ℎ)) ∈ (Unit‘𝑅)) |
58 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(invr‘𝑅) = (invr‘𝑅) |
59 | 55, 58 | unitinvcl 19831 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧
((coe1‘ℎ)‘(𝐷‘ℎ)) ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))) ∈ (Unit‘𝑅)) |
60 | 43, 57, 59 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))) ∈ (Unit‘𝑅)) |
61 | 45, 55 | unitcl 19816 |
. . . . . . . . . 10
⊢
(((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))) ∈ (Unit‘𝑅) → ((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))) ∈ (Base‘𝑅)) |
62 | 60, 61 | syl 17 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))) ∈ (Base‘𝑅)) |
63 | 47, 62 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ)))) ∈ (Base‘𝑃)) |
64 | | eldifi 4057 |
. . . . . . . . 9
⊢ (ℎ ∈ (𝐼 ∖ { 0 }) → ℎ ∈ 𝐼) |
65 | 64 | adantl 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → ℎ ∈ 𝐼) |
66 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) |
67 | 2, 1, 66 | lidlmcl 20401 |
. . . . . . . 8
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ)))) ∈ (Base‘𝑃) ∧ ℎ ∈ 𝐼)) → (((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ) ∈ 𝐼) |
68 | 41, 42, 63, 65, 67 | syl22anc 835 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
(((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ) ∈ 𝐼) |
69 | | ig1peu.m |
. . . . . . . . 9
⊢ 𝑀 =
(Monic1p‘𝑅) |
70 | 52, 69, 11, 66, 44, 10, 58 | uc1pmon1p 25221 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ ℎ ∈
(Unic1p‘𝑅)) → (((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ) ∈ 𝑀) |
71 | 43, 54, 70 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
(((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ) ∈ 𝑀) |
72 | 68, 71 | elind 4124 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
(((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ) ∈ (𝐼 ∩ 𝑀)) |
73 | | eqid 2738 |
. . . . . . . . . 10
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
74 | 73, 55 | unitrrg 20477 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
75 | 43, 74 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
76 | 75, 60 | sseldd 3918 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) →
((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))) ∈ (RLReg‘𝑅)) |
77 | 10, 11, 73, 1, 66, 44 | deg1mul3 25185 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))) ∈ (RLReg‘𝑅) ∧ ℎ ∈ (Base‘𝑃)) → (𝐷‘(((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ)) = (𝐷‘ℎ)) |
78 | 43, 76, 49, 77 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → (𝐷‘(((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ)) = (𝐷‘ℎ)) |
79 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑔 = (((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ) → ((𝐷‘𝑔) = (𝐷‘ℎ) ↔ (𝐷‘(((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ)) = (𝐷‘ℎ))) |
80 | 79 | rspcev 3552 |
. . . . . 6
⊢
(((((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ) ∈ (𝐼 ∩ 𝑀) ∧ (𝐷‘(((algSc‘𝑃)‘((invr‘𝑅)‘((coe1‘ℎ)‘(𝐷‘ℎ))))(.r‘𝑃)ℎ)) = (𝐷‘ℎ)) → ∃𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = (𝐷‘ℎ)) |
81 | 72, 78, 80 | syl2anc 583 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → ∃𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = (𝐷‘ℎ)) |
82 | | eqeq2 2750 |
. . . . . 6
⊢ ((𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
→ ((𝐷‘𝑔) = (𝐷‘ℎ) ↔ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
83 | 82 | rexbidv 3225 |
. . . . 5
⊢ ((𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
→ (∃𝑔 ∈
(𝐼 ∩ 𝑀)(𝐷‘𝑔) = (𝐷‘ℎ) ↔ ∃𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
84 | 81, 83 | syl5ibcom 244 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ ℎ ∈ (𝐼 ∖ { 0 })) → ((𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
