MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem1 Structured version   Visualization version   GIF version

Theorem lebnumlem1 25007
Description: Lemma for lebnum 25010. The function 𝐹 measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
Assertion
Ref Expression
lebnumlem1 (𝜑𝐹:𝑋⟶ℝ+)
Distinct variable groups:   𝑦,𝑘,𝑧,𝐷   𝑘,𝐽,𝑦,𝑧   𝑈,𝑘,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧,𝑘)

Proof of Theorem lebnumlem1
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnumlem1.u . . . . 5 (𝜑𝑈 ∈ Fin)
21adantr 480 . . . 4 ((𝜑𝑦𝑋) → 𝑈 ∈ Fin)
3 lebnum.d . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
43ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
5 difssd 4147 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
6 lebnum.s . . . . . . . . . . . 12 (𝜑𝑈𝐽)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝑋) → 𝑈𝐽)
87sselda 3995 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝐽)
9 elssuni 4942 . . . . . . . . . 10 (𝑘𝐽𝑘 𝐽)
108, 9syl 17 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘 𝐽)
11 metxmet 24360 . . . . . . . . . . . 12 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
123, 11syl 17 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝑋))
13 lebnum.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
1413mopnuni 24467 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1615ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑋 = 𝐽)
1710, 16sseqtrrd 4037 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝑋)
18 lebnumlem1.n . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋𝑈)
19 eleq1 2827 . . . . . . . . . . . . 13 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
2019notbid 318 . . . . . . . . . . . 12 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
2118, 20syl5ibrcom 247 . . . . . . . . . . 11 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
2221necon2ad 2953 . . . . . . . . . 10 (𝜑 → (𝑘𝑈𝑘𝑋))
2322adantr 480 . . . . . . . . 9 ((𝜑𝑦𝑋) → (𝑘𝑈𝑘𝑋))
2423imp 406 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝑋)
25 pssdifn0 4374 . . . . . . . 8 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
2617, 24, 25syl2anc 584 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
27 eqid 2735 . . . . . . . 8 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2827metdsre 24889 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
294, 5, 26, 28syl3anc 1370 . . . . . 6 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
3027fmpt 7130 . . . . . 6 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ ↔ (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
3129, 30sylibr 234 . . . . 5 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → ∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
32 simplr 769 . . . . 5 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑦𝑋)
33 rsp 3245 . . . . 5 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ → (𝑦𝑋 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ))
3431, 32, 33sylc 65 . . . 4 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
352, 34fsumrecl 15767 . . 3 ((𝜑𝑦𝑋) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
36 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
3736eleq2d 2825 . . . . . 6 (𝜑 → (𝑦𝑋𝑦 𝑈))
3837biimpa 476 . . . . 5 ((𝜑𝑦𝑋) → 𝑦 𝑈)
39 eluni2 4916 . . . . 5 (𝑦 𝑈 ↔ ∃𝑚𝑈 𝑦𝑚)
4038, 39sylib 218 . . . 4 ((𝜑𝑦𝑋) → ∃𝑚𝑈 𝑦𝑚)
41 0red 11262 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 ∈ ℝ)
42 simplr 769 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑦𝑋)
43 eqid 2735 . . . . . . . 8 (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )) = (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))
4443metdsval 24883 . . . . . . 7 (𝑦𝑋 → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
4542, 44syl 17 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
463ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐷 ∈ (Met‘𝑋))
47 difssd 4147 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ⊆ 𝑋)
486ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑈𝐽)
49 simprl 771 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑈)
5048, 49sseldd 3996 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝐽)
51 elssuni 4942 . . . . . . . . . . 11 (𝑚𝐽𝑚 𝐽)
5250, 51syl 17 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚 𝐽)
5346, 11, 143syl 18 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑋 = 𝐽)
5452, 53sseqtrrd 4037 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑋)
55 eleq1 2827 . . . . . . . . . . . . . 14 (𝑚 = 𝑋 → (𝑚𝑈𝑋𝑈))
5655notbid 318 . . . . . . . . . . . . 13 (𝑚 = 𝑋 → (¬ 𝑚𝑈 ↔ ¬ 𝑋𝑈))
5718, 56syl5ibrcom 247 . . . . . . . . . . . 12 (𝜑 → (𝑚 = 𝑋 → ¬ 𝑚𝑈))
5857necon2ad 2953 . . . . . . . . . . 11 (𝜑 → (𝑚𝑈𝑚𝑋))
5958ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑚𝑈𝑚𝑋))
6049, 59mpd 15 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑋)
61 pssdifn0 4374 . . . . . . . . 9 ((𝑚𝑋𝑚𝑋) → (𝑋𝑚) ≠ ∅)
6254, 60, 61syl2anc 584 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ≠ ∅)
6343metdsre 24889 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋 ∧ (𝑋𝑚) ≠ ∅) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
6446, 47, 62, 63syl3anc 1370 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
