![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lebnumlem2 | Structured version Visualization version GIF version |
Description: Lemma for lebnum 23171. As a finite sum of point-to-set distance functions, which are continuous by metdscn 23067, the function 𝐹 is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
lebnum.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
lebnum.d | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
lebnum.c | ⊢ (𝜑 → 𝐽 ∈ Comp) |
lebnum.s | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
lebnum.u | ⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
lebnumlem1.u | ⊢ (𝜑 → 𝑈 ∈ Fin) |
lebnumlem1.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
lebnumlem1.f | ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) |
lebnumlem2.k | ⊢ 𝐾 = (topGen‘ran (,)) |
Ref | Expression |
---|---|
lebnumlem2 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lebnumlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) | |
2 | eqid 2777 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
3 | lebnum.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
4 | metxmet 22547 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
6 | lebnum.j | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
7 | 6 | mopntopon 22652 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
9 | lebnumlem1.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
10 | 3 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (Met‘𝑋)) |
11 | difssd 3960 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ⊆ 𝑋) | |
12 | 5 | adantr 474 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (∞Met‘𝑋)) |
13 | 12, 7 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | lebnum.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
15 | 14 | sselda 3820 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝐽) |
16 | toponss 21139 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝐽) → 𝑘 ⊆ 𝑋) | |
17 | 13, 15, 16 | syl2anc 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ⊆ 𝑋) |
18 | lebnumlem1.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
19 | eleq1 2846 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑋 → (𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) | |
20 | 19 | notbid 310 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑋 → (¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈)) |
21 | 18, 20 | syl5ibrcom 239 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈)) |
22 | 21 | necon2ad 2983 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋)) |
23 | 22 | imp 397 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ≠ 𝑋) |
24 | pssdifn0 4173 | . . . . . . 7 ⊢ ((𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋) → (𝑋 ∖ 𝑘) ≠ ∅) | |
25 | 17, 23, 24 | syl2anc 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ≠ ∅) |
26 | eqid 2777 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) | |
27 | 26, 6, 2 | metdscn2 23068 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∖ 𝑘) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑘) ≠ ∅) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
28 | 10, 11, 25, 27 | syl3anc 1439 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
29 | 2, 8, 9, 28 | fsumcn 23081 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
30 | 1, 29 | syl5eqel 2862 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
31 | 2 | cnfldtopon 22994 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
33 | lebnum.c | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
34 | lebnum.u | . . . . . . 7 ⊢ (𝜑 → 𝑋 = ∪ 𝑈) | |
35 | 6, 3, 33, 14, 34, 9, 18, 1 | lebnumlem1 23168 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ+) |
36 | 35 | frnd 6298 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ+) |
37 | rpssre 12144 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
38 | 36, 37 | syl6ss 3832 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
39 | ax-resscn 10329 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℂ) |
41 | cnrest2 21498 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
42 | 32, 38, 40, 41 | syl3anc 1439 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))) |
43 | 30, 42 | mpbid 224 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
44 | lebnumlem2.k | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
45 | 2 | tgioo2 23014 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
46 | 44, 45 | eqtri 2801 | . . 3 ⊢ 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ) |
47 | 46 | oveq2i 6933 | . 2 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
48 | 43, 47 | syl6eleqr 2869 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ∖ cdif 3788 ⊆ wss 3791 ∅c0 4140 ∪ cuni 4671 ↦ cmpt 4965 ran crn 5356 ‘cfv 6135 (class class class)co 6922 Fincfn 8241 infcinf 8635 ℂcc 10270 ℝcr 10271 ℝ*cxr 10410 < clt 10411 ℝ+crp 12137 (,)cioo 12487 Σcsu 14824 ↾t crest 16467 TopOpenctopn 16468 topGenctg 16484 ∞Metcxmet 20127 Metcmet 20128 MetOpencmopn 20132 ℂfldccnfld 20142 TopOnctopon 21122 Cn ccn 21436 Compccmp 21598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-ec 8028 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-cn 21439 df-cnp 21440 df-tx 21774 df-hmeo 21967 df-xms 22533 df-ms 22534 df-tms 22535 |
This theorem is referenced by: lebnumlem3 23170 |
Copyright terms: Public domain | W3C validator |