Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | simplr 766 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐾 ∈ (TopOn‘𝑋)) |
3 | | fclstopon 23163 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐾 fClus 𝑓) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝑓 ∈ (Fil‘𝑋))) |
4 | 3 | ad2antll 726 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝑓 ∈ (Fil‘𝑋))) |
5 | 2, 4 | mpbid 231 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑓 ∈ (Fil‘𝑋)) |
6 | | simprl 768 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝐽 ⊆ 𝐾) |
7 | | fclsss1 23173 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
8 | 1, 5, 6, 7 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
9 | | simprr 770 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑥 ∈ (𝐾 fClus 𝑓)) |
10 | 8, 9 | sseldd 3922 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ (𝐾 fClus 𝑓))) → 𝑥 ∈ (𝐽 fClus 𝑓)) |
11 | 10 | expr 457 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐾 fClus 𝑓) → 𝑥 ∈ (𝐽 fClus 𝑓))) |
12 | 11 | ssrdv 3927 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
13 | 12 | ralrimivw 3104 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽 ⊆ 𝐾) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
14 | | simpllr 773 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑋)) |
15 | | toponmax 22075 |
. . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐾) |
16 | | ssid 3943 |
. . . . . . . . . . 11
⊢ 𝑋 ⊆ 𝑋 |
17 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑋 → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑋)) |
18 | | sseq1 3946 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑋 → (𝑢 ⊆ 𝑋 ↔ 𝑋 ⊆ 𝑋)) |
19 | 17, 18 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑋 → ((𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋) ↔ (𝑦 ∈ 𝑋 ∧ 𝑋 ⊆ 𝑋))) |
20 | 19 | rspcev 3561 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐾 ∧ (𝑦 ∈ 𝑋 ∧ 𝑋 ⊆ 𝑋)) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)) |
21 | 16, 20 | mpanr2 701 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)) |
22 | 21 | ex 413 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐾 → (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) |
23 | 14, 15, 22 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) |
24 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑋)) |
25 | | sseq2 3947 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑢 ⊆ 𝑥 ↔ 𝑢 ⊆ 𝑋)) |
26 | 25 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) |
27 | 26 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥) ↔ ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋))) |
28 | 24, 27 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) ↔ (𝑦 ∈ 𝑋 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑋)))) |
29 | 23, 28 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 = 𝑋 → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)))) |
30 | | simplll 772 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝐽 ∈ (TopOn‘𝑋)) |
31 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ∈ 𝐽) |
32 | | simprrr 779 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑦 ∈ 𝑥) |
33 | | supnfcls 23171 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
34 | 30, 31, 32, 33 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ¬ 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
35 | | toponss 22076 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
36 | 30, 31, 35 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ⊆ 𝑋) |
37 | 36, 32 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑦 ∈ 𝑋) |
38 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝐾 ∈ (TopOn‘𝑋)) |
39 | | toponmax 22075 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
40 | 30, 39 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑋 ∈ 𝐽) |
41 | | difssd 4067 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑋 ∖ 𝑥) ⊆ 𝑋) |
42 | | simprrl 778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → 𝑥 ≠ 𝑋) |
43 | | pssdifn0 4299 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ 𝑋) → (𝑋 ∖ 𝑥) ≠ ∅) |
44 | 36, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑋 ∖ 𝑥) ≠ ∅) |
45 | | supfil 23046 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝐽 ∧ (𝑋 ∖ 𝑥) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑥) ≠ ∅) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) |
46 | 40, 41, 44, 45 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) |
47 | | fclsopn 23165 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ∈ (Fil‘𝑋)) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ (𝑦 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)))) |
48 | 38, 46, 47 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ (𝑦 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)))) |
49 | 37, 48 | mpbirand 704 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ↔ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅))) |
50 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝐾 fClus 𝑓) = (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
51 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝐽 fClus 𝑓) = (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
52 | 50, 51 | sseq12d 3954 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → ((𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓) ↔ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ⊆ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) |
