MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1peu Structured version   Visualization version   GIF version

Theorem ig1peu 26130
Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1peu.p 𝑃 = (Poly1𝑅)
ig1peu.u 𝑈 = (LIdeal‘𝑃)
ig1peu.z 0 = (0g𝑃)
ig1peu.m 𝑀 = (Monic1p𝑅)
ig1peu.d 𝐷 = (deg1𝑅)
Assertion
Ref Expression
ig1peu ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Distinct variable groups:   𝐷,𝑔   𝑔,𝐼   𝑔,𝑀   𝑃,𝑔   𝑅,𝑔   𝑈,𝑔   0 ,𝑔

Proof of Theorem ig1peu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2 ig1peu.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑃)
31, 2lidlss 21171 . . . . . . . . . 10 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
433ad2ant2 1134 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ⊆ (Base‘𝑃))
54ssdifd 4120 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }))
6 imass2 6089 . . . . . . . 8 ((𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
75, 6syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
8 drngring 20694 . . . . . . . . 9 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
983ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑅 ∈ Ring)
10 ig1peu.d . . . . . . . . 9 𝐷 = (deg1𝑅)
11 ig1peu.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
12 ig1peu.z . . . . . . . . 9 0 = (0g𝑃)
1310, 11, 12, 1deg1n0ima 26044 . . . . . . . 8 (𝑅 ∈ Ring → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
149, 13syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
157, 14sstrd 3969 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℕ0)
16 nn0uz 12892 . . . . . 6 0 = (ℤ‘0)
1715, 16sseqtrdi 3999 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
1811ply1ring 22181 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
199, 18syl 17 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Ring)
20 simp2 1137 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼𝑈)
212, 12lidl0cl 21179 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
2219, 20, 21syl2anc 584 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 0𝐼)
2322snssd 4785 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼)
24 simp3 1138 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
2524necomd 2987 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼)
26 pssdifn0 4343 . . . . . . 7 (({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼) → (𝐼 ∖ { 0 }) ≠ ∅)
2723, 25, 26syl2anc 584 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ≠ ∅)
2810, 11, 1deg1xrf 26036 . . . . . . . . . 10 𝐷:(Base‘𝑃)⟶ℝ*
29 ffn 6705 . . . . . . . . . 10 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3028, 29ax-mp 5 . . . . . . . . 9 𝐷 Fn (Base‘𝑃)
3130a1i 11 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐷 Fn (Base‘𝑃))
324ssdifssd 4122 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
33 fnimaeq0 6670 . . . . . . . 8 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃)) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3431, 32, 33syl2anc 584 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3534necon3bid 2976 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅ ↔ (𝐼 ∖ { 0 }) ≠ ∅))
3627, 35mpbird 257 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅)
37 infssuzcl 12946 . . . . 5 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3817, 36, 37syl2anc 584 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3931, 32fvelimabd 6951 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })) ↔ ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4038, 39mpbid 232 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
4119adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑃 ∈ Ring)
42 simpl2 1193 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼𝑈)
439adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring)
44 eqid 2735 . . . . . . . . . . 11 (algSc‘𝑃) = (algSc‘𝑃)
45 eqid 2735 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4611, 44, 45, 1ply1sclf 22220 . . . . . . . . . 10 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
4743, 46syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
48 simpl1 1192 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ DivRing)
4932sselda 3958 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Base‘𝑃))
50 eldifsni 4766 . . . . . . . . . . . . . 14 ( ∈ (𝐼 ∖ { 0 }) → 0 )
5150adantl 481 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 0 )
52 eqid 2735 . . . . . . . . . . . . . 14 (Unic1p𝑅) = (Unic1p𝑅)
5311, 1, 12, 52drnguc1p 26129 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ ∈ (Base‘𝑃) ∧ 0 ) → ∈ (Unic1p𝑅))
5448, 49, 51, 53syl3anc 1373 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Unic1p𝑅))
55 eqid 2735 . . . . . . . . . . . . 13 (Unit‘𝑅) = (Unit‘𝑅)
5610, 55, 52uc1pldg 26104 . . . . . . . . . . . 12 ( ∈ (Unic1p𝑅) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
5754, 56syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
58 eqid 2735 . . . . . . . . . . . 12 (invr𝑅) = (invr𝑅)
5955, 58unitinvcl 20348 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1)‘(𝐷)) ∈ (Unit‘𝑅)) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6043, 57, 59syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6145, 55unitcl 20333 . . . . . . . . . 10 (((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6260, 61syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6347, 62ffvelcdmd 7074 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃))
64 eldifi 4106 . . . . . . . . 9 ( ∈ (𝐼 ∖ { 0 }) → 𝐼)
6564adantl 481 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼)
66 eqid 2735 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
672, 1, 66lidlmcl 21184 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃) ∧ 𝐼)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
6841, 42, 63, 65, 67syl22anc 838 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
69 ig1peu.m . . . . . . . . 9 𝑀 = (Monic1p𝑅)
7052, 69, 11, 66, 44, 10, 58uc1pmon1p 26107 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ∈ (Unic1p𝑅)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7143, 54, 70syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7268, 71elind 4175 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀))
73 eqid 2735 . . . . . . . . . 10 (RLReg‘𝑅) = (RLReg‘𝑅)
7473, 55unitrrg 20661 . . . . . . . . 9 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7543, 74syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7675, 60sseldd 3959 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅))
7710, 11, 73, 1, 66, 44deg1mul3 26071 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅) ∧ ∈ (Base‘𝑃)) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
7843, 76, 49, 77syl3anc 1373 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
