MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem1 Structured version   Visualization version   GIF version

Theorem lebnumlem1 24858
Description: Lemma for lebnum 24861. The function 𝐹 measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
Assertion
Ref Expression
lebnumlem1 (𝜑𝐹:𝑋⟶ℝ+)
Distinct variable groups:   𝑦,𝑘,𝑧,𝐷   𝑘,𝐽,𝑦,𝑧   𝑈,𝑘,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧,𝑘)

Proof of Theorem lebnumlem1
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnumlem1.u . . . . 5 (𝜑𝑈 ∈ Fin)
21adantr 480 . . . 4 ((𝜑𝑦𝑋) → 𝑈 ∈ Fin)
3 lebnum.d . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
43ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
5 difssd 4088 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
6 lebnum.s . . . . . . . . . . . 12 (𝜑𝑈𝐽)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝑋) → 𝑈𝐽)
87sselda 3935 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝐽)
9 elssuni 4888 . . . . . . . . . 10 (𝑘𝐽𝑘 𝐽)
108, 9syl 17 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘 𝐽)
11 metxmet 24220 . . . . . . . . . . . 12 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
123, 11syl 17 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝑋))
13 lebnum.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
1413mopnuni 24327 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1615ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑋 = 𝐽)
1710, 16sseqtrrd 3973 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝑋)
18 lebnumlem1.n . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋𝑈)
19 eleq1 2816 . . . . . . . . . . . . 13 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
2019notbid 318 . . . . . . . . . . . 12 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
2118, 20syl5ibrcom 247 . . . . . . . . . . 11 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
2221necon2ad 2940 . . . . . . . . . 10 (𝜑 → (𝑘𝑈𝑘𝑋))
2322adantr 480 . . . . . . . . 9 ((𝜑𝑦𝑋) → (𝑘𝑈𝑘𝑋))
2423imp 406 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝑋)
25 pssdifn0 4319 . . . . . . . 8 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
2617, 24, 25syl2anc 584 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
27 eqid 2729 . . . . . . . 8 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2827metdsre 24740 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
294, 5, 26, 28syl3anc 1373 . . . . . 6 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
3027fmpt 7044 . . . . . 6 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ ↔ (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
3129, 30sylibr 234 . . . . 5 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → ∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
32 simplr 768 . . . . 5 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑦𝑋)
33 rsp 3217 . . . . 5 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ → (𝑦𝑋 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ))
3431, 32, 33sylc 65 . . . 4 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
352, 34fsumrecl 15641 . . 3 ((𝜑𝑦𝑋) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
36 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
3736eleq2d 2814 . . . . . 6 (𝜑 → (𝑦𝑋𝑦 𝑈))
3837biimpa 476 . . . . 5 ((𝜑𝑦𝑋) → 𝑦 𝑈)
39 eluni2 4862 . . . . 5 (𝑦 𝑈 ↔ ∃𝑚𝑈 𝑦𝑚)
4038, 39sylib 218 . . . 4 ((𝜑𝑦𝑋) → ∃𝑚𝑈 𝑦𝑚)
41 0red 11118 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 ∈ ℝ)
42 simplr 768 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑦𝑋)
43 eqid 2729 . . . . . . . 8 (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )) = (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))
4443metdsval 24734 . . . . . . 7 (𝑦𝑋 → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
4542, 44syl 17 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
463ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐷 ∈ (Met‘𝑋))
47 difssd 4088 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ⊆ 𝑋)
486ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑈𝐽)
49 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑈)
5048, 49sseldd 3936 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝐽)
51 elssuni 4888 . . . . . . . . . . 11 (𝑚𝐽𝑚 𝐽)
5250, 51syl 17 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚 𝐽)
5346, 11, 143syl 18 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑋 = 𝐽)
5452, 53sseqtrrd 3973 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑋)
55 eleq1 2816 . . . . . . . . . . . . . 14 (𝑚 = 𝑋 → (𝑚𝑈𝑋𝑈))
5655notbid 318 . . . . . . . . . . . . 13 (𝑚 = 𝑋 → (¬ 𝑚𝑈 ↔ ¬ 𝑋𝑈))
5718, 56syl5ibrcom 247 . . . . . . . . . . . 12 (𝜑 → (𝑚 = 𝑋 → ¬ 𝑚𝑈))
5857necon2ad 2940 . . . . . . . . . . 11 (𝜑 → (𝑚𝑈𝑚𝑋))
5958ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑚𝑈𝑚𝑋))
6049, 59mpd 15 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑋)
61 pssdifn0 4319 . . . . . . . . 9 ((𝑚𝑋𝑚𝑋) → (𝑋𝑚) ≠ ∅)
6254, 60, 61syl2anc 584 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ≠ ∅)
6343metdsre 24740 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋 ∧ (𝑋𝑚) ≠ ∅) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
6446, 47, 62, 63syl3anc 1373 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
