| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | hlclat 39381 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| 3 | 2 | ad2antrr 726 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat) |
| 4 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 5 | | eqid 2736 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
| 6 | | diaglb.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | diaglb.i |
. . . . . . . . . 10
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| 8 | 4, 5, 6, 7 | diadm 41059 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 9 | 8 | sseq2d 3996 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ⊆ dom 𝐼 ↔ 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})) |
| 10 | 9 | biimpa 476 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ dom 𝐼) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 11 | 10 | adantrr 717 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
| 12 | | ssrab2 4060 |
. . . . . 6
⊢ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾) |
| 13 | 11, 12 | sstrdi 3976 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾)) |
| 14 | | diaglb.g |
. . . . . 6
⊢ 𝐺 = (glb‘𝐾) |
| 15 | 4, 14 | clatglbcl 18520 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
| 16 | 3, 13, 15 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
| 17 | | simprr 772 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
| 18 | | n0 4333 |
. . . . . 6
⊢ (𝑆 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑆) |
| 19 | 17, 18 | sylib 218 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ∃𝑥 𝑥 ∈ 𝑆) |
| 20 | | hllat 39386 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 21 | 20 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ Lat) |
| 22 | 16 | adantr 480 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
| 23 | | ssel2 3958 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ dom 𝐼 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) |
| 24 | 23 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) |
| 25 | 24 | adantll 714 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) |
| 26 | 4, 5, 6, 7 | diaeldm 41060 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) |
| 27 | 26 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) |
| 28 | 25, 27 | mpbid 232 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
| 29 | 28 | simpld 494 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐾)) |
| 30 | 4, 6 | lhpbase 40022 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 31 | 30 | ad3antlr 731 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ (Base‘𝐾)) |
| 32 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ CLat) |
| 33 | 13 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐾)) |
| 34 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 35 | 4, 5, 14 | clatglble 18532 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) |
| 36 | 32, 33, 34, 35 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) |
| 37 | 28 | simprd 495 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥(le‘𝐾)𝑊) |
| 38 | 4, 5, 21, 22, 29, 31, 36, 37 | lattrd 18461 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑊) |
| 39 | 19, 38 | exlimddv 1935 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆)(le‘𝐾)𝑊) |
| 40 | | eqid 2736 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
| 41 | | eqid 2736 |
. . . . 5
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
| 42 | 4, 5, 6, 40, 41, 7 | diaelval 41057 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (𝐺‘𝑆)(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)))) |
| 43 | 1, 16, 39, 42 | syl12anc 836 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)))) |
| 44 | | r19.28zv 4481 |
. . . . . 6
⊢ (𝑆 ≠ ∅ →
(∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
| 45 | 44 | ad2antll 729 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
| 46 | | simpll 766 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 47 | 4, 5, 6, 40, 41, 7 | diaelval 41057 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
| 48 | 46, 28, 47 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑓 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
| 49 | 48 | ralbidva 3162 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
| 50 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ CLat) |
| 51 | 4, 6, 40, 41 | trlcl 40188 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
| 52 | 51 | adantlr 715 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
| 53 | 13 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ⊆ (Base‘𝐾)) |
| 54 | 4, 5, 14 | clatleglb 18533 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧
(((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾) ∧ 𝑆 ⊆ (Base‘𝐾)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆) ↔ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)) |
| 55 | 50, 52, 53, 54 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆) ↔ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)) |
| 56 | 55 | pm5.32da 579 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
| 57 | 45, 49, 56 | 3bitr4rd 312 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥))) |
| 58 | | vex 3468 |
. . . . 5
⊢ 𝑓 ∈ V |
| 59 | | eliin 4977 |
. . . . 5
⊢ (𝑓 ∈ V → (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥))) |
| 60 | 58, 59 | ax-mp 5 |
. . . 4
⊢ (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥)) |
| 61 | 57, 60 | bitr4di 289 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ 𝑓 ∈ ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥))) |
| 62 | 43, 61 | bitrd 279 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ 𝑓 ∈ ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥))) |
| 63 | 62 | eqrdv 2734 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |