MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1peu Structured version   Visualization version   GIF version

Theorem ig1peu 26080
Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1peu.p 𝑃 = (Poly1𝑅)
ig1peu.u 𝑈 = (LIdeal‘𝑃)
ig1peu.z 0 = (0g𝑃)
ig1peu.m 𝑀 = (Monic1p𝑅)
ig1peu.d 𝐷 = (deg1𝑅)
Assertion
Ref Expression
ig1peu ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Distinct variable groups:   𝐷,𝑔   𝑔,𝐼   𝑔,𝑀   𝑃,𝑔   𝑅,𝑔   𝑈,𝑔   0 ,𝑔

Proof of Theorem ig1peu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2 ig1peu.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑃)
31, 2lidlss 21122 . . . . . . . . . 10 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
433ad2ant2 1134 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ⊆ (Base‘𝑃))
54ssdifd 4108 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }))
6 imass2 6073 . . . . . . . 8 ((𝐼 ∖ { 0 }) ⊆ ((Base‘𝑃) ∖ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
75, 6syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (𝐷 “ ((Base‘𝑃) ∖ { 0 })))
8 drngring 20645 . . . . . . . . 9 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
983ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑅 ∈ Ring)
10 ig1peu.d . . . . . . . . 9 𝐷 = (deg1𝑅)
11 ig1peu.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
12 ig1peu.z . . . . . . . . 9 0 = (0g𝑃)
1310, 11, 12, 1deg1n0ima 25994 . . . . . . . 8 (𝑅 ∈ Ring → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
149, 13syl 17 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ ((Base‘𝑃) ∖ { 0 })) ⊆ ℕ0)
157, 14sstrd 3957 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℕ0)
16 nn0uz 12835 . . . . . 6 0 = (ℤ‘0)
1715, 16sseqtrdi 3987 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
1811ply1ring 22132 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
199, 18syl 17 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Ring)
20 simp2 1137 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼𝑈)
212, 12lidl0cl 21130 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
2219, 20, 21syl2anc 584 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 0𝐼)
2322snssd 4773 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼)
24 simp3 1138 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
2524necomd 2980 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼)
26 pssdifn0 4331 . . . . . . 7 (({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼) → (𝐼 ∖ { 0 }) ≠ ∅)
2723, 25, 26syl2anc 584 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ≠ ∅)
2810, 11, 1deg1xrf 25986 . . . . . . . . . 10 𝐷:(Base‘𝑃)⟶ℝ*
29 ffn 6688 . . . . . . . . . 10 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3028, 29ax-mp 5 . . . . . . . . 9 𝐷 Fn (Base‘𝑃)
3130a1i 11 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐷 Fn (Base‘𝑃))
324ssdifssd 4110 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
33 fnimaeq0 6651 . . . . . . . 8 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃)) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3431, 32, 33syl2anc 584 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) = ∅ ↔ (𝐼 ∖ { 0 }) = ∅))
3534necon3bid 2969 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅ ↔ (𝐼 ∖ { 0 }) ≠ ∅))
3627, 35mpbird 257 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅)
37 infssuzcl 12891 . . . . 5 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷 “ (𝐼 ∖ { 0 })) ≠ ∅) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3817, 36, 37syl2anc 584 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
3931, 32fvelimabd 6934 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ (𝐷 “ (𝐼 ∖ { 0 })) ↔ ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
4038, 39mpbid 232 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
4119adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑃 ∈ Ring)
42 simpl2 1193 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼𝑈)
439adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring)
44 eqid 2729 . . . . . . . . . . 11 (algSc‘𝑃) = (algSc‘𝑃)
45 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4611, 44, 45, 1ply1sclf 22171 . . . . . . . . . 10 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
4743, 46syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
48 simpl1 1192 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ DivRing)
4932sselda 3946 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Base‘𝑃))
50 eldifsni 4754 . . . . . . . . . . . . . 14 ( ∈ (𝐼 ∖ { 0 }) → 0 )
5150adantl 481 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 0 )
52 eqid 2729 . . . . . . . . . . . . . 14 (Unic1p𝑅) = (Unic1p𝑅)
5311, 1, 12, 52drnguc1p 26079 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ ∈ (Base‘𝑃) ∧ 0 ) → ∈ (Unic1p𝑅))
5448, 49, 51, 53syl3anc 1373 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∈ (Unic1p𝑅))
