Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrng Structured version   Visualization version   GIF version

Theorem qsdrng 33512
Description: An ideal 𝑀 is both left and right maximal if and only if the factor ring 𝑄 is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrng.2 (𝜑𝑀 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
qsdrng (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))))

Proof of Theorem qsdrng
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsdrng.r . . . . . 6 (𝜑𝑅 ∈ NzRing)
2 nzrring 20476 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
43adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑅 ∈ Ring)
5 qsdrng.2 . . . . . 6 (𝜑𝑀 ∈ (2Ideal‘𝑅))
652idllidld 21215 . . . . 5 (𝜑𝑀 ∈ (LIdeal‘𝑅))
76adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑅))
8 drngnzr 20708 . . . . . . 7 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
98ad2antlr 727 . . . . . 6 (((𝜑𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → 𝑄 ∈ NzRing)
10 qsdrng.q . . . . . . . . . . 11 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
11 eqid 2735 . . . . . . . . . . 11 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1210, 11qusring 21236 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
133, 5, 12syl2anc 584 . . . . . . . . 9 (𝜑𝑄 ∈ Ring)
1413adantr 480 . . . . . . . 8 ((𝜑𝑀 = (Base‘𝑅)) → 𝑄 ∈ Ring)
15 oveq2 7413 . . . . . . . . . . . . . 14 (𝑀 = (Base‘𝑅) → (𝑅 ~QG 𝑀) = (𝑅 ~QG (Base‘𝑅)))
1615oveq2d 7421 . . . . . . . . . . . . 13 (𝑀 = (Base‘𝑅) → (𝑅 /s (𝑅 ~QG 𝑀)) = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
1710, 16eqtrid 2782 . . . . . . . . . . . 12 (𝑀 = (Base‘𝑅) → 𝑄 = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
1817fveq2d 6880 . . . . . . . . . . 11 (𝑀 = (Base‘𝑅) → (Base‘𝑄) = (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))))
193ringgrpd 20202 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Grp)
20 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2735 . . . . . . . . . . . . 13 (𝑅 /s (𝑅 ~QG (Base‘𝑅))) = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))
2220, 21qustriv 33379 . . . . . . . . . . . 12 (𝑅 ∈ Grp → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
2319, 22syl 17 . . . . . . . . . . 11 (𝜑 → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
2418, 23sylan9eqr 2792 . . . . . . . . . 10 ((𝜑𝑀 = (Base‘𝑅)) → (Base‘𝑄) = {(Base‘𝑅)})
2524fveq2d 6880 . . . . . . . . 9 ((𝜑𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = (♯‘{(Base‘𝑅)}))
26 fvex 6889 . . . . . . . . . 10 (Base‘𝑅) ∈ V
27 hashsng 14387 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘{(Base‘𝑅)}) = 1)
2826, 27ax-mp 5 . . . . . . . . 9 (♯‘{(Base‘𝑅)}) = 1
2925, 28eqtrdi 2786 . . . . . . . 8 ((𝜑𝑀 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = 1)
30 0ringnnzr 20485 . . . . . . . . 9 (𝑄 ∈ Ring → ((♯‘(Base‘𝑄)) = 1 ↔ ¬ 𝑄 ∈ NzRing))
3130biimpa 476 . . . . . . . 8 ((𝑄 ∈ Ring ∧ (♯‘(Base‘𝑄)) = 1) → ¬ 𝑄 ∈ NzRing)
3214, 29, 31syl2anc 584 . . . . . . 7 ((𝜑𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing)
3332adantlr 715 . . . . . 6 (((𝜑𝑄 ∈ DivRing) ∧ 𝑀 = (Base‘𝑅)) → ¬ 𝑄 ∈ NzRing)
349, 33pm2.65da 816 . . . . 5 ((𝜑𝑄 ∈ DivRing) → ¬ 𝑀 = (Base‘𝑅))
3534neqned 2939 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ≠ (Base‘𝑅))
36 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
37 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀)
3837neqned 2939 . . . . . . . . . . . 12 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗𝑀)
3938necomd 2987 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
40 pssdifn0 4343 . . . . . . . . . . 11 ((𝑀𝑗𝑀𝑗) → (𝑗𝑀) ≠ ∅)
4136, 39, 40syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗𝑀) ≠ ∅)
42 n0 4328 . . . . . . . . . 10 ((𝑗𝑀) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑗𝑀))
4341, 42sylib 218 . . . . . . . . 9 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗𝑀))
44 qsdrng.0 . . . . . . . . . 10 𝑂 = (oppr𝑅)
451ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑅 ∈ NzRing)
465ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
47 simp-5r 785 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑄 ∈ DivRing)
48 simp-4r 783 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 ∈ (LIdeal‘𝑅))
4936adantr 480 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀𝑗)
50 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑥 ∈ (𝑗𝑀))
5144, 10, 45, 46, 20, 47, 48, 49, 50qsdrnglem2 33511 . . . . . . . . 9 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 = (Base‘𝑅))
5243, 51exlimddv 1935 . . . . . . . 8 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅))
5352ex 412 . . . . . . 7 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (¬ 𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5453orrd 863 . . . . . 6 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
5554ex 412 . . . . 5 (((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5655ralrimiva 3132 . . . 4 ((𝜑𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
5720ismxidl 33477 . . . . 5 (𝑅 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
