Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrng Structured version   Visualization version   GIF version

Theorem qsdrng 33475
Description: An ideal 𝑀 is both left and right maximal if and only if the factor ring 𝑄 is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrng.2 (𝜑𝑀 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
qsdrng (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))))

Proof of Theorem qsdrng
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdrng.r . . . . . 6 (𝜑𝑅 ∈ NzRing)
2 nzrring 20432 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
43adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑅 ∈ Ring)
5 qsdrng.2 . . . . . 6 (𝜑𝑀 ∈ (2Ideal‘𝑅))
652idllidld 21171 . . . . 5 (𝜑𝑀 ∈ (LIdeal‘𝑅))
76adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑅))
8 drngnzr 20664 . . . . . . 7 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
98ad2antlr 727 . . . . . 6 (((𝜑𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → 𝑄 ∈ NzRing)
10 qsdrng.q . . . . . . . . . . 11 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
11 eqid 2730 . . . . . . . . . . 11 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1210, 11qusring 21192 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
133, 5, 12syl2anc 584 . . . . . . . . 9 (𝜑𝑄 ∈ Ring)
1413adantr 480 . . . . . . . 8 ((𝜑𝑀 = (Base‘𝑅)) → 𝑄 ∈ Ring)
15 oveq2 7398 . . . . . . . . . . . . . 14 (𝑀 = (Base‘𝑅) → (𝑅 ~QG 𝑀) = (𝑅 ~QG (Base‘𝑅)))
1615oveq2d 7406 . . . . . . . . . . . . 13 (𝑀 = (Base‘𝑅) → (𝑅 /s (𝑅 ~QG 𝑀)) = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
1710, 16eqtrid 2777 . . . . . . . . . . . 12 (𝑀 = (Base‘𝑅) → 𝑄 = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
1817fveq2d 6865 . . . . . . . . . . 11 (𝑀 = (Base‘𝑅) → (Base‘𝑄) = (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))))
193ringgrpd 20158 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Grp)
20 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2730 . . . . . . . . . . . . 13 (𝑅 /s (𝑅 ~QG (Base‘𝑅))) = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))
2220, 21qustriv 33342 . . . . . . . . . . . 12 (𝑅 ∈ Grp → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
2319, 22syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
2418, 23sylan9eqr 2787 . . . . . . . . . 10 ((𝜑𝑀 = (Base‘𝑅)) → (Base‘𝑄) = {(Base‘𝑅)})
2524fveq2d 6865 . . . . . . . . 9 ((𝜑𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = (♯‘{(Base‘𝑅)}))
26 fvex 6874 . . . . . . . . . 10 (Base‘𝑅) ∈ V
27 hashsng 14341 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘{(Base‘𝑅)}) = 1)
2826, 27ax-mp 5 . . . . . . . . 9 (♯‘{(Base‘𝑅)}) = 1
2925, 28eqtrdi 2781 . . . . . . . 8 ((𝜑𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = 1)
30 0ringnnzr 20441 . . . . . . . . 9 (𝑄 ∈ Ring → ((♯‘(Base‘𝑄)) = 1 ↔ ¬ 𝑄 ∈ NzRing))
3130biimpa 476 . . . . . . . 8 ((𝑄 ∈ Ring ∧ (♯‘(Base‘𝑄)) = 1) → ¬ 𝑄 ∈ NzRing)
3214, 29, 31syl2anc 584 . . . . . . 7 ((𝜑𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing)
3332adantlr 715 . . . . . 6 (((𝜑𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing)
349, 33pm2.65da 816 . . . . 5 ((𝜑𝑄 ∈ DivRing) → ¬ 𝑀 = (Base‘𝑅))
3534neqned 2933 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ≠ (Base‘𝑅))
36 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
37 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀)
3837neqned 2933 . . . . . . . . . . . 12 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗𝑀)
3938necomd 2981 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
40 pssdifn0 4334 . . . . . . . . . . 11 ((𝑀𝑗𝑀𝑗) → (𝑗𝑀) ≠ ∅)
4136, 39, 40syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗𝑀) ≠ ∅)
42 n0 4319 . . . . . . . . . 10 ((𝑗𝑀) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑗𝑀))
4341, 42sylib 218 . . . . . . . . 9 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗𝑀))
44 qsdrng.0 . . . . . . . . . 10 𝑂 = (oppr𝑅)
451ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑅 ∈ NzRing)
465ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
47 simp-5r 785 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑄 ∈ DivRing)
48 simp-4r 783 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 ∈ (LIdeal‘𝑅))
4936adantr 480 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀𝑗)
50 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑥 ∈ (𝑗𝑀))
5144, 10, 45, 46, 20, 47, 48, 49, 50qsdrnglem2 33474 . . . . . . . . 9 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 = (Base‘𝑅))
5243, 51exlimddv 1935 . . . . . . . 8 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅))