79 fveqeq2 6884 . . . . . . 7 (𝑔 = (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) → ((𝐷𝑔) = (𝐷) ↔ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)))
8079rspcev 3601 . . . . . 6 (((((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀) ∧ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
8172, 78, 80syl2anc 584 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
82 eqeq2 2747 . . . . . 6 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ((𝐷𝑔) = (𝐷) ↔ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8382rexbidv 3164 . . . . 5 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷) ↔ ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8481, 83syl5ibcom 245 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8584rexlimdva 3141 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8640, 85mpd 15 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
87 eqid 2735 . . . . . . 7 (-g𝑃) = (-g𝑃)
889ad2antrr 726 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑅 ∈ Ring)
89 simprl 770 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (𝐼𝑀))
9089elin2d 4180 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝑀)
9190adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑔𝑀)
92 simprl 770 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
93 simprr 772 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (𝐼𝑀))
9493elin2d 4180 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑀)
9594adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑀)
96 simprr 772 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
9710, 69, 11, 87, 88, 91, 92, 95, 96deg1submon1p 26108 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
9897ex 412 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
9917ad2antrr 726 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
10030a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → 𝐷 Fn (Base‘𝑃))
10132ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
10219adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Ring)
103 simpl2 1193 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼𝑈)
10489elin1d 4179 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝐼)
10593elin1d 4179 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼)
1062, 87lidlsubcl 21183 . . . . . . . . . . . . 13 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑔𝐼𝐼)) → (𝑔(-g𝑃)) ∈ 𝐼)
107102, 103, 104, 105, 106syl22anc 838 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ 𝐼)
108107adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ 𝐼)
109 simpr 484 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ≠ 0 )
110 eldifsn 4762 . . . . . . . . . . 11 ((𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }) ↔ ((𝑔(-g𝑃)) ∈ 𝐼 ∧ (𝑔(-g𝑃)) ≠ 0 ))
111108, 109, 110sylanbrc 583 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }))
112 fnfvima 7224 . . . . . . . . . 10 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃) ∧ (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 })) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
113100, 101, 111, 112syl3anc 1373 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
114 infssuzle 12945 . . . . . . . . 9 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
11599, 113, 114syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
116115ex 412 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃)))))
117 imassrn 6058 . . . . . . . . . . 11 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ran 𝐷
118 frn 6712 . . . . . . . . . . . 12 (𝐷:(Base‘𝑃)⟶ℝ* → ran 𝐷 ⊆ ℝ*)
11928, 118ax-mp 5 . . . . . . . . . . 11 ran 𝐷 ⊆ ℝ*
120117, 119sstri 3968 . . . . . . . . . 10 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℝ*
121120, 38sselid 3956 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
122121adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
123 ringgrp 20196 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
12419, 123syl 17 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Grp)
125124adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Grp)
126 inss1 4212 . . . . . . . . . . . . 13 (𝐼𝑀) ⊆ 𝐼
127126, 4sstrid 3970 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼𝑀) ⊆ (Base‘𝑃))
128127adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐼𝑀) ⊆ (Base‘𝑃))
129128, 89sseldd 3959 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (Base‘𝑃))
130128, 93sseldd 3959 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (Base‘𝑃))
1311, 87grpsubcl 19001 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
132125, 129, 130, 131syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
13310, 11, 1deg1xrcl 26037 . . . . . . . . 9 ((𝑔(-g𝑃)) ∈ (Base‘𝑃) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
134132, 133syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
135122, 134xrlenltd 11299 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))) ↔ ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
136116, 135sylibd 239 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
137136necon4ad 2951 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (𝑔(-g𝑃)) = 0 ))
13898, 137syld 47 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝑔(-g𝑃)) = 0 ))
1391, 12, 87grpsubeq0 19007 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → ((𝑔(-g𝑃)) = 0𝑔 = ))
140125, 129, 130, 139syl3anc 1373 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) = 0𝑔 = ))
141138, 140sylibd 239 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
142141ralrimivva 3187 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
143 fveqeq2 6884 . . 3 (𝑔 = → ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
144143reu4 3714 . 2 (∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = )))
14586, 142, 144sylanbrc 583 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  ∃!wreu 3357  cdif 3923  cin 3925  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  ran crn 5655  cima 5657   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  infcinf 9451  cr 11126  0cc0 11127  *cxr 11266   < clt 11267  cle 11268  0cn0 12499  cuz 12850  Basecbs 17226  .rcmulr 17270  0gc0g 17451  Grpcgrp 18914  -gcsg 18916  Ringcrg 20191  Unitcui 20313  invrcinvr 20345  RLRegcrlreg 20649  DivRingcdr 20687  LIdealclidl 21165  algSccascl 21810  Poly1cpl1 22110  coe1cco1 22111  deg1cdg1 26009  Monic1pcmn1 26081  Unic1pcuc1p 26082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-drng 20689  df-lmod 20817  df-lss 20887  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-cnfld 21314  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-mdeg 26010  df-deg1 26011  df-mon1 26086  df-uc1p 26087
This theorem is referenced by:  ig1pval3  26133
  Copyright terms: Public domain W3C validator