| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll 767 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 2 |  | simplr 769 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐾 ∈ (TopOn‘𝑋)) | 
| 3 |  | fclstopon 24020 | . . . . . . . . 9
⊢ (𝑥 ∈ (𝐾 fClus 𝑓) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝑓 ∈ (Fil‘𝑋))) | 
| 4 | 3 | ad2antll 729 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝑓 ∈ (Fil‘𝑋))) | 
| 5 | 2, 4 | mpbid 232 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑓 ∈ (Fil‘𝑋)) | 
| 6 |  | simprl 771 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐽 ⊆ 𝐾) | 
| 7 |  | fclsss1 24030 | . . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) | 
| 8 | 1, 5, 6, 7 | syl3anc 1373 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) | 
| 9 |  | simprr 773 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑥 ∈ (𝐾 fClus 𝑓)) | 
| 10 | 8, 9 | sseldd 3984 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑥 ∈ (𝐽 fClus 𝑓)) | 
| 11 | 10 | expr 456 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐾 fClus 𝑓) → 𝑥 ∈ (𝐽 fClus 𝑓))) | 
| 12 | 11 | ssrdv 3989 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) | 
| 13 | 12 | ralrimivw 3150 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) | 
| 14 |  | simpllr 776 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑋)) | 
| 15 |  | toponmax 22932 | . . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐾) | 
| 16 |  | ssid 4006 | . . . . . . . . . . 11
⊢ 𝑋 ⊆ 𝑋 | 
| 17 |  | eleq2 2830 | . . . . . . . . . . . . 13
⊢ (𝑢 = 𝑋 → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑋)) | 
| 18 |  | sseq1 4009 | . . . . . . . . . . . . 13
⊢ (𝑢 = 𝑋 → (𝑢 ⊆ 𝑋 ↔ 𝑋 ⊆ 𝑋)) | 
| 19 | 17, 18 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑋 → ((𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋) ↔ (𝑦 ∈ 𝑋 ∧ 𝑋 ⊆ 𝑋))) | 
| 20 | 19 | rspcev 3622 | . . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐾 ∧ (𝑦 ∈ 𝑋 ∧ 𝑋 ⊆ 𝑋)) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)) | 
| 21 | 16, 20 | mpanr2 704 | . . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)) | 
| 22 | 21 | ex 412 | . . . . . . . . 9
⊢ (𝑋 ∈ 𝐾 → (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) | 
| 23 | 14, 15, 22 | 3syl 18 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) | 
| 24 |  | eleq2 2830 | . . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑋)) | 
| 25 |  | sseq2 4010 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑢 ⊆ 𝑥 ↔ 𝑢 ⊆ 𝑋)) | 
| 26 | 25 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) | 
| 27 | 26 | rexbidv 3179 | . . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥) ↔ ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) | 
| 28 | 24, 27 | imbi12d 344 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) ↔ (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)))) | 
| 29 | 23, 28 | syl5ibrcom 247 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 = 𝑋 → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)))) | 
| 30 |  | simplll 775 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 31 |  | simprl 771 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ∈ 𝐽) | 
| 32 |  | simprrr 782 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑦 ∈ 𝑥) | 
| 33 |  | supnfcls 24028 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) | 
| 34 | 30, 31, 32, 33 | syl3anc 1373 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ¬ 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) | 
| 35 |  | toponss 22933 | . . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | 
| 36 | 30, 31, 35 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ⊆ 𝑋) | 
| 37 | 36, 32 | sseldd 3984 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑦 ∈ 𝑋) | 
| 38 |  | simpllr 776 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝐾 ∈ (TopOn‘𝑋)) | 
| 39 |  | toponmax 22932 | . . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | 
| 40 | 30, 39 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑋 ∈ 𝐽) | 
| 41 |  | difssd 4137 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑋 ∖ 𝑥) ⊆ 𝑋) | 
| 42 |  | simprrl 781 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ≠ 𝑋) | 
| 43 |  | pssdifn0 4368 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ 𝑋) → (𝑋 ∖ 𝑥) ≠ ∅) | 
| 44 | 36, 42, 43 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑋 ∖ 𝑥) ≠ ∅) | 
| 45 |  | supfil 23903 | . . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝐽 ∧ (𝑋 ∖ 𝑥) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑥) ≠ ∅) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) | 
| 46 | 40, 41, 44, 45 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) | 
| 47 |  | fclsopn 24022 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ (𝑦 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)))) | 
| 48 | 38, 46, 47 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ (𝑦 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)))) | 
| 49 | 37, 48 | mpbirand 707 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅))) | 