5352ex 412 . . . . . . 7 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (¬ 𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5453orrd 863 . . . . . 6 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5554ex 412 . . . . 5 (((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5655ralrimiva 3126 . . . 4 ((𝜑𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5720ismxidl 33440 . . . . 5 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
5857biimpar 477 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅))
594, 7, 35, 56, 58syl13anc 1374 . . 3 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑅))
6044opprring 20263 . . . . . 6 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
613, 60syl 17 . . . . 5 (𝜑𝑂 ∈ Ring)
6261adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑂 ∈ Ring)
635adantr 480 . . . . 5 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (2Ideal‘𝑅))
6463, 442idlridld 21172 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑂))
65 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
66 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀)
6766neqned 2933 . . . . . . . . . . . 12 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗𝑀)
6867necomd 2981 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
6965, 68, 40syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗𝑀) ≠ ∅)
7069, 42sylib 218 . . . . . . . . 9 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗𝑀))
71 eqid 2730 . . . . . . . . . 10 (oppr𝑂) = (oppr𝑂)
72 eqid 2730 . . . . . . . . . 10 (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀))
7344opprnzr 20438 . . . . . . . . . . . 12 (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
741, 73syl 17 . . . . . . . . . . 11 (𝜑𝑂 ∈ NzRing)
7574ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑂 ∈ NzRing)
7644, 3oppr2idl 33464 . . . . . . . . . . . 12 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
775, 76eleqtrd 2831 . . . . . . . . . . 11 (𝜑𝑀 ∈ (2Ideal‘𝑂))
7877ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀 ∈ (2Ideal‘𝑂))
7944, 20opprbas 20259 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑂)
80 eqid 2730 . . . . . . . . . . . . 13 (oppr𝑄) = (oppr𝑄)
8180opprdrng 20680 . . . . . . . . . . . 12 (𝑄 ∈ DivRing ↔ (oppr𝑄) ∈ DivRing)
8220, 44, 10, 3, 5opprqusdrng 33471 . . . . . . . . . . . . 13 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing))
8382biimpa 476 . . . . . . . . . . . 12 ((𝜑 ∧ (oppr𝑄) ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
8481, 83sylan2b 594 . . . . . . . . . . 11 ((𝜑𝑄 ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
8584ad4antr 732 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
86 simp-4r 783 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 ∈ (LIdeal‘𝑂))
8765adantr 480 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀𝑗)
88 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑥 ∈ (𝑗𝑀))
8971, 72, 75, 78, 79, 85, 86, 87, 88qsdrnglem2 33474 . . . . . . . . 9 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 = (Base‘𝑅))
9070, 89exlimddv 1935 . . . . . . . 8 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅))
9190ex 412 . . . . . . 7 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) → (¬ 𝑗 = 𝑀𝑗 = (Base‘𝑅)))
9291orrd 863 . . . . . 6 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
9392ex 412 . . . . 5 (((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
9493ralrimiva 3126 . . . 4 ((𝜑𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
9579ismxidl 33440 . . . . 5 (𝑂 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑂) ↔ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
9695biimpar 477 . . . 4 ((𝑂 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑂))
9762, 64, 35, 94, 96syl13anc 1374 . . 3 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑂))
9859, 97jca 511 . 2 ((𝜑𝑄 ∈ DivRing) → (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂)))
991adantr 480 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑅 ∈ NzRing)
100 simprl 770 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑅))
101 simprr 772 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑂))
10244, 10, 99, 100, 101qsdrngi 33473 . 2 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑄 ∈ DivRing)
10398, 102impbida 800 1 (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  wss 3917  c0 4299  {csn 4592  cfv 6514  (class class class)co 7390  1c1 11076  chash 14302  Basecbs 17186   /s cqus 17475  Grpcgrp 18872   ~QG cqg 19061  Ringcrg 20149  opprcoppr 20252  NzRingcnzr 20428  DivRingcdr 20645  LIdealclidl 21123  2Idealc2idl 21166  MaxIdealcmxidl 33437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20429  df-subrg 20486  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lbs 20989  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-dsmm 21648  df-frlm 21663  df-uvc 21699  df-mxidl 33438
This theorem is referenced by:  qsfld  33476
  Copyright terms: Public domain W3C validator