Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrng Structured version   Visualization version   GIF version

Theorem qsdrng 33447
Description: An ideal 𝑀 is both left and right maximal if and only if the factor ring 𝑄 is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrng.2 (𝜑𝑀 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
qsdrng (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))))

Proof of Theorem qsdrng
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdrng.r . . . . . 6 (𝜑𝑅 ∈ NzRing)
2 nzrring 20419 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
43adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑅 ∈ Ring)
5 qsdrng.2 . . . . . 6 (𝜑𝑀 ∈ (2Ideal‘𝑅))
652idllidld 21179 . . . . 5 (𝜑𝑀 ∈ (LIdeal‘𝑅))
76adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑅))
8 drngnzr 20651 . . . . . . 7 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
98ad2antlr 727 . . . . . 6 (((𝜑𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → 𝑄 ∈ NzRing)
10 qsdrng.q . . . . . . . . . . 11 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
11 eqid 2729 . . . . . . . . . . 11 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1210, 11qusring 21200 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
133, 5, 12syl2anc 584 . . . . . . . . 9 (𝜑𝑄 ∈ Ring)
1413adantr 480 . . . . . . . 8 ((𝜑𝑀 = (Base‘𝑅)) → 𝑄 ∈ Ring)
15 oveq2 7361 . . . . . . . . . . . . . 14 (𝑀 = (Base‘𝑅) → (𝑅 ~QG 𝑀) = (𝑅 ~QG (Base‘𝑅)))
1615oveq2d 7369 . . . . . . . . . . . . 13 (𝑀 = (Base‘𝑅) → (𝑅 /s (𝑅 ~QG 𝑀)) = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
1710, 16eqtrid 2776 . . . . . . . . . . . 12 (𝑀 = (Base‘𝑅) → 𝑄 = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
1817fveq2d 6830 . . . . . . . . . . 11 (𝑀 = (Base‘𝑅) → (Base‘𝑄) = (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))))
193ringgrpd 20145 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Grp)
20 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2729 . . . . . . . . . . . . 13 (𝑅 /s (𝑅 ~QG (Base‘𝑅))) = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))
2220, 21qustriv 33314 . . . . . . . . . . . 12 (𝑅 ∈ Grp → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
2319, 22syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
2418, 23sylan9eqr 2786 . . . . . . . . . 10 ((𝜑𝑀 = (Base‘𝑅)) → (Base‘𝑄) = {(Base‘𝑅)})
2524fveq2d 6830 . . . . . . . . 9 ((𝜑𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = (♯‘{(Base‘𝑅)}))
26 fvex 6839 . . . . . . . . . 10 (Base‘𝑅) ∈ V
27 hashsng 14294 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘{(Base‘𝑅)}) = 1)
2826, 27ax-mp 5 . . . . . . . . 9 (♯‘{(Base‘𝑅)}) = 1
2925, 28eqtrdi 2780 . . . . . . . 8 ((𝜑𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = 1)
30 0ringnnzr 20428 . . . . . . . . 9 (𝑄 ∈ Ring → ((♯‘(Base‘𝑄)) = 1 ↔ ¬ 𝑄 ∈ NzRing))
3130biimpa 476 . . . . . . . 8 ((𝑄 ∈ Ring ∧ (♯‘(Base‘𝑄)) = 1) → ¬ 𝑄 ∈ NzRing)
3214, 29, 31syl2anc 584 . . . . . . 7 ((𝜑𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing)
3332adantlr 715 . . . . . 6 (((𝜑𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing)
349, 33pm2.65da 816 . . . . 5 ((𝜑𝑄 ∈ DivRing) → ¬ 𝑀 = (Base‘𝑅))
3534neqned 2932 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ≠ (Base‘𝑅))
36 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
37 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀)
3837neqned 2932 . . . . . . . . . . . 12 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗𝑀)
3938necomd 2980 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
40 pssdifn0 4321 . . . . . . . . . . 11 ((𝑀𝑗𝑀𝑗) → (𝑗𝑀) ≠ ∅)
4136, 39, 40syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗𝑀) ≠ ∅)
42 n0 4306 . . . . . . . . . 10 ((𝑗𝑀) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑗𝑀))
4341, 42sylib 218 . . . . . . . . 9 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗𝑀))
44 qsdrng.0 . . . . . . . . . 10 𝑂 = (oppr𝑅)
451ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑅 ∈ NzRing)
465ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
47 simp-5r 785 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑄 ∈ DivRing)
48 simp-4r 783 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 ∈ (LIdeal‘𝑅))
4936adantr 480 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀𝑗)
50 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑥 ∈ (𝑗𝑀))
5144, 10, 45, 46, 20, 47, 48, 49, 50qsdrnglem2 33446 . . . . . . . . 9 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 = (Base‘𝑅))
5243, 51exlimddv 1935 . . . . . . . 8 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅))
