| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lebnumlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for lebnum 24896. As a finite sum of point-to-set distance functions, which are continuous by metdscn 24778, the function 𝐹 is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.) |
| Ref | Expression |
|---|---|
| lebnum.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| lebnum.d | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| lebnum.c | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| lebnum.s | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
| lebnum.u | ⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
| lebnumlem1.u | ⊢ (𝜑 → 𝑈 ∈ Fin) |
| lebnumlem1.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| lebnumlem1.f | ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) |
| lebnumlem2.k | ⊢ 𝐾 = (topGen‘ran (,)) |
| Ref | Expression |
|---|---|
| lebnumlem2 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnumlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 3 | lebnum.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 4 | metxmet 24255 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | lebnum.j | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 7 | 6 | mopntopon 24360 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | lebnumlem1.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
| 10 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (Met‘𝑋)) |
| 11 | difssd 4096 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ⊆ 𝑋) | |
| 12 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (∞Met‘𝑋)) |
| 13 | 12, 7 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | lebnum.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
| 15 | 14 | sselda 3943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝐽) |
| 16 | toponss 22847 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝐽) → 𝑘 ⊆ 𝑋) | |
| 17 | 13, 15, 16 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ⊆ 𝑋) |
| 18 | lebnumlem1.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
| 19 | eleq1 2816 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑋 → (𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) | |
| 20 | 19 | notbid 318 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑋 → (¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈)) |
| 21 | 18, 20 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈)) |
| 22 | 21 | necon2ad 2940 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋)) |
| 23 | 22 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ≠ 𝑋) |
| 24 | pssdifn0 4327 | . . . . . . 7 ⊢ ((𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋) → (𝑋 ∖ 𝑘) ≠ ∅) | |
| 25 | 17, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ≠ ∅) |
| 26 | eqid 2729 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) | |
| 27 | 26, 6, 2 | metdscn2 24779 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∖ 𝑘) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑘) ≠ ∅) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
| 28 | 10, 11, 25, 27 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
| 29 | 2, 8, 9, 28 | fsumcn 24794 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
| 30 | 1, 29 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
| 31 | 2 | cnfldtopon 24703 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 33 | lebnum.c | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 34 | lebnum.u | . . . . . . 7 ⊢ (𝜑 → 𝑋 = ∪ 𝑈) | |
| 35 | 6, 3, 33, 14, 34, 9, 18, 1 | lebnumlem1 24893 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ+) |
| 36 | 35 | frnd 6678 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ+) |
| 37 | rpssre 12935 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
| 38 | 36, 37 | sstrdi 3956 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 39 | ax-resscn 11101 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 41 | cnrest2 23206 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
| 42 | 32, 38, 40, 41 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))) |
| 43 | 30, 42 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
| 44 | lebnumlem2.k | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 45 | tgioo4 24726 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 46 | 44, 45 | eqtri 2752 | . . 3 ⊢ 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ) |
| 47 | 46 | oveq2i 7380 | . 2 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
| 48 | 43, 47 | eleqtrrdi 2839 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 ∪ cuni 4867 ↦ cmpt 5183 ran crn 5632 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 infcinf 9368 ℂcc 11042 ℝcr 11043 ℝ*cxr 11183 < clt 11184 ℝ+crp 12927 (,)cioo 13282 Σcsu 15628 ↾t crest 17359 TopOpenctopn 17360 topGenctg 17376 ∞Metcxmet 21281 Metcmet 21282 MetOpencmopn 21286 ℂfldccnfld 21296 TopOnctopon 22830 Cn ccn 23144 Compccmp 23306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-ec 8650 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-cn 23147 df-cnp 23148 df-tx 23482 df-hmeo 23675 df-xms 24241 df-ms 24242 df-tms 24243 |
| This theorem is referenced by: lebnumlem3 24895 |
| Copyright terms: Public domain | W3C validator |