| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐾 ∈ (TopOn‘𝑋)) |
| 3 | | fclstopon 23950 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐾 fClus 𝑓) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝑓 ∈ (Fil‘𝑋))) |
| 4 | 3 | ad2antll 729 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝑓 ∈ (Fil‘𝑋))) |
| 5 | 2, 4 | mpbid 232 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑓 ∈ (Fil‘𝑋)) |
| 6 | | simprl 770 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐽 ⊆ 𝐾) |
| 7 | | fclsss1 23960 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
| 8 | 1, 5, 6, 7 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
| 9 | | simprr 772 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑥 ∈ (𝐾 fClus 𝑓)) |
| 10 | 8, 9 | sseldd 3959 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑥 ∈ (𝐽 fClus 𝑓)) |
| 11 | 10 | expr 456 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐾 fClus 𝑓) → 𝑥 ∈ (𝐽 fClus 𝑓))) |
| 12 | 11 | ssrdv 3964 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
| 13 | 12 | ralrimivw 3136 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
| 14 | | simpllr 775 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑋)) |
| 15 | | toponmax 22864 |
. . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐾) |
| 16 | | ssid 3981 |
. . . . . . . . . . 11
⊢ 𝑋 ⊆ 𝑋 |
| 17 | | eleq2 2823 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑋 → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑋)) |
| 18 | | sseq1 3984 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑋 → (𝑢 ⊆ 𝑋 ↔ 𝑋 ⊆ 𝑋)) |
| 19 | 17, 18 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑋 → ((𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋) ↔ (𝑦 ∈ 𝑋 ∧ 𝑋 ⊆ 𝑋))) |
| 20 | 19 | rspcev 3601 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐾 ∧ (𝑦 ∈ 𝑋 ∧ 𝑋 ⊆ 𝑋)) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)) |
| 21 | 16, 20 | mpanr2 704 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)) |
| 22 | 21 | ex 412 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐾 → (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) |
| 23 | 14, 15, 22 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) |
| 24 | | eleq2 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑋)) |
| 25 | | sseq2 3985 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑢 ⊆ 𝑥 ↔ 𝑢 ⊆ 𝑋)) |
| 26 | 25 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) |
| 27 | 26 | rexbidv 3164 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥) ↔ ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) |
| 28 | 24, 27 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) ↔ (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)))) |
| 29 | 23, 28 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 = 𝑋 → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)))) |
| 30 | | simplll 774 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 31 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ∈ 𝐽) |
| 32 | | simprrr 781 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑦 ∈ 𝑥) |
| 33 | | supnfcls 23958 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
| 34 | 30, 31, 32, 33 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ¬ 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
| 35 | | toponss 22865 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
| 36 | 30, 31, 35 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ⊆ 𝑋) |
| 37 | 36, 32 | sseldd 3959 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑦 ∈ 𝑋) |
| 38 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝐾 ∈ (TopOn‘𝑋)) |
| 39 | | toponmax 22864 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
| 40 | 30, 39 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑋 ∈ 𝐽) |
| 41 | | difssd 4112 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑋 ∖ 𝑥) ⊆ 𝑋) |
| 42 | | simprrl 780 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ≠ 𝑋) |
| 43 | | pssdifn0 4343 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ 𝑋) → (𝑋 ∖ 𝑥) ≠ ∅) |
| 44 | 36, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑋 ∖ 𝑥) ≠ ∅) |
| 45 | | supfil 23833 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝐽 ∧ (𝑋 ∖ 𝑥) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑥) ≠ ∅) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) |
| 46 | 40, 41, 44, 45 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) |
| 47 | | fclsopn 23952 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ (𝑦 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)))) |
| 48 | 38, 46, 47 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ (𝑦 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)))) |
| 49 | 37, 48 | mpbirand 707 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅))) |
