MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem2 Structured version   Visualization version   GIF version

Theorem lebnumlem2 22981
Description: Lemma for lebnum 22983. As a finite sum of point-to-set distance functions, which are continuous by metdscn 22879, the function 𝐹 is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
lebnumlem2.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
lebnumlem2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑦,𝑘,𝑧,𝐷   𝑘,𝐽,𝑦,𝑧   𝑈,𝑘,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧,𝑘)   𝐾(𝑦,𝑧,𝑘)

Proof of Theorem lebnumlem2
StepHypRef Expression
1 lebnumlem1.f . . . 4 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2 eqid 2771 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3 lebnum.d . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 22359 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 lebnum.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
76mopntopon 22464 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
85, 7syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 lebnumlem1.u . . . . 5 (𝜑𝑈 ∈ Fin)
103adantr 466 . . . . . 6 ((𝜑𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
11 difssd 3889 . . . . . 6 ((𝜑𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
125adantr 466 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
1312, 7syl 17 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝐽 ∈ (TopOn‘𝑋))
14 lebnum.s . . . . . . . . 9 (𝜑𝑈𝐽)
1514sselda 3752 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝑘𝐽)
16 toponss 20952 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐽) → 𝑘𝑋)
1713, 15, 16syl2anc 573 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝑋)
18 lebnumlem1.n . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑈)
19 eleq1 2838 . . . . . . . . . . 11 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
2019notbid 307 . . . . . . . . . 10 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
2118, 20syl5ibrcom 237 . . . . . . . . 9 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
2221necon2ad 2958 . . . . . . . 8 (𝜑 → (𝑘𝑈𝑘𝑋))
2322imp 393 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝑋)
24 pssdifn0 4092 . . . . . . 7 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
2517, 23, 24syl2anc 573 . . . . . 6 ((𝜑𝑘𝑈) → (𝑋𝑘) ≠ ∅)
26 eqid 2771 . . . . . . 7 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2726, 6, 2metdscn2 22880 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
2810, 11, 25, 27syl3anc 1476 . . . . 5 ((𝜑𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
292, 8, 9, 28fsumcn 22893 . . . 4 (𝜑 → (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
301, 29syl5eqel 2854 . . 3 (𝜑𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)))
312cnfldtopon 22806 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3231a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
33 lebnum.c . . . . . . 7 (𝜑𝐽 ∈ Comp)
34 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
356, 3, 33, 14, 34, 9, 18, 1lebnumlem1 22980 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ+)
3635frnd 6191 . . . . 5 (𝜑 → ran 𝐹 ⊆ ℝ+)
37 rpssre 12046 . . . . 5 + ⊆ ℝ
3836, 37syl6ss 3764 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
39 ax-resscn 10199 . . . . 5 ℝ ⊆ ℂ
4039a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
41 cnrest2 21311 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4232, 38, 40, 41syl3anc 1476 . . 3 (𝜑 → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4330, 42mpbid 222 . 2 (𝜑𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
44 lebnumlem2.k . . . 4 𝐾 = (topGen‘ran (,))
452tgioo2 22826 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4644, 45eqtri 2793 . . 3 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
4746oveq2i 6807 . 2 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
4843, 47syl6eleqr 2861 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  cdif 3720  wss 3723  c0 4063   cuni 4575  cmpt 4864  ran crn 5251  cfv 6030  (class class class)co 6796  Fincfn 8113  infcinf 8507  cc 10140  cr 10141  *cxr 10279   < clt 10280  +crp 12035  (,)cioo 12380  Σcsu 14624  t crest 16289  TopOpenctopn 16290  topGenctg 16306  ∞Metcxmt 19946  Metcme 19947  MetOpencmopn 19951  fldccnfld 19961  TopOnctopon 20935   Cn ccn 21249  Compccmp 21410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-ec 7902  df-map 8015  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-cn 21252  df-cnp 21253  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347
This theorem is referenced by:  lebnumlem3  22982
  Copyright terms: Public domain W3C validator