53 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) |
54 | 52, 53, 46 | rspcdva 3562 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) ⊆ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦})) |
55 | 54 | sseld 3920 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (𝑦 ∈ (𝐾 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}) → 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) |
56 | 49, 55 | sylbird 259 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → 𝑦 ∈ (𝐽 fClus {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦}))) |
57 | 34, 56 | mtod 197 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)) |
58 | | rexanali 3192 |
. . . . . . . . . . 11
⊢
(∃𝑢 ∈
𝐾 (𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) ↔ ¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅)) |
59 | | rexnal 3169 |
. . . . . . . . . . . . . 14
⊢
(∃𝑛 ∈
{𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ¬ (𝑢 ∩ 𝑛) ≠ ∅ ↔ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) |
60 | | sseq2 3947 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑛 → ((𝑋 ∖ 𝑥) ⊆ 𝑦 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑛)) |
61 | 60 | elrab 3624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ↔ (𝑛 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑥) ⊆ 𝑛)) |
62 | | sslin 4168 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∖ 𝑥) ⊆ 𝑛 → (𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛)) |
63 | 61, 62 | simplbiim 505 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛)) |
64 | | ssn0 4334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) ∧ (𝑢 ∩ (𝑋 ∖ 𝑥)) ≠ ∅) → (𝑢 ∩ 𝑛) ≠ ∅) |
65 | 64 | ex 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → ((𝑢 ∩ (𝑋 ∖ 𝑥)) ≠ ∅ → (𝑢 ∩ 𝑛) ≠ ∅)) |
66 | 65 | necon1bd 2961 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ (𝑋 ∖ 𝑥)) = ∅)) |
67 | | inssdif0 4303 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∩ 𝑋) ⊆ 𝑥 ↔ (𝑢 ∩ (𝑋 ∖ 𝑥)) = ∅) |
68 | 66, 67 | syl6ibr 251 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ 𝑋) ⊆ 𝑥)) |
69 | | toponss 22076 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐾) → 𝑢 ⊆ 𝑋) |
70 | 38, 69 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → 𝑢 ⊆ 𝑋) |
71 | | df-ss 3904 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ⊆ 𝑋 ↔ (𝑢 ∩ 𝑋) = 𝑢) |
72 | 70, 71 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (𝑢 ∩ 𝑋) = 𝑢) |
73 | 72 | sseq1d 3952 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ 𝑋) ⊆ 𝑥 ↔ 𝑢 ⊆ 𝑥)) |
74 | 73 | biimpd 228 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ 𝑋) ⊆ 𝑥 → 𝑢 ⊆ 𝑥)) |
75 | 68, 74 | syl9r 78 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑢 ∩ (𝑋 ∖ 𝑥)) ⊆ (𝑢 ∩ 𝑛) → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥))) |
76 | 63, 75 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} → (¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥))) |
77 | 76 | rexlimdv 3212 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (∃𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} ¬ (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥)) |
78 | 59, 77 | syl5bir 242 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → (¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅ → 𝑢 ⊆ 𝑥)) |
79 | 78 | anim2d 612 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) ∧ 𝑢 ∈ 𝐾) → ((𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
80 | 79 | reximdva 3203 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ ¬ ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
81 | 58, 80 | syl5bir 242 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → (¬ ∀𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 → ∀𝑛 ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ⊆ 𝑦} (𝑢 ∩ 𝑛) ≠ ∅) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
82 | 57, 81 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥))) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) |
83 | 82 | anassrs 468 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) ∧ (𝑥 ≠ 𝑋 ∧ 𝑦 ∈ 𝑥)) → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) |
84 | 83 | exp32 421 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ≠ 𝑋 → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)))) |
85 | 29, 84 | pm2.61dne 3031 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑦 ∈ 𝑥 → ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
86 | 85 | ralrimiv 3102 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥)) |
87 | | topontop 22062 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top) |
88 | | eltop2 22125 |
. . . . . 6
⊢ (𝐾 ∈ Top → (𝑥 ∈ 𝐾 ↔ ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
89 | 14, 87, 88 | 3syl 18 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∈ 𝐾 ↔ ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ 𝐾 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑥))) |
90 | 86, 89 | mpbird 256 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐾) |
91 | 90 | ex 413 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) → (𝑥 ∈ 𝐽 → 𝑥 ∈ 𝐾)) |
92 | 91 | ssrdv 3927 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓)) → 𝐽 ⊆ 𝐾) |
93 | 13, 92 | impbida 798 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓))) |