Step | Hyp | Ref
| Expression |
1 | | qsdrng.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ NzRing) |
2 | | nzrring 20408 |
. . . . . 6
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → 𝑅 ∈ Ring) |
5 | | qsdrng.2 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) |
6 | 5 | 2idllidld 21016 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑅)) |
8 | | drngnzr 20521 |
. . . . . . 7
⊢ (𝑄 ∈ DivRing → 𝑄 ∈ NzRing) |
9 | 8 | ad2antlr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → 𝑄 ∈ NzRing) |
10 | | qsdrng.q |
. . . . . . . . . . 11
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) |
11 | | eqid 2731 |
. . . . . . . . . . 11
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
12 | 10, 11 | qusring 21024 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring) |
13 | 3, 5, 12 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ Ring) |
14 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 = (Base‘𝑅)) → 𝑄 ∈ Ring) |
15 | | oveq2 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑀 = (Base‘𝑅) → (𝑅 ~QG 𝑀) = (𝑅 ~QG (Base‘𝑅))) |
16 | 15 | oveq2d 7428 |
. . . . . . . . . . . . 13
⊢ (𝑀 = (Base‘𝑅) → (𝑅 /s (𝑅 ~QG 𝑀)) = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))) |
17 | 10, 16 | eqtrid 2783 |
. . . . . . . . . . . 12
⊢ (𝑀 = (Base‘𝑅) → 𝑄 = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))) |
18 | 17 | fveq2d 6895 |
. . . . . . . . . . 11
⊢ (𝑀 = (Base‘𝑅) → (Base‘𝑄) = (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅))))) |
19 | 3 | ringgrpd 20137 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Grp) |
20 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
21 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢ (𝑅 /s (𝑅 ~QG
(Base‘𝑅))) = (𝑅 /s (𝑅 ~QG
(Base‘𝑅))) |
22 | 20, 21 | qustriv 32751 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Grp →
(Base‘(𝑅
/s (𝑅
~QG (Base‘𝑅)))) = {(Base‘𝑅)}) |
23 | 19, 22 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘(𝑅 /s (𝑅 ~QG
(Base‘𝑅)))) =
{(Base‘𝑅)}) |
24 | 18, 23 | sylan9eqr 2793 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 = (Base‘𝑅)) → (Base‘𝑄) = {(Base‘𝑅)}) |
25 | 24 | fveq2d 6895 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) =
(♯‘{(Base‘𝑅)})) |
26 | | fvex 6904 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
27 | | hashsng 14334 |
. . . . . . . . . 10
⊢
((Base‘𝑅)
∈ V → (♯‘{(Base‘𝑅)}) = 1) |
28 | 26, 27 | ax-mp 5 |
. . . . . . . . 9
⊢
(♯‘{(Base‘𝑅)}) = 1 |
29 | 25, 28 | eqtrdi 2787 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = 1) |
30 | | 0ringnnzr 20415 |
. . . . . . . . 9
⊢ (𝑄 ∈ Ring →
((♯‘(Base‘𝑄)) = 1 ↔ ¬ 𝑄 ∈ NzRing)) |
31 | 30 | biimpa 476 |
. . . . . . . 8
⊢ ((𝑄 ∈ Ring ∧
(♯‘(Base‘𝑄)) = 1) → ¬ 𝑄 ∈ NzRing) |
32 | 14, 29, 31 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing) |
33 | 32 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing) |
34 | 9, 33 | pm2.65da 814 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → ¬ 𝑀 = (Base‘𝑅)) |
35 | 34 | neqned 2946 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → 𝑀 ≠ (Base‘𝑅)) |
36 | | simplr 766 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀 ⊆ 𝑗) |
37 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀) |
38 | 37 | neqned 2946 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 ≠ 𝑀) |
39 | 38 | necomd 2995 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀 ≠ 𝑗) |
40 | | pssdifn0 4365 |
. . . . . . . . . . 11
⊢ ((𝑀 ⊆ 𝑗 ∧ 𝑀 ≠ 𝑗) → (𝑗 ∖ 𝑀) ≠ ∅) |
41 | 36, 39, 40 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗 ∖ 𝑀) ≠ ∅) |
42 | | n0 4346 |
. . . . . . . . . 10
⊢ ((𝑗 ∖ 𝑀) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑗 ∖ 𝑀)) |
43 | 41, 42 | sylib 217 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗 ∖ 𝑀)) |
44 | | qsdrng.0 |
. . . . . . . . . 10
⊢ 𝑂 =
(oppr‘𝑅) |
45 | 1 | ad5antr 731 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑅 ∈ NzRing) |
46 | 5 | ad5antr 731 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅)) |
47 | | simp-5r 783 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑄 ∈ DivRing) |
48 | | simp-4r 781 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑗 ∈ (LIdeal‘𝑅)) |
49 | 36 | adantr 480 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑀 ⊆ 𝑗) |
50 | | simpr 484 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑥 ∈ (𝑗 ∖ 𝑀)) |
51 | 44, 10, 45, 46, 20, 47, 48, 49, 50 | qsdrnglem2 32885 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑗 = (Base‘𝑅)) |
52 | 43, 51 | exlimddv 1937 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅)) |
53 | 52 | ex 412 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) → (¬ 𝑗 = 𝑀 → 𝑗 = (Base‘𝑅))) |
54 | 53 | orrd 860 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀 ⊆ 𝑗) → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))) |
