MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem1 Structured version   Visualization version   GIF version

Theorem lebnumlem1 24893
Description: Lemma for lebnum 24896. The function 𝐹 measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
Assertion
Ref Expression
lebnumlem1 (𝜑𝐹:𝑋⟶ℝ+)
Distinct variable groups:   𝑦,𝑘,𝑧,𝐷   𝑘,𝐽,𝑦,𝑧   𝑈,𝑘,𝑦,𝑧   𝜑,𝑘,𝑦,𝑧   𝑘,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧,𝑘)

Proof of Theorem lebnumlem1
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnumlem1.u . . . . 5 (𝜑𝑈 ∈ Fin)
21adantr 480 . . . 4 ((𝜑𝑦𝑋) → 𝑈 ∈ Fin)
3 lebnum.d . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
43ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
5 difssd 4096 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
6 lebnum.s . . . . . . . . . . . 12 (𝜑𝑈𝐽)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝑋) → 𝑈𝐽)
87sselda 3943 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝐽)
9 elssuni 4897 . . . . . . . . . 10 (𝑘𝐽𝑘 𝐽)
108, 9syl 17 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘 𝐽)
11 metxmet 24255 . . . . . . . . . . . 12 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
123, 11syl 17 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝑋))
13 lebnum.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
1413mopnuni 24362 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1512, 14syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1615ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑋 = 𝐽)
1710, 16sseqtrrd 3981 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝑋)
18 lebnumlem1.n . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋𝑈)
19 eleq1 2816 . . . . . . . . . . . . 13 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
2019notbid 318 . . . . . . . . . . . 12 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
2118, 20syl5ibrcom 247 . . . . . . . . . . 11 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
2221necon2ad 2940 . . . . . . . . . 10 (𝜑 → (𝑘𝑈𝑘𝑋))
2322adantr 480 . . . . . . . . 9 ((𝜑𝑦𝑋) → (𝑘𝑈𝑘𝑋))
2423imp 406 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑘𝑋)
25 pssdifn0 4327 . . . . . . . 8 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
2617, 24, 25syl2anc 584 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
27 eqid 2729 . . . . . . . 8 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
2827metdsre 24775 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
294, 5, 26, 28syl3anc 1373 . . . . . 6 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
3027fmpt 7064 . . . . . 6 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ ↔ (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
3129, 30sylibr 234 . . . . 5 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → ∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
32 simplr 768 . . . . 5 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝑦𝑋)
33 rsp 3223 . . . . 5 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ → (𝑦𝑋 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ))
3431, 32, 33sylc 65 . . . 4 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
352, 34fsumrecl 15676 . . 3 ((𝜑𝑦𝑋) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
36 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
3736eleq2d 2814 . . . . . 6 (𝜑 → (𝑦𝑋𝑦 𝑈))
3837biimpa 476 . . . . 5 ((𝜑𝑦𝑋) → 𝑦 𝑈)
39 eluni2 4871 . . . . 5 (𝑦 𝑈 ↔ ∃𝑚𝑈 𝑦𝑚)
4038, 39sylib 218 . . . 4 ((𝜑𝑦𝑋) → ∃𝑚𝑈 𝑦𝑚)
41 0red 11153 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 ∈ ℝ)
42 simplr 768 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑦𝑋)
43 eqid 2729 . . . . . . . 8 (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )) = (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))
4443metdsval 24769 . . . . . . 7 (𝑦𝑋 → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
4542, 44syl 17 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
463ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐷 ∈ (Met‘𝑋))
47 difssd 4096 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ⊆ 𝑋)
486ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑈𝐽)
49 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑈)
5048, 49sseldd 3944 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝐽)
51 elssuni 4897 . . . . . . . . . . 11 (𝑚𝐽𝑚 𝐽)
5250, 51syl 17 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚 𝐽)
5346, 11, 143syl 18 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑋 = 𝐽)
5452, 53sseqtrrd 3981 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑋)
55 eleq1 2816 . . . . . . . . . . . . . 14 (𝑚 = 𝑋 → (𝑚𝑈𝑋𝑈))
5655notbid 318 . . . . . . . . . . . . 13 (𝑚 = 𝑋 → (¬ 𝑚𝑈 ↔ ¬ 𝑋𝑈))
5718, 56syl5ibrcom 247 . . . . . . . . . . . 12 (𝜑 → (𝑚 = 𝑋 → ¬ 𝑚𝑈))
5857necon2ad 2940 . . . . . . . . . . 11 (𝜑 → (𝑚𝑈𝑚𝑋))
5958ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑚𝑈𝑚𝑋))
6049, 59mpd 15 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑚𝑋)
61 pssdifn0 4327 . . . . . . . . 9 ((𝑚𝑋𝑚𝑋) → (𝑋𝑚) ≠ ∅)
6254, 60, 61syl2anc 584 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ≠ ∅)
6343metdsre 24775 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋 ∧ (𝑋𝑚) ≠ ∅) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
6446, 47, 62, 63syl3anc 1373 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
6564, 42ffvelcdmd 7039 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ)
6645, 65eqeltrrd 2829 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
6735adantr 480 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
