Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaglbN Structured version   Visualization version   GIF version

Theorem diaglbN 38351
Description: Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaglb.g 𝐺 = (glb‘𝐾)
diaglb.h 𝐻 = (LHyp‘𝐾)
diaglb.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaglbN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊

Proof of Theorem diaglbN
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 hlclat 36654 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
32ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
4 eqid 2798 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2798 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
6 diaglb.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 diaglb.i . . . . . . . . . 10 𝐼 = ((DIsoA‘𝐾)‘𝑊)
84, 5, 6, 7diadm 38331 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
98sseq2d 3947 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
109biimpa 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆 ⊆ dom 𝐼) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
1110adantrr 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
12 ssrab2 4007 . . . . . 6 {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
1311, 12sstrdi 3927 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾))
14 diaglb.g . . . . . 6 𝐺 = (glb‘𝐾)
154, 14clatglbcl 17716 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺𝑆) ∈ (Base‘𝐾))
163, 13, 15syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐺𝑆) ∈ (Base‘𝐾))
17 simprr 772 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
18 n0 4260 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
1917, 18sylib 221 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ∃𝑥 𝑥𝑆)
20 hllat 36659 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2120ad3antrrr 729 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
2216adantr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ (Base‘𝐾))
23 ssel2 3910 . . . . . . . . . 10 ((𝑆 ⊆ dom 𝐼𝑥𝑆) → 𝑥 ∈ dom 𝐼)
2423adantlr 714 . . . . . . . . 9 (((𝑆 ⊆ dom 𝐼𝑆 ≠ ∅) ∧ 𝑥𝑆) → 𝑥 ∈ dom 𝐼)
2524adantll 713 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ dom 𝐼)
264, 5, 6, 7diaeldm 38332 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
2726ad2antrr 725 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
2825, 27mpbid 235 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
2928simpld 498 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐾))
304, 6lhpbase 37294 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3130ad3antlr 730 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑊 ∈ (Base‘𝐾))
322ad3antrrr 729 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
3313adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐾))
34 simpr 488 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝑆)
354, 5, 14clatglble 17727 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
3632, 33, 34, 35syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
3728simprd 499 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥(le‘𝐾)𝑊)
384, 5, 21, 22, 29, 31, 36, 37lattrd 17660 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑊)
3919, 38exlimddv 1936 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐺𝑆)(le‘𝐾)𝑊)
40 eqid 2798 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41 eqid 2798 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
424, 5, 6, 40, 41, 7diaelval 38329 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ (Base‘𝐾) ∧ (𝐺𝑆)(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆))))
431, 16, 39, 42syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆))))
44 r19.28zv 4404 . . . . . 6 (𝑆 ≠ ∅ → (∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4544ad2antll 728 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
46 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
474, 5, 6, 40, 41, 7diaelval 38329 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4846, 28, 47syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑓 ∈ (𝐼𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4948ralbidva 3161 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (∀𝑥𝑆 𝑓 ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
502ad3antrrr 729 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ CLat)
514, 6, 40, 41trlcl 37460 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5251adantlr 714 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5313adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ⊆ (Base‘𝐾))
544, 5, 14clatleglb 17728 . . . . . . 7 ((𝐾 ∈ CLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾) ∧ 𝑆 ⊆ (Base‘𝐾)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆) ↔ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))
5550, 52, 53, 54syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆) ↔ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))
5655pm5.32da 582 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
5745, 49, 563bitr4rd 315 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥)))
58 vex 3444 . . . . 5 𝑓 ∈ V
59 eliin 4886 . . . . 5 (𝑓 ∈ V → (𝑓 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥)))
6058, 59ax-mp 5 . . . 4 (𝑓 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥))
6157, 60syl6bbr 292 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (𝐼𝑥)))
6243, 61bitrd 282 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (𝐼𝑥)))
6362eqrdv 2796 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  {crab 3110  Vcvv 3441  wss 3881  c0 4243   ciin 4882   class class class wbr 5030  dom cdm 5519  cfv 6324  Basecbs 16475  lecple 16564  glbcglb 17545  Latclat 17647  CLatccla 17709  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  trLctrl 37454  DIsoAcdia 38324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-disoa 38325
This theorem is referenced by:  diameetN  38352  diaintclN  38354  dibglbN  38462
  Copyright terms: Public domain W3C validator