Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | hlclat 37372 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
3 | 2 | ad2antrr 723 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat) |
4 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
5 | | eqid 2738 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
6 | | diaglb.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | diaglb.i |
. . . . . . . . . 10
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
8 | 4, 5, 6, 7 | diadm 39049 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
9 | 8 | sseq2d 3953 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ⊆ dom 𝐼 ↔ 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})) |
10 | 9 | biimpa 477 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ dom 𝐼) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
11 | 10 | adantrr 714 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) |
12 | | ssrab2 4013 |
. . . . . 6
⊢ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾) |
13 | 11, 12 | sstrdi 3933 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾)) |
14 | | diaglb.g |
. . . . . 6
⊢ 𝐺 = (glb‘𝐾) |
15 | 4, 14 | clatglbcl 18223 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
16 | 3, 13, 15 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
17 | | simprr 770 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
18 | | n0 4280 |
. . . . . 6
⊢ (𝑆 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑆) |
19 | 17, 18 | sylib 217 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ∃𝑥 𝑥 ∈ 𝑆) |
20 | | hllat 37377 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
21 | 20 | ad3antrrr 727 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ Lat) |
22 | 16 | adantr 481 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆) ∈ (Base‘𝐾)) |
23 | | ssel2 3916 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ dom 𝐼 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) |
24 | 23 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) |
25 | 24 | adantll 711 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) |
26 | 4, 5, 6, 7 | diaeldm 39050 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) |
27 | 26 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) |
28 | 25, 27 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) |
29 | 28 | simpld 495 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐾)) |
30 | 4, 6 | lhpbase 38012 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
31 | 30 | ad3antlr 728 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ (Base‘𝐾)) |
32 | 2 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ CLat) |
33 | 13 | adantr 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐾)) |
34 | | simpr 485 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
35 | 4, 5, 14 | clatglble 18235 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) |
36 | 32, 33, 34, 35 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) |
37 | 28 | simprd 496 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥(le‘𝐾)𝑊) |
38 | 4, 5, 21, 22, 29, 31, 36, 37 | lattrd 18164 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑊) |
39 | 19, 38 | exlimddv 1938 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆)(le‘𝐾)𝑊) |
40 | | eqid 2738 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
41 | | eqid 2738 |
. . . . 5
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
42 | 4, 5, 6, 40, 41, 7 | diaelval 39047 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (𝐺‘𝑆)(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)))) |
43 | 1, 16, 39, 42 | syl12anc 834 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)))) |
44 | | r19.28zv 4431 |
. . . . . 6
⊢ (𝑆 ≠ ∅ →
(∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
45 | 44 | ad2antll 726 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
46 | | simpll 764 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
47 | 4, 5, 6, 40, 41, 7 | diaelval 39047 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
48 | 46, 28, 47 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑓 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
49 | 48 | ralbidva 3111 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
50 | 2 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ CLat) |
51 | 4, 6, 40, 41 | trlcl 38178 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
52 | 51 | adantlr 712 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) |
53 | 13 | adantr 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ⊆ (Base‘𝐾)) |
54 | 4, 5, 14 | clatleglb 18236 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧
(((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾) ∧ 𝑆 ⊆ (Base‘𝐾)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆) ↔ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)) |
55 | 50, 52, 53, 54 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆) ↔ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)) |
56 | 55 | pm5.32da 579 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) |
57 | 45, 49, 56 | 3bitr4rd 312 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥))) |
58 | | vex 3436 |
. . . . 5
⊢ 𝑓 ∈ V |
59 | | eliin 4929 |
. . . . 5
⊢ (𝑓 ∈ V → (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥))) |
60 | 58, 59 | ax-mp 5 |
. . . 4
⊢ (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥)) |
61 | 57, 60 | bitr4di 289 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ 𝑓 ∈ ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥))) |
62 | 43, 61 | bitrd 278 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ 𝑓 ∈ ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥))) |
63 | 62 | eqrdv 2736 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |