MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1peu Structured version   Visualization version   GIF version

Theorem ig1peu 26154
Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1peu.p 𝑃 = (Poly1𝑅)
ig1peu.u 𝑈 = (LIdeal‘𝑃)
ig1peu.z 0 = (0g𝑃)
ig1peu.m 𝑀 = (Monic1p𝑅)
ig1peu.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
ig1peu ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Distinct variable groups:   𝐷,𝑔   𝑔,𝐼   𝑔,𝑀   𝑃,𝑔   𝑅,𝑔   𝑈,𝑔   0 ,𝑔

Proof of Theorem ig1peu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2 ig1peu.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑃)
31, 2lidlss 21120 . . . . . . . . . 10 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
433ad2ant2 1131 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ⊆ (Base‘𝑃))
54ssdifd 4137 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }))
6 imass2 6107 . . . . . . . 8 ((𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
75, 6syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
8 drngring 20643 . . . . . . . . 9 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
983ad2ant1 1130 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑅 ∈ Ring)
10 ig1peu.d . . . . . . . . 9 𝐷 = ( deg1𝑅)
11 ig1peu.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
12 ig1peu.z . . . . . . . . 9 0 = (0g𝑃)
1310, 11, 12, 1deg1n0ima 26069 . . . . . . . 8 (𝑅 ∈ Ring → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
149, 13syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
157, 14sstrd 3987 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℕ0)
16 nn0uz 12897 . . . . . 6 0 = (ℤ‘0)
1715, 16sseqtrdi 4027 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
1811ply1ring 22190 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
199, 18syl 17 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Ring)
20 simp2 1134 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼𝑈)
212, 12lidl0cl 21128 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
2219, 20, 21syl2anc 582 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 0𝐼)
2322snssd 4814 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼)
24 simp3 1135 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
2524necomd 2985 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼)
26 pssdifn0 4365 . . . . . . 7 (({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼) → (𝐼 ∖ { 0 }) ≠ ∅)
2723, 25, 26syl2anc 582 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ≠ ∅)
2810, 11, 1deg1xrf 26061 . . . . . . . . . 10 𝐷:(Base‘𝑃)⟶ℝ*
29 ffn 6723 . . . . . . . . . 10 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3028, 29ax-mp 5 . . . . . . . . 9 𝐷 Fn (Base‘𝑃)
3130a1i 11 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐷 Fn (Base‘𝑃))
324ssdifssd 4139 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
33 fnimaeq0 6689 . . . . . . . 8 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃)) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3431, 32, 33syl2anc 582 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3534necon3bid 2974 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅ ↔ (𝐼 ∖ { 0 }) ≠ ∅))
3627, 35mpbird 256 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅)
37 infssuzcl 12949 . . . . 5 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3817, 36, 37syl2anc 582 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3931, 32fvelimabd 6971 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })) ↔ ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4038, 39mpbid 231 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
4119adantr 479 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑃 ∈ Ring)
42 simpl2 1189 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼𝑈)
439adantr 479 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring)
44 eqid 2725 . . . . . . . . . . 11 (algSc‘𝑃) = (algSc‘𝑃)
45 eqid 2725 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4611, 44, 45, 1ply1sclf 22229 . . . . . . . . . 10 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
4743, 46syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
48 simpl1 1188 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ DivRing)
4932sselda 3976 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Base‘𝑃))
50 eldifsni 4795 . . . . . . . . . . . . . 14 ( ∈ (𝐼 ∖ { 0 }) → 0 )
5150adantl 480 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 0 )
52 eqid 2725 . . . . . . . . . . . . . 14 (Unic1p𝑅) = (Unic1p𝑅)
5311, 1, 12, 52drnguc1p 26153 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ ∈ (Base‘𝑃) ∧ 0 ) → ∈ (Unic1p𝑅))
5448, 49, 51, 53syl3anc 1368 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Unic1p𝑅))
55 eqid 2725 . . . . . . . . . . . . 13 (Unit‘𝑅) = (Unit‘𝑅)
5610, 55, 52uc1pldg 26129 . . . . . . . . . . . 12 ( ∈ (Unic1p𝑅) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
5754, 56syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
58 eqid 2725 . . . . . . . . . . . 12 (invr𝑅) = (invr𝑅)
5955, 58unitinvcl 20341 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1)‘(𝐷)) ∈ (Unit‘𝑅)) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6043, 57, 59syl2anc 582 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6145, 55unitcl 20326 . . . . . . . . . 10 (((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6260, 61syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6347, 62ffvelcdmd 7094 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃))
64 eldifi 4123 . . . . . . . . 9 ( ∈ (𝐼 ∖ { 0 }) → 𝐼)
6564adantl 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼)
66 eqid 2725 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
672, 1, 66lidlmcl 21133 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃) ∧ 𝐼)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
6841, 42, 63, 65, 67syl22anc 837 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
69 ig1peu.m . . . . . . . . 9 𝑀 = (Monic1p𝑅)
7052, 69, 11, 66, 44, 10, 58uc1pmon1p 26132 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ∈ (Unic1p𝑅)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7143, 54, 70syl2anc 582 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7268, 71elind 4192 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀))
73 eqid 2725 . . . . . . . . . 10 (RLReg‘𝑅) = (RLReg‘𝑅)
7473, 55unitrrg 21257 . . . . . . . . 9 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7543, 74syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7675, 60sseldd 3977 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅))
7710, 11, 73, 1, 66, 44deg1mul3 26096 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅) ∧ ∈ (Base‘𝑃)) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
7843, 76, 49, 77syl3anc 1368 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
