MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpiin Structured version   Visualization version   GIF version

Theorem ixpiin 8862
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.)
Assertion
Ref Expression
ixpiin (𝐵 ≠ ∅ → X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem ixpiin
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 r19.28zv 4458 . . . 4 (𝐵 ≠ ∅ → (∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
2 eliin 4959 . . . . . 6 (𝑓 ∈ V → (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑓X𝑥𝐴 𝐶))
32elv 3451 . . . . 5 (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑓X𝑥𝐴 𝐶)
4 vex 3449 . . . . . . 7 𝑓 ∈ V
54elixp 8842 . . . . . 6 (𝑓X𝑥𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
65ralbii 3096 . . . . 5 (∀𝑦𝐵 𝑓X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
73, 6bitri 274 . . . 4 (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
84elixp 8842 . . . . 5 (𝑓X𝑥𝐴 𝑦𝐵 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶))
9 fvex 6855 . . . . . . . . 9 (𝑓𝑥) ∈ V
10 eliin 4959 . . . . . . . . 9 ((𝑓𝑥) ∈ V → ((𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 (𝑓𝑥) ∈ 𝐶))
119, 10ax-mp 5 . . . . . . . 8 ((𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 (𝑓𝑥) ∈ 𝐶)
1211ralbii 3096 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑓𝑥) ∈ 𝐶)
13 ralcom 3272 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 (𝑓𝑥) ∈ 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)
1412, 13bitri 274 . . . . . 6 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)
1514anbi2i 623 . . . . 5 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
168, 15bitri 274 . . . 4 (𝑓X𝑥𝐴 𝑦𝐵 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
171, 7, 163bitr4g 313 . . 3 (𝐵 ≠ ∅ → (𝑓 𝑦𝐵 X𝑥𝐴 𝐶𝑓X𝑥𝐴 𝑦𝐵 𝐶))
1817eqrdv 2734 . 2 (𝐵 ≠ ∅ → 𝑦𝐵 X𝑥𝐴 𝐶 = X𝑥𝐴 𝑦𝐵 𝐶)
1918eqcomd 2742 1 (𝐵 ≠ ∅ → X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  c0 4282   ciin 4955   Fn wfn 6491  cfv 6496  Xcixp 8835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2707  ax-nul 5263
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iin 4957  df-br 5106  df-opab 5168  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fn 6499  df-fv 6504  df-ixp 8836
This theorem is referenced by:  ixpint  8863  ptbasfi  22932  iccvonmbllem  44909
  Copyright terms: Public domain W3C validator