6812ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐷 ∈ (∞Met‘𝑋))
6943metdsf 24770 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
7068, 47, 69syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
7170, 42ffvelcdmd 7039 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞))
72 elxrge0 13394 . . . . . . . . 9 (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞) ↔ (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ* ∧ 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)))
7371, 72sylib 218 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ* ∧ 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)))
7473simprd 495 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 ≤ ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))
75 elndif 4092 . . . . . . . . . 10 (𝑦𝑚 → ¬ 𝑦 ∈ (𝑋𝑚))
7675ad2antll 729 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ¬ 𝑦 ∈ (𝑋𝑚))
7753difeq1d 4084 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) = ( 𝐽𝑚))
7813mopntop 24361 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
7968, 78syl 17 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝐽 ∈ Top)
80 eqid 2729 . . . . . . . . . . . . 13 𝐽 = 𝐽
8180opncld 22953 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑚𝐽) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
8279, 50, 81syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
8377, 82eqeltrd 2828 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (𝑋𝑚) ∈ (Clsd‘𝐽))
84 cldcls 22962 . . . . . . . . . 10 ((𝑋𝑚) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘(𝑋𝑚)) = (𝑋𝑚))
8583, 84syl 17 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((cls‘𝐽)‘(𝑋𝑚)) = (𝑋𝑚))
8676, 85neleqtrrd 2851 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚)))
8743, 13metdseq0 24776 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑚) ⊆ 𝑋𝑦𝑋) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
8868, 47, 42, 87syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
8988necon3abid 2961 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → (((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0 ↔ ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋𝑚))))
9086, 89mpbird 257 . . . . . . 7 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0)
9165, 74, 90ne0gt0d 11287 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < ((𝑤𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))
9291, 45breqtrd 5128 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
931ad2antrr 726 . . . . . 6 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 𝑈 ∈ Fin)
9434adantlr 715 . . . . . 6 ((((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ)
9512ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9627metdsf 24770 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9795, 5, 96syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9827fmpt 7064 . . . . . . . . . . 11 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) ↔ (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞))
9997, 98sylibr 234 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → ∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞))
100 rsp 3223 . . . . . . . . . 10 (∀𝑦𝑋 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) → (𝑦𝑋 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞)))
10199, 32, 100sylc 65 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞))
102 elxrge0 13394 . . . . . . . . 9 (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )))
103101, 102sylib 218 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → (inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )))
104103simprd 495 . . . . . . 7 (((𝜑𝑦𝑋) ∧ 𝑘𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
105104adantlr 715 . . . . . 6 ((((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) ∧ 𝑘𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
106 difeq2 4079 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑋𝑘) = (𝑋𝑚))
107106mpteq1d 5192 . . . . . . . 8 (𝑘 = 𝑚 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)))
108107rneqd 5891 . . . . . . 7 (𝑘 = 𝑚 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)))
109108infeq1d 9405 . . . . . 6 (𝑘 = 𝑚 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11093, 94, 105, 109, 49fsumge1 15739 . . . . 5 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → inf(ran (𝑧 ∈ (𝑋𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ≤ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11141, 66, 67, 92, 110ltletrd 11310 . . . 4 (((𝜑𝑦𝑋) ∧ (𝑚𝑈𝑦𝑚)) → 0 < Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11240, 111rexlimddv 3140 . . 3 ((𝜑𝑦𝑋) → 0 < Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
11335, 112elrpd 12968 . 2 ((𝜑𝑦𝑋) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈ ℝ+)
114 lebnumlem1.f . 2 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
115113, 114fmptd 7068 1 (𝜑𝐹:𝑋⟶ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  wss 3911  c0 4292   cuni 4867   class class class wbr 5102  cmpt 5183  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  infcinf 9368  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  +crp 12927  [,]cicc 13285  Σcsu 15628  ∞Metcxmet 21281  Metcmet 21282  MetOpencmopn 21286  Topctop 22813  Clsdccld 22936  clsccl 22938  Compccmp 23306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941
This theorem is referenced by:  lebnumlem2  24894  lebnumlem3  24895
  Copyright terms: Public domain W3C validator