Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem2 Structured version   Visualization version   GIF version

Theorem lebnumlem2 23169
 Description: Lemma for lebnum 23171. As a finite sum of point-to-set distance functions, which are continuous by metdscn 23067, the function 𝐹 is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
lebnumlem2.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
lebnumlem2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑦,𝑘,𝑧,𝐷   𝑘,𝐽,𝑦,𝑧   𝑈,𝑘,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧,𝑘)   𝐾(𝑦,𝑧,𝑘)

Proof of Theorem lebnumlem2
StepHypRef Expression
1 lebnumlem1.f . . . 4 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2 eqid 2777 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3 lebnum.d . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 22547 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 lebnum.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
76mopntopon 22652 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
85, 7syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 lebnumlem1.u . . . . 5 (𝜑𝑈 ∈ Fin)
103adantr 474 . . . . . 6 ((𝜑𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
11 difssd 3960 . . . . . 6 ((𝜑𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
125adantr 474 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
1312, 7syl 17 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝐽 ∈ (TopOn‘𝑋))
14 lebnum.s . . . . . . . . 9 (𝜑𝑈𝐽)
1514sselda 3820 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝑘𝐽)
16 toponss 21139 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐽) → 𝑘𝑋)
1713, 15, 16syl2anc 579 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝑋)
18 lebnumlem1.n . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑈)
19 eleq1 2846 . . . . . . . . . . 11 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
2019notbid 310 . . . . . . . . . 10 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
2118, 20syl5ibrcom 239 . . . . . . . . 9 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
2221necon2ad 2983 . . . . . . . 8 (𝜑 → (𝑘𝑈𝑘𝑋))
2322imp 397 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝑋)
24 pssdifn0 4173 . . . . . . 7 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
2517, 23, 24syl2anc 579 . . . . . 6 ((𝜑𝑘𝑈) → (𝑋𝑘) ≠ ∅)
26 eqid 2777 . . . . . . 7 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2726, 6, 2metdscn2 23068 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
2810, 11, 25, 27syl3anc 1439 . . . . 5 ((𝜑𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
292, 8, 9, 28fsumcn 23081 . . . 4 (𝜑 → (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
301, 29syl5eqel 2862 . . 3 (𝜑𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)))
312cnfldtopon 22994 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3231a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
33 lebnum.c . . . . . . 7 (𝜑𝐽 ∈ Comp)
34 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
356, 3, 33, 14, 34, 9, 18, 1lebnumlem1 23168 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ+)
3635frnd 6298 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ+)
37 rpssre 12144 . . . . 5 + ⊆ ℝ
3836, 37syl6ss 3832 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
39 ax-resscn 10329 . . . . 5 ℝ ⊆ ℂ
4039a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
41 cnrest2 21498 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4232, 38, 40, 41syl3anc 1439 . . 3 (𝜑 → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4330, 42mpbid 224 . 2 (𝜑𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
44 lebnumlem2.k . . . 4 𝐾 = (topGen‘ran (,))
452tgioo2 23014 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4644, 45eqtri 2801 . . 3 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
4746oveq2i 6933 . 2 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4843, 47syl6eleqr 2869 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2106   ≠ wne 2968   ∖ cdif 3788   ⊆ wss 3791  ∅c0 4140  ∪ cuni 4671   ↦ cmpt 4965  ran crn 5356  ‘cfv 6135  (class class class)co 6922  Fincfn 8241  infcinf 8635  ℂcc 10270  ℝcr 10271  ℝ*cxr 10410   < clt 10411  ℝ+crp 12137  (,)cioo 12487  Σcsu 14824   ↾t crest 16467  TopOpenctopn 16468  topGenctg 16484  ∞Metcxmet 20127  Metcmet 20128  MetOpencmopn 20132  ℂfldccnfld 20142  TopOnctopon 21122   Cn ccn 21436  Compccmp 21598 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-ec 8028  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-cn 21439  df-cnp 21440  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535 This theorem is referenced by:  lebnumlem3  23170
 Copyright terms: Public domain W3C validator