55 | 54 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))) |
56 | 55 | ralrimiva 3145 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))) |
57 | 20 | ismxidl 32853 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))))) |
58 | 57 | biimpar 477 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅)) |
59 | 4, 7, 35, 56, 58 | syl13anc 1371 |
. . 3
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑅)) |
60 | 44 | opprring 20239 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
61 | 3, 60 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑂 ∈ Ring) |
62 | 61 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → 𝑂 ∈ Ring) |
63 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → 𝑀 ∈ (2Ideal‘𝑅)) |
64 | 63, 44 | 2idlridld 21017 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑂)) |
65 | | simplr 766 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀 ⊆ 𝑗) |
66 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀) |
67 | 66 | neqned 2946 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 ≠ 𝑀) |
68 | 67 | necomd 2995 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀 ≠ 𝑗) |
69 | 65, 68, 40 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗 ∖ 𝑀) ≠ ∅) |
70 | 69, 42 | sylib 217 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗 ∖ 𝑀)) |
71 | | eqid 2731 |
. . . . . . . . . 10
⊢
(oppr‘𝑂) = (oppr‘𝑂) |
72 | | eqid 2731 |
. . . . . . . . . 10
⊢ (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀)) |
73 | 44 | opprnzr 20412 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ NzRing → 𝑂 ∈ NzRing) |
74 | 1, 73 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑂 ∈ NzRing) |
75 | 74 | ad5antr 731 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑂 ∈ NzRing) |
76 | 44, 3 | oppr2idl 32875 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂)) |
77 | 5, 76 | eleqtrd 2834 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑂)) |
78 | 77 | ad5antr 731 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑀 ∈ (2Ideal‘𝑂)) |
79 | 44, 20 | opprbas 20233 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑂) |
80 | | eqid 2731 |
. . . . . . . . . . . . 13
⊢
(oppr‘𝑄) = (oppr‘𝑄) |
81 | 80 | opprdrng 20533 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ DivRing ↔
(oppr‘𝑄) ∈ DivRing) |
82 | 20, 44, 10, 3, 5 | opprqusdrng 32882 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((oppr‘𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)) |
83 | 82 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧
(oppr‘𝑄) ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing) |
84 | 81, 83 | sylan2b 593 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing) |
85 | 84 | ad4antr 729 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing) |
86 | | simp-4r 781 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑗 ∈ (LIdeal‘𝑂)) |
87 | 65 | adantr 480 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑀 ⊆ 𝑗) |
88 | | simpr 484 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑥 ∈ (𝑗 ∖ 𝑀)) |
89 | 71, 72, 75, 78, 79, 85, 86, 87, 88 | qsdrnglem2 32885 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗 ∖ 𝑀)) → 𝑗 = (Base‘𝑅)) |
90 | 70, 89 | exlimddv 1937 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅)) |
91 | 90 | ex 412 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) → (¬ 𝑗 = 𝑀 → 𝑗 = (Base‘𝑅))) |
92 | 91 | orrd 860 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀 ⊆ 𝑗) → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))) |
93 | 92 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) → (𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))) |
94 | 93 | ralrimiva 3145 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))) |
95 | 79 | ismxidl 32853 |
. . . . 5
⊢ (𝑂 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑂) ↔ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅)))))) |
96 | 95 | biimpar 477 |
. . . 4
⊢ ((𝑂 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑂)) |
97 | 62, 64, 35, 94, 96 | syl13anc 1371 |
. . 3
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑂)) |
98 | 59, 97 | jca 511 |
. 2
⊢ ((𝜑 ∧ 𝑄 ∈ DivRing) → (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) |
99 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑅 ∈ NzRing) |
100 | | simprl 768 |
. . 3
⊢ ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑅)) |
101 | | simprr 770 |
. . 3
⊢ ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑂)) |
102 | 44, 10, 99, 100, 101 | qsdrngi 32884 |
. 2
⊢ ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑄 ∈ DivRing) |
103 | 98, 102 | impbida 798 |
1
⊢ (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂)))) |