5352ex 412 . . . . . . 7 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (¬ 𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5453orrd 863 . . . . . 6 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5554ex 412 . . . . 5 (((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5655ralrimiva 3121 . . . 4 ((𝜑𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5720ismxidl 33412 . . . . 5 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
5857biimpar 477 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅))
594, 7, 35, 56, 58syl13anc 1374 . . 3 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑅))
6044opprring 20250 . . . . . 6 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
613, 60syl 17 . . . . 5 (𝜑𝑂 ∈ Ring)
6261adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑂 ∈ Ring)
635adantr 480 . . . . 5 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (2Ideal‘𝑅))
6463, 442idlridld 21180 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑂))
65 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
66 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀)
6766neqned 2932 . . . . . . . . . . . 12 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗𝑀)
6867necomd 2980 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
6965, 68, 40syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗𝑀) ≠ ∅)
7069, 42sylib 218 . . . . . . . . 9 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗𝑀))
71 eqid 2729 . . . . . . . . . 10 (oppr𝑂) = (oppr𝑂)
72 eqid 2729 . . . . . . . . . 10 (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀))
7344opprnzr 20425 . . . . . . . . . . . 12 (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
741, 73syl 17 . . . . . . . . . . 11 (𝜑𝑂 ∈ NzRing)
7574ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑂 ∈ NzRing)
7644, 3oppr2idl 33436 . . . . . . . . . . . 12 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
775, 76eleqtrd 2830 . . . . . . . . . . 11 (𝜑𝑀 ∈ (2Ideal‘𝑂))
7877ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀 ∈ (2Ideal‘𝑂))
7944, 20opprbas 20246 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑂)
80 eqid 2729 . . . . . . . . . . . . 13 (oppr𝑄) = (oppr𝑄)
8180opprdrng 20667 . . . . . . . . . . . 12 (𝑄 ∈ DivRing ↔ (oppr𝑄) ∈ DivRing)
8220, 44, 10, 3, 5opprqusdrng 33443 . . . . . . . . . . . . 13 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing))
8382biimpa 476 . . . . . . . . . . . 12 ((𝜑 ∧ (oppr𝑄) ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
8481, 83sylan2b 594 . . . . . . . . . . 11 ((𝜑𝑄 ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
8584ad4antr 732 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
86 simp-4r 783 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 ∈ (LIdeal‘𝑂))
8765adantr 480 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀𝑗)
88 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑥 ∈ (𝑗𝑀))
8971, 72, 75, 78, 79, 85, 86, 87, 88qsdrnglem2 33446 . . . . . . . . 9 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 = (Base‘𝑅))
9070, 89exlimddv 1935 . . . . . . . 8 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅))
9190ex 412 . . . . . . 7 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) → (¬ 𝑗 = 𝑀𝑗 = (Base‘𝑅)))
9291orrd 863 . . . . . 6 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
9392ex 412 . . . . 5 (((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
9493ralrimiva 3121 . . . 4 ((𝜑𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
9579ismxidl 33412 . . . . 5 (𝑂 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑂) ↔ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
9695biimpar 477 . . . 4 ((𝑂 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑂))
9762, 64, 35, 94, 96syl13anc 1374 . . 3 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑂))
9859, 97jca 511 . 2 ((𝜑𝑄 ∈ DivRing) → (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂)))
991adantr 480 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑅 ∈ NzRing)
100 simprl 770 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑅))
101 simprr 772 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑂))
10244, 10, 99, 100, 101qsdrngi 33445 . 2 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑄 ∈ DivRing)
10398, 102impbida 800 1 (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3438  cdif 3902  wss 3905  c0 4286  {csn 4579  cfv 6486  (class class class)co 7353  1c1 11029  chash 14255  Basecbs 17138   /s cqus 17427  Grpcgrp 18830   ~QG cqg 19019  Ringcrg 20136  opprcoppr 20239  NzRingcnzr 20415  DivRingcdr 20632  LIdealclidl 21131  2Idealc2idl 21174  MaxIdealcmxidl 33409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-imas 17430  df-qus 17431  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrg 20473  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lbs 20997  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-mxidl 33410
This theorem is referenced by:  qsfld  33448
  Copyright terms: Public domain W3C validator