6564, 42ffvelcdmd 7105 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ)
6645, 65eqeltrrd 2840 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
6735adantr 480 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
6812ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐷 ∈ (∞Met‘𝑋))
6943metdsf 24884 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
7068, 47, 69syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
7170, 42ffvelcdmd 7105 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞))
72 elxrge0 13494 . . . . . . . . 9 (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞) ↔ (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ* ∧ 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)))
7371, 72sylib 218 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ* ∧ 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)))
7473simprd 495 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))
75 elndif 4143 . . . . . . . . . 10 (𝑦𝑚 → ¬ 𝑦 ∈ (𝑋𝑚))
7675ad2antll 729 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ¬ 𝑦 ∈ (𝑋𝑚))
7753difeq1d 4135 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) = ( 𝐽𝑚))
7813mopntop 24466 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
7968, 78syl 17 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐽 ∈ Top)
80 eqid 2735 . . . . . . . . . . . . 13 𝐽 = 𝐽
8180opncld 23057 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑚𝐽) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
8279, 50, 81syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
8377, 82eqeltrd 2839 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ∈ (Clsd‘𝐽))
84 cldcls 23066 . . . . . . . . . 10 ((𝑋𝑚) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘(𝑋𝑚)) = (𝑋𝑚))
8583, 84syl 17 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((cls‘𝐽)‘(𝑋𝑚)) = (𝑋𝑚))
8676, 85neleqtrrd 2862 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚)))
8743, 13metdseq0 24890 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋𝑦𝑋) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
8868, 47, 42, 87syl3anc 1370 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
8988necon3abid 2975 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0 ↔ ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
9086, 89mpbird 257 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0)
9165, 74, 90ne0gt0d 11396 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))
9291, 45breqtrd 5174 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
931ad2antrr 726 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑈 ∈ Fin)
9434adantlr 715 . . . . . 6 ((((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
9512ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9627metdsf 24884 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9795, 5, 96syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9827fmpt 7130 . . . . . . . . . . 11 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) ↔ (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9997, 98sylibr 234 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → ∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞))
100 rsp 3245 . . . . . . . . . 10 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) → (𝑦𝑋 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞)))
10199, 32, 100sylc 65 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞))
102 elxrge0 13494 . . . . . . . . 9 (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )))
103101, 102sylib 218 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )))
104103simprd 495 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
105104adantlr 715 . . . . . 6 ((((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) ∧ 𝑘𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
106 difeq2 4130 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑋𝑘) = (𝑋𝑚))
107106mpteq1d 5243 . . . . . . . 8 (𝑘 = 𝑚 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)))
108107rneqd 5952 . . . . . . 7 (𝑘 = 𝑚 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)))
109108infeq1d 9515 . . . . . 6 (𝑘 = 𝑚 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11093, 94, 105, 109, 49fsumge1 15830 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ≤ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11141, 66, 67, 92, 110ltletrd 11419 . . . 4 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11240, 111rexlimddv 3159 . . 3 ((𝜑𝑦𝑋) → 0 < Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11335, 112elrpd 13072 . 2 ((𝜑𝑦𝑋) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ+)
114 lebnumlem1.f . 2 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
115113, 114fmptd 7134 1 (𝜑𝐹:𝑋⟶ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cdif 3960  wss 3963  c0 4339   cuni 4912   class class class wbr 5148  cmpt 5231  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  infcinf 9479  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  +crp 13032  [,]cicc 13387  Σcsu 15719  ∞Metcxmet 21367  Metcmet 21368  MetOpencmopn 21372  Topctop 22915  Clsdccld 23040  clsccl 23042  Compccmp 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045
This theorem is referenced by:  lebnumlem2  25008  lebnumlem3  25009
  Copyright terms: Public domain W3C validator