| 50 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝐾 fClus 𝑓) = (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) | 
| 51 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝐽 fClus 𝑓) = (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) | 
| 52 | 50, 51 | sseq12d 4017 | . . . . . . . . . . . . . 14
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → ((𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓) ↔ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ⊆ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) | 
| 53 |  | simplr 769 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) | 
| 54 | 52, 53, 46 | rspcdva 3623 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ⊆ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) | 
| 55 | 54 | sseld 3982 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) → 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) | 
| 56 | 49, 55 | sylbird 260 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) | 
| 57 | 34, 56 | mtod 198 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)) | 
| 58 |  | rexanali 3102 | . . . . . . . . . . 11
⊢
(∃𝑢 ∈
𝐾 (𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) ↔ ¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)) | 
| 59 |  | rexnal 3100 | . . . . . . . . . . . . . 14
⊢
(∃𝑛 ∈
{𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ¬ (𝑢 ∩ 𝑛) ≠ ∅ ↔ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) | 
| 60 |  | sseq2 4010 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑛 → ((𝑋 ∖ 𝑥) ⊆ 𝑦 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑛)) | 
| 61 | 60 | elrab 3692 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ↔ (𝑛 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑥) ⊆ 𝑛)) | 
| 62 |  | sslin 4243 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∖ 𝑥) ⊆ 𝑛 → (𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛)) | 
| 63 | 61, 62 | simplbiim 504 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛)) | 
| 64 |  | ssn0 4404 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) ∧ (𝑢 ∩ (𝑋 ∖ 𝑥)) ≠ ∅) → (𝑢 ∩ 𝑛) ≠ ∅) | 
| 65 | 64 | ex 412 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → ((𝑢 ∩ (𝑋 ∖ 𝑥)) ≠ ∅ → (𝑢 ∩ 𝑛) ≠ ∅)) | 
| 66 | 65 | necon1bd 2958 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ (𝑋 ∖ 𝑥)) = ∅)) | 
| 67 |  | inssdif0 4374 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∩ 𝑋) ⊆ 𝑥 ↔ (𝑢 ∩ (𝑋 ∖ 𝑥)) = ∅) | 
| 68 | 66, 67 | imbitrrdi 252 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ 𝑋) ⊆ 𝑥)) | 
| 69 |  | toponss 22933 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐾) → 𝑢 ⊆ 𝑋) | 
| 70 | 38, 69 | sylan 580 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → 𝑢 ⊆ 𝑋) | 
| 71 |  | dfss2 3969 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ⊆ 𝑋 ↔ (𝑢 ∩ 𝑋) = 𝑢) | 
| 72 | 70, 71 | sylib 218 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (𝑢 ∩ 𝑋) = 𝑢) | 
| 73 | 72 | sseq1d 4015 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ 𝑋) ⊆ 𝑥 ↔ 𝑢 ⊆ 𝑥)) | 
| 74 | 73 | biimpd 229 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ 𝑋) ⊆ 𝑥 → 𝑢 ⊆ 𝑥)) | 
| 75 | 68, 74 | syl9r 78 | . . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥))) | 
| 76 | 63, 75 | syl5 34 | . . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥))) | 
| 77 | 76 | rexlimdv 3153 | . . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (∃𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥)) | 
| 78 | 59, 77 | biimtrrid 243 | . . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥)) | 
| 79 | 78 | anim2d 612 | . . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) | 
| 80 | 79 | reximdva 3168 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) | 
| 81 | 58, 80 | biimtrrid 243 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) | 
| 82 | 57, 81 | mpd 15 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) | 
| 83 | 82 | anassrs 467 | . . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥)) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) | 
| 84 | 83 | exp32 420 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ≠ 𝑋 → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)))) | 
| 85 | 29, 84 | pm2.61dne 3028 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) | 
| 86 | 85 | ralrimiv 3145 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) | 
| 87 |  | topontop 22919 | . . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top) | 
| 88 |  | eltop2 22982 | . . . . . 6
⊢ (𝐾 ∈ Top → (𝑥 ∈ 𝐾 ↔ ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) | 
| 89 | 14, 87, 88 | 3syl 18 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐾 ↔ ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) | 
| 90 | 86, 89 | mpbird 257 | . . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐾) | 
| 91 | 90 | ex 412 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) → (𝑥 ∈ 𝐽 → 𝑥 ∈ 𝐾)) | 
| 92 | 91 | ssrdv 3989 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) → 𝐽 ⊆ 𝐾) | 
| 93 | 13, 92 | impbida 801 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓))) |