Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrng Structured version   Visualization version   GIF version

Theorem qsdrng 32886
Description: An ideal 𝑀 is both left and right maximal if and only if the factor ring 𝑄 is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrng.2 (𝜑𝑀 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
qsdrng (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))))

Proof of Theorem qsdrng
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdrng.r . . . . . 6 (𝜑𝑅 ∈ NzRing)
2 nzrring 20408 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
43adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑅 ∈ Ring)
5 qsdrng.2 . . . . . 6 (𝜑𝑀 ∈ (2Ideal‘𝑅))
652idllidld 21016 . . . . 5 (𝜑𝑀 ∈ (LIdeal‘𝑅))
76adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑅))
8 drngnzr 20521 . . . . . . 7 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
98ad2antlr 724 . . . . . 6 (((𝜑𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → 𝑄 ∈ NzRing)
10 qsdrng.q . . . . . . . . . . 11 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
11 eqid 2731 . . . . . . . . . . 11 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1210, 11qusring 21024 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
133, 5, 12syl2anc 583 . . . . . . . . 9 (𝜑𝑄 ∈ Ring)
1413adantr 480 . . . . . . . 8 ((𝜑𝑀 = (Base‘𝑅)) → 𝑄 ∈ Ring)
15 oveq2 7420 . . . . . . . . . . . . . 14 (𝑀 = (Base‘𝑅) → (𝑅 ~QG 𝑀) = (𝑅 ~QG (Base‘𝑅)))
1615oveq2d 7428 . . . . . . . . . . . . 13 (𝑀 = (Base‘𝑅) → (𝑅 /s (𝑅 ~QG 𝑀)) = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
1710, 16eqtrid 2783 . . . . . . . . . . . 12 (𝑀 = (Base‘𝑅) → 𝑄 = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
1817fveq2d 6895 . . . . . . . . . . 11 (𝑀 = (Base‘𝑅) → (Base‘𝑄) = (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))))
193ringgrpd 20137 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Grp)
20 eqid 2731 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2731 . . . . . . . . . . . . 13 (𝑅 /s (𝑅 ~QG (Base‘𝑅))) = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))
2220, 21qustriv 32751 . . . . . . . . . . . 12 (𝑅 ∈ Grp → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
2319, 22syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
2418, 23sylan9eqr 2793 . . . . . . . . . 10 ((𝜑𝑀 = (Base‘𝑅)) → (Base‘𝑄) = {(Base‘𝑅)})
2524fveq2d 6895 . . . . . . . . 9 ((𝜑𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = (♯‘{(Base‘𝑅)}))
26 fvex 6904 . . . . . . . . . 10 (Base‘𝑅) ∈ V
27 hashsng 14334 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘{(Base‘𝑅)}) = 1)
2826, 27ax-mp 5 . . . . . . . . 9 (♯‘{(Base‘𝑅)}) = 1
2925, 28eqtrdi 2787 . . . . . . . 8 ((𝜑𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = 1)
30 0ringnnzr 20415 . . . . . . . . 9 (𝑄 ∈ Ring → ((♯‘(Base‘𝑄)) = 1 ↔ ¬ 𝑄 ∈ NzRing))
3130biimpa 476 . . . . . . . 8 ((𝑄 ∈ Ring ∧ (♯‘(Base‘𝑄)) = 1) → ¬ 𝑄 ∈ NzRing)
3214, 29, 31syl2anc 583 . . . . . . 7 ((𝜑𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing)
3332adantlr 712 . . . . . 6 (((𝜑𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing)
349, 33pm2.65da 814 . . . . 5 ((𝜑𝑄 ∈ DivRing) → ¬ 𝑀 = (Base‘𝑅))
3534neqned 2946 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ≠ (Base‘𝑅))
36 simplr 766 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
37 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀)
3837neqned 2946 . . . . . . . . . . . 12 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗𝑀)
3938necomd 2995 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
40 pssdifn0 4365 . . . . . . . . . . 11 ((𝑀𝑗𝑀𝑗) → (𝑗𝑀) ≠ ∅)
4136, 39, 40syl2anc 583 . . . . . . . . . 10 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗𝑀) ≠ ∅)
42 n0 4346 . . . . . . . . . 10 ((𝑗𝑀) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑗𝑀))
4341, 42sylib 217 . . . . . . . . 9 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗𝑀))
44 qsdrng.0 . . . . . . . . . 10 𝑂 = (oppr𝑅)
451ad5antr 731 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑅 ∈ NzRing)
465ad5antr 731 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
47 simp-5r 783 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑄 ∈ DivRing)
48 simp-4r 781 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 ∈ (LIdeal‘𝑅))
4936adantr 480 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀𝑗)
50 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑥 ∈ (𝑗𝑀))
5144, 10, 45, 46, 20, 47, 48, 49, 50qsdrnglem2 32885 . . . . . . . . 9 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 = (Base‘𝑅))
5243, 51exlimddv 1937 . . . . . . . 8 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅))
5352ex 412 . . . . . . 7 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (¬ 𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5453orrd 860 . . . . . 6 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5554ex 412 . . . . 5 (((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5655ralrimiva 3145 . . . 4 ((𝜑𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5720ismxidl 32853 . . . . 5 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
5857biimpar 477 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅))
594, 7, 35, 56, 58syl13anc 1371 . . 3 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑅))
