MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neips Structured version   Visualization version   GIF version

Theorem neips 23136
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neips ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Distinct variable groups:   𝐽,𝑝   𝑁,𝑝   𝑆,𝑝   𝑋,𝑝

Proof of Theorem neips
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 4812 . . . . . 6 (𝑝𝑆 → {𝑝} ⊆ 𝑆)
2 neiss 23132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ {𝑝} ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
31, 2syl3an3 1164 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑝𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
433exp 1118 . . . 4 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (𝑝𝑆𝑁 ∈ ((nei‘𝐽)‘{𝑝}))))
54ralrimdv 3149 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
653ad2ant1 1132 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
7 r19.28zv 4506 . . . . 5 (𝑆 ≠ ∅ → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
873ad2ant3 1134 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
9 ssrab2 4089 . . . . . . . . . 10 {𝑣𝐽𝑣𝑁} ⊆ 𝐽
10 uniopn 22918 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝐽) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
119, 10mpan2 691 . . . . . . . . 9 (𝐽 ∈ Top → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
1211ad2antrr 726 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
13 sseq1 4020 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑔 → (𝑣𝑁𝑔𝑁))
1413elrab 3694 . . . . . . . . . . . . . . 15 (𝑔 ∈ {𝑣𝐽𝑣𝑁} ↔ (𝑔𝐽𝑔𝑁))
15 elunii 4916 . . . . . . . . . . . . . . 15 ((𝑝𝑔𝑔 ∈ {𝑣𝐽𝑣𝑁}) → 𝑝 {𝑣𝐽𝑣𝑁})
1614, 15sylan2br 595 . . . . . . . . . . . . . 14 ((𝑝𝑔 ∧ (𝑔𝐽𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
1716an12s 649 . . . . . . . . . . . . 13 ((𝑔𝐽 ∧ (𝑝𝑔𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
1817rexlimiva 3144 . . . . . . . . . . . 12 (∃𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑝 {𝑣𝐽𝑣𝑁})
1918ralimi 3080 . . . . . . . . . . 11 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
20 dfss3 3983 . . . . . . . . . . 11 (𝑆 {𝑣𝐽𝑣𝑁} ↔ ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
2119, 20sylibr 234 . . . . . . . . . 10 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑆 {𝑣𝐽𝑣𝑁})
2221adantl 481 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → 𝑆 {𝑣𝐽𝑣𝑁})
23 unissb 4943 . . . . . . . . . 10 ( {𝑣𝐽𝑣𝑁} ⊆ 𝑁 ↔ ∀ ∈ {𝑣𝐽𝑣𝑁}𝑁)
24 sseq1 4020 . . . . . . . . . . . 12 (𝑣 = → (𝑣𝑁𝑁))
2524elrab 3694 . . . . . . . . . . 11 ( ∈ {𝑣𝐽𝑣𝑁} ↔ (𝐽𝑁))
2625simprbi 496 . . . . . . . . . 10 ( ∈ {𝑣𝐽𝑣𝑁} → 𝑁)
2723, 26mprgbir 3065 . . . . . . . . 9 {𝑣𝐽𝑣𝑁} ⊆ 𝑁
2822, 27jctir 520 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
29 sseq2 4021 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑆𝑆 {𝑣𝐽𝑣𝑁}))
30 sseq1 4020 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑁 {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
3129, 30anbi12d 632 . . . . . . . . 9 ( = {𝑣𝐽𝑣𝑁} → ((𝑆𝑁) ↔ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)))
3231rspcev 3621 . . . . . . . 8 (( {𝑣𝐽𝑣𝑁} ∈ 𝐽 ∧ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)) → ∃𝐽 (𝑆𝑁))
3312, 28, 32syl2anc 584 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → ∃𝐽 (𝑆𝑁))
3433ex 412 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∃𝐽 (𝑆𝑁)))
3534anim2d 612 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
36353adant3 1131 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
378, 36sylbid 240 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
38 ssel2 3989 . . . . . . 7 ((𝑆𝑋𝑝𝑆) → 𝑝𝑋)
39 neips.1 . . . . . . . 8 𝑋 = 𝐽
4039isneip 23128 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4138, 40sylan2 593 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑝𝑆)) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4241anassrs 467 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑝𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4342ralbidva 3173 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
44433adant3 1131 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4539isnei 23126 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
46453adant3 1131 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
4737, 44, 463imtr4d 294 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
486, 47impbid 212 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  wss 3962  c0 4338  {csn 4630   cuni 4911  cfv 6562  Topctop 22914  neicnei 23120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-top 22915  df-nei 23121
This theorem is referenced by:  utop2nei  24274
  Copyright terms: Public domain W3C validator