55 eqid 2729 . . . . . . . . . . . . 13 (Unit‘𝑅) = (Unit‘𝑅)
5610, 55, 52uc1pldg 26054 . . . . . . . . . . . 12 ( ∈ (Unic1p𝑅) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
5754, 56syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((coe1)‘(𝐷)) ∈ (Unit‘𝑅))
58 eqid 2729 . . . . . . . . . . . 12 (invr𝑅) = (invr𝑅)
5955, 58unitinvcl 20299 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1)‘(𝐷)) ∈ (Unit‘𝑅)) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6043, 57, 59syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅))
6145, 55unitcl 20284 . . . . . . . . . 10 (((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Unit‘𝑅) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6260, 61syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (Base‘𝑅))
6347, 62ffvelcdmd 7057 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃))
64 eldifi 4094 . . . . . . . . 9 ( ∈ (𝐼 ∖ { 0 }) → 𝐼)
6564adantl 481 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → 𝐼)
66 eqid 2729 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
672, 1, 66lidlmcl 21135 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷)))) ∈ (Base‘𝑃) ∧ 𝐼)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
6841, 42, 63, 65, 67syl22anc 838 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝐼)
69 ig1peu.m . . . . . . . . 9 𝑀 = (Monic1p𝑅)
7052, 69, 11, 66, 44, 10, 58uc1pmon1p 26057 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ∈ (Unic1p𝑅)) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7143, 54, 70syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ 𝑀)
7268, 71elind 4163 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀))
73 eqid 2729 . . . . . . . . . 10 (RLReg‘𝑅) = (RLReg‘𝑅)
7473, 55unitrrg 20612 . . . . . . . . 9 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7543, 74syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
7675, 60sseldd 3947 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅))
7710, 11, 73, 1, 66, 44deg1mul3 26021 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘((coe1)‘(𝐷))) ∈ (RLReg‘𝑅) ∧ ∈ (Base‘𝑃)) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
7843, 76, 49, 77syl3anc 1373 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷))
79 fveqeq2 6867 . . . . . . 7 (𝑔 = (((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) → ((𝐷𝑔) = (𝐷) ↔ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)))
8079rspcev 3588 . . . . . 6 (((((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃)) ∈ (𝐼𝑀) ∧ (𝐷‘(((algSc‘𝑃)‘((invr𝑅)‘((coe1)‘(𝐷))))(.r𝑃))) = (𝐷)) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
8172, 78, 80syl2anc 584 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷))
82 eqeq2 2741 . . . . . 6 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ((𝐷𝑔) = (𝐷) ↔ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8382rexbidv 3157 . . . . 5 ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = (𝐷) ↔ ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8481, 83syl5ibcom 245 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ ∈ (𝐼 ∖ { 0 })) → ((𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8584rexlimdva 3134 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (∃ ∈ (𝐼 ∖ { 0 })(𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
8640, 85mpd 15 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
87 eqid 2729 . . . . . . 7 (-g𝑃) = (-g𝑃)
889ad2antrr 726 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑅 ∈ Ring)
89 simprl 770 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (𝐼𝑀))
9089elin2d 4168 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝑀)
9190adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑔𝑀)
92 simprl 770 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
93 simprr 772 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (𝐼𝑀))
9493elin2d 4168 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑀)
9594adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → 𝑀)
96 simprr 772 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
9710, 69, 11, 87, 88, 91, 92, 95, 96deg1submon1p 26058 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
9897ex 412 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
9917ad2antrr 726 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0))
10030a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → 𝐷 Fn (Base‘𝑃))
10132ad2antrr 726 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃))
10219adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Ring)
103 simpl2 1193 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼𝑈)
10489elin1d 4167 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔𝐼)
10593elin1d 4167 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝐼)
1062, 87lidlsubcl 21134 . . . . . . . . . . . . 13 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑔𝐼𝐼)) → (𝑔(-g𝑃)) ∈ 𝐼)