6044opprring 20239 . . . . . 6 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
613, 60syl 17 . . . . 5 (𝜑𝑂 ∈ Ring)
6261adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑂 ∈ Ring)
635adantr 480 . . . . 5 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (2Ideal‘𝑅))
6463, 442idlridld 21017 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑂))
65 simplr 766 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
66 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀)
6766neqned 2946 . . . . . . . . . . . 12 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗𝑀)
6867necomd 2995 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
6965, 68, 40syl2anc 583 . . . . . . . . . 10 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗𝑀) ≠ ∅)
7069, 42sylib 217 . . . . . . . . 9 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗𝑀))
71 eqid 2731 . . . . . . . . . 10 (oppr𝑂) = (oppr𝑂)
72 eqid 2731 . . . . . . . . . 10 (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀))
7344opprnzr 20412 . . . . . . . . . . . 12 (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
741, 73syl 17 . . . . . . . . . . 11 (𝜑𝑂 ∈ NzRing)
7574ad5antr 731 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑂 ∈ NzRing)
7644, 3oppr2idl 32875 . . . . . . . . . . . 12 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
775, 76eleqtrd 2834 . . . . . . . . . . 11 (𝜑𝑀 ∈ (2Ideal‘𝑂))
7877ad5antr 731 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀 ∈ (2Ideal‘𝑂))
7944, 20opprbas 20233 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑂)
80 eqid 2731 . . . . . . . . . . . . 13 (oppr𝑄) = (oppr𝑄)
8180opprdrng 20533 . . . . . . . . . . . 12 (𝑄 ∈ DivRing ↔ (oppr𝑄) ∈ DivRing)
8220, 44, 10, 3, 5opprqusdrng 32882 . . . . . . . . . . . . 13 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing))
8382biimpa 476 . . . . . . . . . . . 12 ((𝜑 ∧ (oppr𝑄) ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
8481, 83sylan2b 593 . . . . . . . . . . 11 ((𝜑𝑄 ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
8584ad4antr 729 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
86 simp-4r 781 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 ∈ (LIdeal‘𝑂))
8765adantr 480 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀𝑗)
88 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑥 ∈ (𝑗𝑀))
8971, 72, 75, 78, 79, 85, 86, 87, 88qsdrnglem2 32885 . . . . . . . . 9 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 = (Base‘𝑅))
9070, 89exlimddv 1937 . . . . . . . 8 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅))
9190ex 412 . . . . . . 7 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) → (¬ 𝑗 = 𝑀𝑗 = (Base‘𝑅)))
9291orrd 860 . . . . . 6 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
9392ex 412 . . . . 5 (((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
9493ralrimiva 3145 . . . 4 ((𝜑𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
9579ismxidl 32853 . . . . 5 (𝑂 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑂) ↔ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
9695biimpar 477 . . . 4 ((𝑂 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑂))
9762, 64, 35, 94, 96syl13anc 1371 . . 3 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑂))
9859, 97jca 511 . 2 ((𝜑𝑄 ∈ DivRing) → (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂)))
991adantr 480 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑅 ∈ NzRing)
100 simprl 768 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑅))
101 simprr 770 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑂))
10244, 10, 99, 100, 101qsdrngi 32884 . 2 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑄 ∈ DivRing)
10398, 102impbida 798 1 (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2939  wral 3060  Vcvv 3473  cdif 3945  wss 3948  c0 4322  {csn 4628  cfv 6543  (class class class)co 7412  1c1 11115  chash 14295  Basecbs 17149   /s cqus 17456  Grpcgrp 18856   ~QG cqg 19039  Ringcrg 20128  opprcoppr 20225  NzRingcnzr 20404  DivRingcdr 20501  LIdealclidl 20929  2Idealc2idl 21006  MaxIdealcmxidl 32850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-tpos 8215  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-er 8707  df-ec 8709  df-qs 8713  df-map 8826  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-sup 9441  df-inf 9442  df-oi 9509  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-xnn0 12550  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-fzo 13633  df-seq 13972  df-hash 14296  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-hom 17226  df-cco 17227  df-0g 17392  df-gsum 17393  df-prds 17398  df-pws 17400  df-imas 17459  df-qus 17460  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-submnd 18707  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18988  df-subg 19040  df-nsg 19041  df-eqg 19042  df-ghm 19129  df-cntz 19223  df-oppg 19252  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-nzr 20405  df-subrg 20460  df-drng 20503  df-lmod 20617  df-lss 20688  df-lsp 20728  df-lmhm 20778  df-lbs 20831  df-sra 20931  df-rgmod 20932  df-lidl 20933  df-rsp 20934  df-2idl 21007  df-dsmm 21507  df-frlm 21522  df-uvc 21558  df-mxidl 32851
This theorem is referenced by:  qsfld  32887
  Copyright terms: Public domain W3C validator