Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaglbN Structured version   Visualization version   GIF version

Theorem diaglbN 41164
Description: Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaglb.g 𝐺 = (glb‘𝐾)
diaglb.h 𝐻 = (LHyp‘𝐾)
diaglb.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaglbN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊

Proof of Theorem diaglbN
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 hlclat 39467 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
32ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
4 eqid 2731 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2731 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
6 diaglb.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 diaglb.i . . . . . . . . . 10 𝐼 = ((DIsoA‘𝐾)‘𝑊)
84, 5, 6, 7diadm 41144 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
98sseq2d 3962 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
109biimpa 476 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆 ⊆ dom 𝐼) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
1110adantrr 717 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
12 ssrab2 4027 . . . . . 6 {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
1311, 12sstrdi 3942 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾))
14 diaglb.g . . . . . 6 𝐺 = (glb‘𝐾)
154, 14clatglbcl 18411 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺𝑆) ∈ (Base‘𝐾))
163, 13, 15syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐺𝑆) ∈ (Base‘𝐾))
17 simprr 772 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
18 n0 4300 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
1917, 18sylib 218 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ∃𝑥 𝑥𝑆)
20 hllat 39472 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2120ad3antrrr 730 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
2216adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ (Base‘𝐾))
23 ssel2 3924 . . . . . . . . . 10 ((𝑆 ⊆ dom 𝐼𝑥𝑆) → 𝑥 ∈ dom 𝐼)
2423adantlr 715 . . . . . . . . 9 (((𝑆 ⊆ dom 𝐼𝑆 ≠ ∅) ∧ 𝑥𝑆) → 𝑥 ∈ dom 𝐼)
2524adantll 714 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ dom 𝐼)
264, 5, 6, 7diaeldm 41145 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
2726ad2antrr 726 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
2825, 27mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
2928simpld 494 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐾))
304, 6lhpbase 40107 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3130ad3antlr 731 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑊 ∈ (Base‘𝐾))
322ad3antrrr 730 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
3313adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐾))
34 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝑆)
354, 5, 14clatglble 18423 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
3632, 33, 34, 35syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
3728simprd 495 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥(le‘𝐾)𝑊)
384, 5, 21, 22, 29, 31, 36, 37lattrd 18352 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑊)
3919, 38exlimddv 1936 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐺𝑆)(le‘𝐾)𝑊)
40 eqid 2731 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41 eqid 2731 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
424, 5, 6, 40, 41, 7diaelval 41142 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ (Base‘𝐾) ∧ (𝐺𝑆)(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆))))
431, 16, 39, 42syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆))))
44 r19.28zv 4448 . . . . . 6 (𝑆 ≠ ∅ → (∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4544ad2antll 729 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
46 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
474, 5, 6, 40, 41, 7diaelval 41142 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4846, 28, 47syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑓 ∈ (𝐼𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4948ralbidva 3153 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (∀𝑥𝑆 𝑓 ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
502ad3antrrr 730 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ CLat)
514, 6, 40, 41trlcl 40273 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5251adantlr 715 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5313adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ⊆ (Base‘𝐾))
544, 5, 14clatleglb 18424 . . . . . . 7 ((𝐾 ∈ CLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾) ∧ 𝑆 ⊆ (Base‘𝐾)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆) ↔ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))
5550, 52, 53, 54syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆) ↔ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))
5655pm5.32da 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
5745, 49, 563bitr4rd 312 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥)))
58 vex 3440 . . . . 5 𝑓 ∈ V
59 eliin 4944 . . . . 5 (𝑓 ∈ V → (𝑓 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥)))
6058, 59ax-mp 5 . . . 4 (𝑓 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥))
6157, 60bitr4di 289 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (𝐼𝑥)))
6243, 61bitrd 279 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (𝐼𝑥)))
6362eqrdv 2729 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3897  c0 4280   ciin 4940   class class class wbr 5089  dom cdm 5614  cfv 6481  Basecbs 17120  lecple 17168  glbcglb 18216  Latclat 18337  CLatccla 18404  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  trLctrl 40267  DIsoAcdia 41137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-disoa 41138
This theorem is referenced by:  diameetN  41165  diaintclN  41167  dibglbN  41275
  Copyright terms: Public domain W3C validator