| 50 | | oveq2 7413 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝐾 fClus 𝑓) = (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
| 51 | | oveq2 7413 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝐽 fClus 𝑓) = (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
| 52 | 50, 51 | sseq12d 3992 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → ((𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓) ↔ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ⊆ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) |
| 53 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
| 54 | 52, 53, 46 | rspcdva 3602 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ⊆ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
| 55 | 54 | sseld 3957 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) → 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) |
| 56 | 49, 55 | sylbird 260 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) |
| 57 | 34, 56 | mtod 198 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)) |
| 58 | | rexanali 3091 |
. . . . . . . . . . 11
⊢
(∃𝑢 ∈
𝐾 (𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) ↔ ¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)) |
| 59 | | rexnal 3089 |
. . . . . . . . . . . . . 14
⊢
(∃𝑛 ∈
{𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ¬ (𝑢 ∩ 𝑛) ≠ ∅ ↔ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) |
| 60 | | sseq2 3985 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑛 → ((𝑋 ∖ 𝑥) ⊆ 𝑦 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑛)) |
| 61 | 60 | elrab 3671 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ↔ (𝑛 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑥) ⊆ 𝑛)) |
| 62 | | sslin 4218 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∖ 𝑥) ⊆ 𝑛 → (𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛)) |
| 63 | 61, 62 | simplbiim 504 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛)) |
| 64 | | ssn0 4379 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) ∧ (𝑢 ∩ (𝑋 ∖ 𝑥)) ≠ ∅) → (𝑢 ∩ 𝑛) ≠ ∅) |
| 65 | 64 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → ((𝑢 ∩ (𝑋 ∖ 𝑥)) ≠ ∅ → (𝑢 ∩ 𝑛) ≠ ∅)) |
| 66 | 65 | necon1bd 2950 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ (𝑋 ∖ 𝑥)) = ∅)) |
| 67 | | inssdif0 4349 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∩ 𝑋) ⊆ 𝑥 ↔ (𝑢 ∩ (𝑋 ∖ 𝑥)) = ∅) |
| 68 | 66, 67 | imbitrrdi 252 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ 𝑋) ⊆ 𝑥)) |
| 69 | | toponss 22865 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐾) → 𝑢 ⊆ 𝑋) |
| 70 | 38, 69 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → 𝑢 ⊆ 𝑋) |
| 71 | | dfss2 3944 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ⊆ 𝑋 ↔ (𝑢 ∩ 𝑋) = 𝑢) |
| 72 | 70, 71 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (𝑢 ∩ 𝑋) = 𝑢) |
| 73 | 72 | sseq1d 3990 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ 𝑋) ⊆ 𝑥 ↔ 𝑢 ⊆ 𝑥)) |
| 74 | 73 | biimpd 229 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ 𝑋) ⊆ 𝑥 → 𝑢 ⊆ 𝑥)) |
| 75 | 68, 74 | syl9r 78 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥))) |
| 76 | 63, 75 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥))) |
| 77 | 76 | rexlimdv 3139 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (∃𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥)) |
| 78 | 59, 77 | biimtrrid 243 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥)) |
| 79 | 78 | anim2d 612 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
| 80 | 79 | reximdva 3153 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
| 81 | 58, 80 | biimtrrid 243 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
| 82 | 57, 81 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) |
| 83 | 82 | anassrs 467 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥)) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) |
| 84 | 83 | exp32 420 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ≠ 𝑋 → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)))) |
| 85 | 29, 84 | pm2.61dne 3018 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
| 86 | 85 | ralrimiv 3131 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) |
| 87 | | topontop 22851 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top) |
| 88 | | eltop2 22913 |
. . . . . 6
⊢ (𝐾 ∈ Top → (𝑥 ∈ 𝐾 ↔ ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
| 89 | 14, 87, 88 | 3syl 18 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐾 ↔ ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
| 90 | 86, 89 | mpbird 257 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐾) |
| 91 | 90 | ex 412 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) → (𝑥 ∈ 𝐽 → 𝑥 ∈ 𝐾)) |
| 92 | 91 | ssrdv 3964 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) → 𝐽 ⊆ 𝐾) |
| 93 | 13, 92 | impbida 800 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓))) |