107102, 103, 104, 105, 106syl22anc 838 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ 𝐼)
108107adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ 𝐼)
109 simpr 484 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ≠ 0 )
110 eldifsn 4750 . . . . . . . . . . 11 ((𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }) ↔ ((𝑔(-g𝑃)) ∈ 𝐼 ∧ (𝑔(-g𝑃)) ≠ 0 ))
111108, 109, 110sylanbrc 583 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 }))
112 fnfvima 7207 . . . . . . . . . 10 ((𝐷 Fn (Base‘𝑃) ∧ (𝐼 ∖ { 0 }) ⊆ (Base‘𝑃) ∧ (𝑔(-g𝑃)) ∈ (𝐼 ∖ { 0 })) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
113100, 101, 111, 112syl3anc 1373 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 })))
114 infssuzle 12890 . . . . . . . . 9 (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ‘0) ∧ (𝐷‘(𝑔(-g𝑃))) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
11599, 113, 114syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) ∧ (𝑔(-g𝑃)) ≠ 0 ) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))))
116115ex 412 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃)))))
117 imassrn 6042 . . . . . . . . . . 11 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ran 𝐷
118 frn 6695 . . . . . . . . . . . 12 (𝐷:(Base‘𝑃)⟶ℝ* → ran 𝐷 ⊆ ℝ*)
11928, 118ax-mp 5 . . . . . . . . . . 11 ran 𝐷 ⊆ ℝ*
120117, 119sstri 3956 . . . . . . . . . 10 (𝐷 “ (𝐼 ∖ { 0 })) ⊆ ℝ*
121120, 38sselid 3944 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
122121adantr 480 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∈ ℝ*)
123 ringgrp 20147 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
12419, 123syl 17 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝑃 ∈ Grp)
125124adantr 480 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑃 ∈ Grp)
126 inss1 4200 . . . . . . . . . . . . 13 (𝐼𝑀) ⊆ 𝐼
127126, 4sstrid 3958 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐼𝑀) ⊆ (Base‘𝑃))
128127adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐼𝑀) ⊆ (Base‘𝑃))
129128, 89sseldd 3947 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → 𝑔 ∈ (Base‘𝑃))
130128, 93sseldd 3947 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ∈ (Base‘𝑃))
1311, 87grpsubcl 18952 . . . . . . . . . 10 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
132125, 129, 130, 131syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝑔(-g𝑃)) ∈ (Base‘𝑃))
13310, 11, 1deg1xrcl 25987 . . . . . . . . 9 ((𝑔(-g𝑃)) ∈ (Base‘𝑃) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
134132, 133syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (𝐷‘(𝑔(-g𝑃))) ∈ ℝ*)
135122, 134xrlenltd 11240 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘(𝑔(-g𝑃))) ↔ ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
136116, 135sylibd 239 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) ≠ 0 → ¬ (𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
137136necon4ad 2944 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝐷‘(𝑔(-g𝑃))) < inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (𝑔(-g𝑃)) = 0 ))
13898, 137syld 47 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → (𝑔(-g𝑃)) = 0 ))
1391, 12, 87grpsubeq0 18958 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑔 ∈ (Base‘𝑃) ∧ ∈ (Base‘𝑃)) → ((𝑔(-g𝑃)) = 0𝑔 = ))
140125, 129, 130, 139syl3anc 1373 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → ((𝑔(-g𝑃)) = 0𝑔 = ))
141138, 140sylibd 239 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) ∧ (𝑔 ∈ (𝐼𝑀) ∧ ∈ (𝐼𝑀))) → (((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
142141ralrimivva 3180 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = ))
143 fveqeq2 6867 . . 3 (𝑔 = → ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
144143reu4 3702 . 2 (∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (∃𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ ∀𝑔 ∈ (𝐼𝑀)∀ ∈ (𝐼𝑀)(((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ∧ (𝐷) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) → 𝑔 = )))
14586, 142, 144sylanbrc 583 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  cdif 3911  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  infcinf 9392  cr 11067  0cc0 11068  *cxr 11207   < clt 11208  cle 11209  0cn0 12442  cuz 12793  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  -gcsg 18867  Ringcrg 20142  Unitcui 20264  invrcinvr 20296  RLRegcrlreg 20600  DivRingcdr 20638  LIdealclidl 21116  algSccascl 21761  Poly1cpl1 22061  coe1cco1 22062  deg1cdg1 25959  Monic1pcmn1 26031  Unic1pcuc1p 26032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-drng 20640  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-cnfld 21265  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037
This theorem is referenced by:  ig1pval3  26083
  Copyright terms: Public domain W3C validator