→ ∃𝑔 ∈
(𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
85 | 84 | rexlimdva 3212 |
. . 3
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (∃ℎ ∈ (𝐼 ∖ { 0 })(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
→ ∃𝑔 ∈
(𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
86 | 40, 85 | mpd 15 |
. 2
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)) |
87 | | eqid 2738 |
. . . . . . 7
⊢
(-g‘𝑃) = (-g‘𝑃) |
88 | 9 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
→ 𝑅 ∈
Ring) |
89 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → 𝑔 ∈ (𝐼 ∩ 𝑀)) |
90 | 89 | elin2d 4129 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → 𝑔 ∈ 𝑀) |
91 | 90 | adantr 480 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
→ 𝑔 ∈ 𝑀) |
92 | | simprl 767 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
→ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)) |
93 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → ℎ ∈ (𝐼 ∩ 𝑀)) |
94 | 93 | elin2d 4129 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → ℎ ∈ 𝑀) |
95 | 94 | adantr 480 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
→ ℎ ∈ 𝑀) |
96 | | simprr 769 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
→ (𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)) |
97 | 10, 69, 11, 87, 88, 91, 92, 95, 96 | deg1submon1p 25222 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
→ (𝐷‘(𝑔(-g‘𝑃)ℎ)) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)) |
98 | 97 | ex 412 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → (((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
→ (𝐷‘(𝑔(-g‘𝑃)ℎ)) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
99 | 17 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 ) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆
(ℤ≥‘0)) |
100 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 ) → 𝐷 Fn (Base‘𝑃)) |
101 | 32 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 ) → (𝐼 ∖ { 0 }) ⊆
(Base‘𝑃)) |
102 | 19 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → 𝑃 ∈ Ring) |
103 | | simpl2 1190 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → 𝐼 ∈ 𝑈) |
104 | 89 | elin1d 4128 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → 𝑔 ∈ 𝐼) |
105 | 93 | elin1d 4128 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → ℎ ∈ 𝐼) |
106 | 2, 87 | lidlsubcl 20400 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑔 ∈ 𝐼 ∧ ℎ ∈ 𝐼)) → (𝑔(-g‘𝑃)ℎ) ∈ 𝐼) |
107 | 102, 103,
104, 105, 106 | syl22anc 835 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → (𝑔(-g‘𝑃)ℎ) ∈ 𝐼) |
108 | 107 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 ) → (𝑔(-g‘𝑃)ℎ) ∈ 𝐼) |
109 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 ) → (𝑔(-g‘𝑃)ℎ) ≠ 0 ) |
110 | | eldifsn 4717 |
. . . . . . . . . . 11
⊢ ((𝑔(-g‘𝑃)ℎ) ∈ (𝐼 ∖ { 0 }) ↔ ((𝑔(-g‘𝑃)ℎ) ∈ 𝐼 ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 )) |
111 | 108, 109,
110 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 ) → (𝑔(-g‘𝑃)ℎ) ∈ (𝐼 ∖ { 0 })) |
112 | | fnfvima 7091 |
. . . . . . . . . 10
⊢ ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆
(Base‘𝑃) ∧ (𝑔(-g‘𝑃)ℎ) ∈ (𝐼 ∖ { 0 })) → (𝐷‘(𝑔(-g‘𝑃)ℎ)) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) |
113 | 100, 101,
111, 112 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 ) → (𝐷‘(𝑔(-g‘𝑃)ℎ)) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) |
114 | | infssuzle 12600 |
. . . . . . . . 9
⊢ (((𝐷 “ (𝐼 ∖ { 0 })) ⊆
(ℤ≥‘0) ∧ (𝐷‘(𝑔(-g‘𝑃)ℎ)) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤
(𝐷‘(𝑔(-g‘𝑃)ℎ))) |
115 | 99, 113, 114 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) ∧ (𝑔(-g‘𝑃)ℎ) ≠ 0 ) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤
