| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lebnumlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for lebnum 24870. As a finite sum of point-to-set distance functions, which are continuous by metdscn 24752, the function 𝐹 is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.) |
| Ref | Expression |
|---|---|
| lebnum.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| lebnum.d | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| lebnum.c | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| lebnum.s | ⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
| lebnum.u | ⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
| lebnumlem1.u | ⊢ (𝜑 → 𝑈 ∈ Fin) |
| lebnumlem1.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| lebnumlem1.f | ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) |
| lebnumlem2.k | ⊢ 𝐾 = (topGen‘ran (,)) |
| Ref | Expression |
|---|---|
| lebnumlem2 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnumlem1.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 3 | lebnum.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 4 | metxmet 24229 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | lebnum.j | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 7 | 6 | mopntopon 24334 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | lebnumlem1.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
| 10 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (Met‘𝑋)) |
| 11 | difssd 4103 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ⊆ 𝑋) | |
| 12 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (∞Met‘𝑋)) |
| 13 | 12, 7 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | lebnum.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ 𝐽) | |
| 15 | 14 | sselda 3949 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝐽) |
| 16 | toponss 22821 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝐽) → 𝑘 ⊆ 𝑋) | |
| 17 | 13, 15, 16 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ⊆ 𝑋) |
| 18 | lebnumlem1.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
| 19 | eleq1 2817 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑋 → (𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) | |
| 20 | 19 | notbid 318 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑋 → (¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈)) |
| 21 | 18, 20 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈)) |
| 22 | 21 | necon2ad 2941 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋)) |
| 23 | 22 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ≠ 𝑋) |
| 24 | pssdifn0 4334 | . . . . . . 7 ⊢ ((𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋) → (𝑋 ∖ 𝑘) ≠ ∅) | |
| 25 | 17, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ≠ ∅) |
| 26 | eqid 2730 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) | |
| 27 | 26, 6, 2 | metdscn2 24753 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∖ 𝑘) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑘) ≠ ∅) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
| 28 | 10, 11, 25, 27 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
| 29 | 2, 8, 9, 28 | fsumcn 24768 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
| 30 | 1, 29 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld))) |
| 31 | 2 | cnfldtopon 24677 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 33 | lebnum.c | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 34 | lebnum.u | . . . . . . 7 ⊢ (𝜑 → 𝑋 = ∪ 𝑈) | |
| 35 | 6, 3, 33, 14, 34, 9, 18, 1 | lebnumlem1 24867 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ+) |
| 36 | 35 | frnd 6699 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ+) |
| 37 | rpssre 12966 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
| 38 | 36, 37 | sstrdi 3962 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 39 | ax-resscn 11132 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 41 | cnrest2 23180 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
| 42 | 32, 38, 40, 41 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))) |
| 43 | 30, 42 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
| 44 | lebnumlem2.k | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 45 | tgioo4 24700 | . . . 4 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 46 | 44, 45 | eqtri 2753 | . . 3 ⊢ 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ) |
| 47 | 46 | oveq2i 7401 | . 2 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
| 48 | 43, 47 | eleqtrrdi 2840 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 infcinf 9399 ℂcc 11073 ℝcr 11074 ℝ*cxr 11214 < clt 11215 ℝ+crp 12958 (,)cioo 13313 Σcsu 15659 ↾t crest 17390 TopOpenctopn 17391 topGenctg 17407 ∞Metcxmet 21256 Metcmet 21257 MetOpencmopn 21261 ℂfldccnfld 21271 TopOnctopon 22804 Cn ccn 23118 Compccmp 23280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-ec 8676 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-cn 23121 df-cnp 23122 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 |
| This theorem is referenced by: lebnumlem3 24869 |
| Copyright terms: Public domain | W3C validator |