79 fveqeq2 6905 . . . . . . 7 (𝑔 = (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) → ((𝐷𝑔) = (𝐷) ↔ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)))
8079rspcev 3606 . . . . . 6 (((((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀) ∧ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
8172, 78, 80syl2anc 582 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
82 eqeq2 2737 . . . . . 6 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ((𝐷𝑔) = (𝐷) ↔ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8382rexbidv 3168 . . . . 5 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷) ↔ ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8481, 83syl5ibcom 244 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8584rexlimdva 3144 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8640, 85mpd 15 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
87 eqid 2725 . . . . . . 7 (-g𝑃) = (-g𝑃)
889ad2antrr 724 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑅 ∈ Ring)
89 simprl 769 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (𝐼𝑀))
9089elin2d 4197 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝑀)
9190adantr 479 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑔𝑀)
92 simprl 769 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
93 simprr 771 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (𝐼𝑀))
9493elin2d 4197 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑀)
9594adantr 479 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑀)
96 simprr 771 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
9710, 69, 11, 87, 88, 91, 92, 95, 96deg1submon1p 26133 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
9897ex 411 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
9917ad2antrr 724 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
10030a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → 𝐷 Fn (Base‘𝑃))
10132ad2antrr 724 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
10219adantr 479 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Ring)
103 simpl2 1189 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼𝑈)
10489elin1d 4196 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝐼)
10593elin1d 4196 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼)
1062, 87lidlsubcl 21132 . . . . . . . . . . . . 13 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑔𝐼𝐼)) → (𝑔(-g𝑃)) ∈ 𝐼)
107102, 103, 104, 105, 106syl22anc 837 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ 𝐼)
108107adantr 479 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ 𝐼)
109 simpr 483 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ≠ 0 )
110 eldifsn 4792 . . . . . . . . . . 11 ((𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }) ↔ ((𝑔(-g𝑃)) ∈ 𝐼 ∧ (𝑔(-g𝑃)) ≠ 0 ))
111108, 109, 110sylanbrc 581 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }))
112 fnfvima 7245 . . . . . . . . . 10 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃) ∧ (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 })) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
113100, 101, 111, 112syl3anc 1368 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
114 infssuzle 12948 . . . . . . . . 9 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
11599, 113, 114syl2anc 582 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
116115ex 411 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃)))))
117 imassrn 6075 . . . . . . . . . . 11 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ran 𝐷
118 frn 6730 . . . . . . . . . . . 12 (𝐷:(Base‘𝑃)⟶ℝ* → ran 𝐷 ⊆ ℝ*)
11928, 118ax-mp 5 . . . . . . . . . . 11 ran 𝐷 ⊆ ℝ*
120117, 119sstri 3986 . . . . . . . . . 10 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℝ*
121120, 38sselid 3974 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
122121adantr 479 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
123 ringgrp 20190 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
12419, 123syl 17 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Grp)
125124adantr 479 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Grp)
126 inss1 4227 . . . . . . . . . . . . 13 (𝐼𝑀) ⊆ 𝐼
127126, 4sstrid 3988 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼𝑀) ⊆ (Base‘𝑃))
128127adantr 479 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐼𝑀) ⊆ (Base‘𝑃))
129128, 89sseldd 3977 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (Base‘𝑃))
130128, 93sseldd 3977 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (Base‘𝑃))
1311, 87grpsubcl 18984 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
132125, 129, 130, 131syl3anc 1368 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
13310, 11, 1deg1xrcl 26062 . . . . . . . . 9 ((𝑔(-g𝑃)) ∈ (Base‘𝑃) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
134132, 133syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
135122, 134xrlenltd 11312 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))) ↔ ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
136116, 135sylibd 238 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
137136necon4ad 2948 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (𝑔(-g𝑃)) = 0 ))
13898, 137syld 47 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝑔(-g𝑃)) = 0 ))
1391, 12, 87grpsubeq0 18990 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → ((𝑔(-g𝑃)) = 0𝑔 = ))
140125, 129, 130, 139syl3anc 1368 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) = 0𝑔 = ))
141138, 140sylibd 238 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
142141ralrimivva 3190 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
143 fveqeq2 6905 . . 3 (𝑔 = → ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
144143reu4 3723 . 2 (∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = )))
14586, 142, 144sylanbrc 581 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  ∃!wreu 3361  cdif 3941  cin 3943  wss 3944  c0 4322  {csn 4630   class class class wbr 5149  ran crn 5679  cima 5681   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  infcinf 9466  cr 11139  0cc0 11140  *cxr 11279   < clt 11280  cle 11281  0cn0 12505  cuz 12855  Basecbs 17183  .rcmulr 17237  0gc0g 17424  Grpcgrp 18898  -gcsg 18900  Ringcrg 20185  Unitcui 20306  invrcinvr 20338  DivRingcdr 20636  LIdealclidl 21114  RLRegcrlreg 21243  algSccascl 21803  Poly1cpl1 22119  coe1cco1 22120   deg1 cdg1 26031  Monic1pcmn1 26106  Unic1pcuc1p 26107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-subrng 20495  df-subrg 20520  df-drng 20638  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rlreg 21247  df-cnfld 21297  df-ascl 21806  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125  df-mdeg 26032  df-deg1 26033  df-mon1 26111  df-uc1p 26112
This theorem is referenced by:  ig1pval3  26157
  Copyright terms: Public domain W3C validator