(𝐷‘(𝑔(-g‘𝑃)ℎ))) |
116 | 115 | ex 412 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → ((𝑔(-g‘𝑃)ℎ) ≠ 0 → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤
(𝐷‘(𝑔(-g‘𝑃)ℎ)))) |
117 | | imassrn 5969 |
. . . . . . . . . . 11
⊢ (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ran 𝐷 |
118 | | frn 6591 |
. . . . . . . . . . . 12
⊢ (𝐷:(Base‘𝑃)⟶ℝ* → ran
𝐷 ⊆
ℝ*) |
119 | 28, 118 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ran 𝐷 ⊆
ℝ* |
120 | 117, 119 | sstri 3926 |
. . . . . . . . . 10
⊢ (𝐷 “ (𝐼 ∖ { 0 })) ⊆
ℝ* |
121 | 120, 38 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
∈ ℝ*) |
122 | 121 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
∈ ℝ*) |
123 | | ringgrp 19703 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) |
124 | 19, 123 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝑃 ∈ Grp) |
125 | 124 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → 𝑃 ∈ Grp) |
126 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∩ 𝑀) ⊆ 𝐼 |
127 | 126, 4 | sstrid 3928 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐼 ∩ 𝑀) ⊆ (Base‘𝑃)) |
128 | 127 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → (𝐼 ∩ 𝑀) ⊆ (Base‘𝑃)) |
129 | 128, 89 | sseldd 3918 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → 𝑔 ∈ (Base‘𝑃)) |
130 | 128, 93 | sseldd 3918 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → ℎ ∈ (Base‘𝑃)) |
131 | 1, 87 | grpsubcl 18570 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ℎ ∈ (Base‘𝑃)) → (𝑔(-g‘𝑃)ℎ) ∈ (Base‘𝑃)) |
132 | 125, 129,
130, 131 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → (𝑔(-g‘𝑃)ℎ) ∈ (Base‘𝑃)) |
133 | 10, 11, 1 | deg1xrcl 25152 |
. . . . . . . . 9
⊢ ((𝑔(-g‘𝑃)ℎ) ∈ (Base‘𝑃) → (𝐷‘(𝑔(-g‘𝑃)ℎ)) ∈
ℝ*) |
134 | 132, 133 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → (𝐷‘(𝑔(-g‘𝑃)ℎ)) ∈
ℝ*) |
135 | 122, 134 | xrlenltd 10972 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤
(𝐷‘(𝑔(-g‘𝑃)ℎ)) ↔ ¬ (𝐷‘(𝑔(-g‘𝑃)ℎ)) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
136 | 116, 135 | sylibd 238 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → ((𝑔(-g‘𝑃)ℎ) ≠ 0 → ¬ (𝐷‘(𝑔(-g‘𝑃)ℎ)) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
137 | 136 | necon4ad 2961 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → ((𝐷‘(𝑔(-g‘𝑃)ℎ)) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
→ (𝑔(-g‘𝑃)ℎ) = 0 )) |
138 | 98, 137 | syld 47 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → (((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
→ (𝑔(-g‘𝑃)ℎ) = 0 )) |
139 | 1, 12, 87 | grpsubeq0 18576 |
. . . . 5
⊢ ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ℎ ∈ (Base‘𝑃)) → ((𝑔(-g‘𝑃)ℎ) = 0 ↔ 𝑔 = ℎ)) |
140 | 125, 129,
130, 139 | syl3anc 1369 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → ((𝑔(-g‘𝑃)ℎ) = 0 ↔ 𝑔 = ℎ)) |
141 | 138, 140 | sylibd 238 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼 ∩ 𝑀) ∧ ℎ ∈ (𝐼 ∩ 𝑀))) → (((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
→ 𝑔 = ℎ)) |
142 | 141 | ralrimivva 3114 |
. 2
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∀𝑔 ∈ (𝐼 ∩ 𝑀)∀ℎ ∈ (𝐼 ∩ 𝑀)(((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
→ 𝑔 = ℎ)) |
143 | | fveqeq2 6765 |
. . 3
⊢ (𝑔 = ℎ → ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
↔ (𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
))) |
144 | 143 | reu4 3661 |
. 2
⊢
(∃!𝑔 ∈
(𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )
↔ (∃𝑔 ∈
(𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
∀𝑔 ∈ (𝐼 ∩ 𝑀)∀ℎ ∈ (𝐼 ∩ 𝑀)(((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧
(𝐷‘ℎ) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
→ 𝑔 = ℎ))) |
145 | 86, 142, 144 | sylanbrc 582 |
1
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, <
)) |