6564, 42ffvelcdmd 7019 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ)
6645, 65eqeltrrd 2829 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
6735adantr 480 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
6812ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐷 ∈ (∞Met‘𝑋))
6943metdsf 24735 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
7068, 47, 69syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
7170, 42ffvelcdmd 7019 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞))
72 elxrge0 13360 . . . . . . . . 9 (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞) ↔ (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ* ∧ 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)))
7371, 72sylib 218 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ* ∧ 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)))
7473simprd 495 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))
75 elndif 4084 . . . . . . . . . 10 (𝑦𝑚 → ¬ 𝑦 ∈ (𝑋𝑚))
7675ad2antll 729 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ¬ 𝑦 ∈ (𝑋𝑚))
7753difeq1d 4076 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) = ( 𝐽𝑚))
7813mopntop 24326 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
7968, 78syl 17 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐽 ∈ Top)
80 eqid 2729 . . . . . . . . . . . . 13 𝐽 = 𝐽
8180opncld 22918 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑚𝐽) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
8279, 50, 81syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
8377, 82eqeltrd 2828 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ∈ (Clsd‘𝐽))
84 cldcls 22927 . . . . . . . . . 10 ((𝑋𝑚) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘(𝑋𝑚)) = (𝑋𝑚))
8583, 84syl 17 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((cls‘𝐽)‘(𝑋𝑚)) = (𝑋𝑚))
8676, 85neleqtrrd 2851 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚)))
8743, 13metdseq0 24741 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋𝑦𝑋) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
8868, 47, 42, 87syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
8988necon3abid 2961 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0 ↔ ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
9086, 89mpbird 257 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0)
9165, 74, 90ne0gt0d 11253 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))
9291, 45breqtrd 5118 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
931ad2antrr 726 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑈 ∈ Fin)
9434adantlr 715 . . . . . 6 ((((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
9512ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9627metdsf 24735 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9795, 5, 96syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9827fmpt 7044 . . . . . . . . . . 11 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) ↔ (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9997, 98sylibr 234 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → ∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞))
100 rsp 3217 . . . . . . . . . 10 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) → (𝑦𝑋 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞)))
10199, 32, 100sylc 65 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞))
102 elxrge0 13360 . . . . . . . . 9 (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )))
103101, 102sylib 218 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )))
104103simprd 495 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
105104adantlr 715 . . . . . 6 ((((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) ∧ 𝑘𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
106 difeq2 4071 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑋𝑘) = (𝑋𝑚))
107106mpteq1d 5182 . . . . . . . 8 (𝑘 = 𝑚 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)))
108107rneqd 5880 . . . . . . 7 (𝑘 = 𝑚 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)))
109108infeq1d 9368 . . . . . 6 (𝑘 = 𝑚 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11093, 94, 105, 109, 49fsumge1 15704 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ≤ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11141, 66, 67, 92, 110ltletrd 11276 . . . 4 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11240, 111rexlimddv 3136 . . 3 ((𝜑𝑦𝑋) → 0 < Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11335, 112elrpd 12934 . 2 ((𝜑𝑦𝑋) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ+)
114 lebnumlem1.f . 2 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
115113, 114fmptd 7048 1 (𝜑𝐹:𝑋⟶ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3900  wss 3903  c0 4284   cuni 4858   class class class wbr 5092  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  infcinf 9331  cr 11008  0cc0 11009  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  +crp 12893  [,]cicc 13251  Σcsu 15593  ∞Metcxmet 21246  Metcmet 21247  MetOpencmopn 21251  Topctop 22778  Clsdccld 22901  clsccl 22903  Compccmp 23271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906
This theorem is referenced by:  lebnumlem2  24859  lebnumlem3  24860
  Copyright terms: Public domain W3C validator