Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lebnumlem2 | Structured version Visualization version GIF version |
Description: Lemma for lebnum 24033. As a finite sum of point-to-set distance functions, which are continuous by metdscn 23925, the function 𝐹 is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
lebnum.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
lebnum.d | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
lebnum.c | ⊢ (𝜑 → 𝐽 ∈ Comp) |
lebnum.s | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
lebnum.u | ⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
lebnumlem1.u | ⊢ (𝜑 → 𝑈 ∈ Fin) |
lebnumlem1.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
lebnumlem1.f | ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) |
lebnumlem2.k | ⊢ 𝐾 = (topGen‘ran (,)) |
Ref | Expression |
---|---|
lebnumlem2 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lebnumlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) | |
2 | eqid 2738 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
3 | lebnum.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
4 | metxmet 23395 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
6 | lebnum.j | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
7 | 6 | mopntopon 23500 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
9 | lebnumlem1.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
10 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (Met‘𝑋)) |
11 | difssd 4063 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ⊆ 𝑋) | |
12 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (∞Met‘𝑋)) |
13 | 12, 7 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | lebnum.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
15 | 14 | sselda 3917 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝐽) |
16 | toponss 21984 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝐽) → 𝑘 ⊆ 𝑋) | |
17 | 13, 15, 16 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ⊆ 𝑋) |
18 | lebnumlem1.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
19 | eleq1 2826 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑋 → (𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) | |
20 | 19 | notbid 317 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑋 → (¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈)) |
21 | 18, 20 | syl5ibrcom 246 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈)) |
22 | 21 | necon2ad 2957 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋)) |
23 | 22 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ≠ 𝑋) |
24 | pssdifn0 4296 | . . . . . . 7 ⊢ ((𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋) → (𝑋 ∖ 𝑘) ≠ ∅) | |
25 | 17, 23, 24 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ≠ ∅) |
26 | eqid 2738 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) | |
27 | 26, 6, 2 | metdscn2 23926 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∖ 𝑘) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑘) ≠ ∅) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
28 | 10, 11, 25, 27 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
29 | 2, 8, 9, 28 | fsumcn 23939 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
30 | 1, 29 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
31 | 2 | cnfldtopon 23852 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
33 | lebnum.c | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
34 | lebnum.u | . . . . . . 7 ⊢ (𝜑 → 𝑋 = ∪ 𝑈) | |
35 | 6, 3, 33, 14, 34, 9, 18, 1 | lebnumlem1 24030 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ+) |
36 | 35 | frnd 6592 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ+) |
37 | rpssre 12666 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
38 | 36, 37 | sstrdi 3929 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
39 | ax-resscn 10859 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℂ) |
41 | cnrest2 22345 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
42 | 32, 38, 40, 41 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))) |
43 | 30, 42 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
44 | lebnumlem2.k | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
45 | 2 | tgioo2 23872 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
46 | 44, 45 | eqtri 2766 | . . 3 ⊢ 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ) |
47 | 46 | oveq2i 7266 | . 2 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
48 | 43, 47 | eleqtrrdi 2850 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 infcinf 9130 ℂcc 10800 ℝcr 10801 ℝ*cxr 10939 < clt 10940 ℝ+crp 12659 (,)cioo 13008 Σcsu 15325 ↾t crest 17048 TopOpenctopn 17049 topGenctg 17065 ∞Metcxmet 20495 Metcmet 20496 MetOpencmopn 20500 ℂfldccnfld 20510 TopOnctopon 21967 Cn ccn 22283 Compccmp 22445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-ec 8458 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 |
This theorem is referenced by: lebnumlem3 24032 |
Copyright terms: Public domain | W3C validator |