5857biimpar 477 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑅) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑅))
594, 7, 35, 56, 58syl13anc 1374 . . 3 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑅))
6044opprring 20307 . . . . . 6 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
613, 60syl 17 . . . . 5 (𝜑𝑂 ∈ Ring)
6261adantr 480 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑂 ∈ Ring)
635adantr 480 . . . . 5 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (2Ideal‘𝑅))
6463, 442idlridld 21216 . . . 4 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (LIdeal‘𝑂))
65 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
66 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ¬ 𝑗 = 𝑀)
6766neqned 2939 . . . . . . . . . . . 12 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗𝑀)
6867necomd 2987 . . . . . . . . . . 11 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑀𝑗)
6965, 68, 40syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → (𝑗𝑀) ≠ ∅)
7069, 42sylib 218 . . . . . . . . 9 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → ∃𝑥 𝑥 ∈ (𝑗𝑀))
71 eqid 2735 . . . . . . . . . 10 (oppr𝑂) = (oppr𝑂)
72 eqid 2735 . . . . . . . . . 10 (𝑂 /s (𝑂 ~QG 𝑀)) = (𝑂 /s (𝑂 ~QG 𝑀))
7344opprnzr 20482 . . . . . . . . . . . 12 (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
741, 73syl 17 . . . . . . . . . . 11 (𝜑𝑂 ∈ NzRing)
7574ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑂 ∈ NzRing)
7644, 3oppr2idl 33501 . . . . . . . . . . . 12 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
775, 76eleqtrd 2836 . . . . . . . . . . 11 (𝜑𝑀 ∈ (2Ideal‘𝑂))
7877ad5antr 734 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀 ∈ (2Ideal‘𝑂))
7944, 20opprbas 20303 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑂)
80 eqid 2735 . . . . . . . . . . . . 13 (oppr𝑄) = (oppr𝑄)
8180opprdrng 20724 . . . . . . . . . . . 12 (𝑄 ∈ DivRing ↔ (oppr𝑄) ∈ DivRing)
8220, 44, 10, 3, 5opprqusdrng 33508 . . . . . . . . . . . . 13 (𝜑 → ((oppr𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing))
8382biimpa 476 . . . . . . . . . . . 12 ((𝜑 ∧ (oppr𝑄) ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
8481, 83sylan2b 594 . . . . . . . . . . 11 ((𝜑𝑄 ∈ DivRing) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
8584ad4antr 732 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → (𝑂 /s (𝑂 ~QG 𝑀)) ∈ DivRing)
86 simp-4r 783 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 ∈ (LIdeal‘𝑂))
8765adantr 480 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑀𝑗)
88 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑥 ∈ (𝑗𝑀))
8971, 72, 75, 78, 79, 85, 86, 87, 88qsdrnglem2 33511 . . . . . . . . 9 ((((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) ∧ 𝑥 ∈ (𝑗𝑀)) → 𝑗 = (Base‘𝑅))
9070, 89exlimddv 1935 . . . . . . . 8 (((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) ∧ ¬ 𝑗 = 𝑀) → 𝑗 = (Base‘𝑅))
9190ex 412 . . . . . . 7 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) → (¬ 𝑗 = 𝑀𝑗 = (Base‘𝑅)))
9291orrd 863 . . . . . 6 ((((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) ∧ 𝑀𝑗) → (𝑗 = 𝑀𝑗 = (Base‘𝑅)))
9392ex 412 . . . . 5 (((𝜑𝑄 ∈ DivRing) ∧ 𝑗 ∈ (LIdeal‘𝑂)) → (𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
9493ralrimiva 3132 . . . 4 ((𝜑𝑄 ∈ DivRing) → ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))
9579ismxidl 33477 . . . . 5 (𝑂 ∈ Ring → (𝑀 ∈ (MaxIdeal‘𝑂) ↔ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))))
9695biimpar 477 . . . 4 ((𝑂 ∈ Ring ∧ (𝑀 ∈ (LIdeal‘𝑂) ∧ 𝑀 ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑂)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = (Base‘𝑅))))) → 𝑀 ∈ (MaxIdeal‘𝑂))
9762, 64, 35, 94, 96syl13anc 1374 . . 3 ((𝜑𝑄 ∈ DivRing) → 𝑀 ∈ (MaxIdeal‘𝑂))
9859, 97jca 511 . 2 ((𝜑𝑄 ∈ DivRing) → (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂)))
991adantr 480 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑅 ∈ NzRing)
100 simprl 770 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑅))
101 simprr 772 . . 3 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑀 ∈ (MaxIdeal‘𝑂))
10244, 10, 99, 100, 101qsdrngi 33510 . 2 ((𝜑 ∧ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))) → 𝑄 ∈ DivRing)
10398, 102impbida 800 1 (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cdif 3923  wss 3926  c0 4308  {csn 4601  cfv 6531  (class class class)co 7405  1c1 11130  chash 14348  Basecbs 17228   /s cqus 17519  Grpcgrp 18916   ~QG cqg 19105  Ringcrg 20193  opprcoppr 20296  NzRingcnzr 20472  DivRingcdr 20689  LIdealclidl 21167  2Idealc2idl 21210  MaxIdealcmxidl 33474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-oppg 19329  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-nzr 20473  df-subrg 20530  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lmhm 20980  df-lbs 21033  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-dsmm 21692  df-frlm 21707  df-uvc 21743  df-mxidl 33475
This theorem is referenced by:  qsfld  33513
  Copyright terms: Public domain W3C validator