Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaglbN Structured version   Visualization version   GIF version

Theorem diaglbN 40393
Description: Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaglb.g 𝐺 = (glbβ€˜πΎ)
diaglb.h 𝐻 = (LHypβ€˜πΎ)
diaglb.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
diaglbN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯))
Distinct variable groups:   π‘₯,𝐺   π‘₯,𝐻   π‘₯,𝐼   π‘₯,𝐾   π‘₯,𝑆   π‘₯,π‘Š

Proof of Theorem diaglbN
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 hlclat 38695 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
32ad2antrr 723 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐾 ∈ CLat)
4 eqid 2731 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
5 eqid 2731 . . . . . . . . . 10 (leβ€˜πΎ) = (leβ€˜πΎ)
6 diaglb.h . . . . . . . . . 10 𝐻 = (LHypβ€˜πΎ)
7 diaglb.i . . . . . . . . . 10 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
84, 5, 6, 7diadm 40373 . . . . . . . . 9 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š})
98sseq2d 4014 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑆 βŠ† dom 𝐼 ↔ 𝑆 βŠ† {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š}))
109biimpa 476 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 βŠ† dom 𝐼) β†’ 𝑆 βŠ† {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š})
1110adantrr 714 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 βŠ† {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š})
12 ssrab2 4077 . . . . . 6 {𝑦 ∈ (Baseβ€˜πΎ) ∣ 𝑦(leβ€˜πΎ)π‘Š} βŠ† (Baseβ€˜πΎ)
1311, 12sstrdi 3994 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 βŠ† (Baseβ€˜πΎ))
14 diaglb.g . . . . . 6 𝐺 = (glbβ€˜πΎ)
154, 14clatglbcl 18468 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆 βŠ† (Baseβ€˜πΎ)) β†’ (πΊβ€˜π‘†) ∈ (Baseβ€˜πΎ))
163, 13, 15syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΊβ€˜π‘†) ∈ (Baseβ€˜πΎ))
17 simprr 770 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 β‰  βˆ…)
18 n0 4346 . . . . . 6 (𝑆 β‰  βˆ… ↔ βˆƒπ‘₯ π‘₯ ∈ 𝑆)
1917, 18sylib 217 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ βˆƒπ‘₯ π‘₯ ∈ 𝑆)
20 hllat 38700 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
2120ad3antrrr 727 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ 𝐾 ∈ Lat)
2216adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ (πΊβ€˜π‘†) ∈ (Baseβ€˜πΎ))
23 ssel2 3977 . . . . . . . . . 10 ((𝑆 βŠ† dom 𝐼 ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ dom 𝐼)
2423adantlr 712 . . . . . . . . 9 (((𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ dom 𝐼)
2524adantll 711 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ dom 𝐼)
264, 5, 6, 7diaeldm 40374 . . . . . . . . 9 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (π‘₯ ∈ dom 𝐼 ↔ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)))
2726ad2antrr 723 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯ ∈ dom 𝐼 ↔ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)))
2825, 27mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š))
2928simpld 494 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ (Baseβ€˜πΎ))
304, 6lhpbase 39336 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
3130ad3antlr 728 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ π‘Š ∈ (Baseβ€˜πΎ))
322ad3antrrr 727 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ 𝐾 ∈ CLat)
3313adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ 𝑆 βŠ† (Baseβ€˜πΎ))
34 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑆)
354, 5, 14clatglble 18480 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 βŠ† (Baseβ€˜πΎ) ∧ π‘₯ ∈ 𝑆) β†’ (πΊβ€˜π‘†)(leβ€˜πΎ)π‘₯)
3632, 33, 34, 35syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ (πΊβ€˜π‘†)(leβ€˜πΎ)π‘₯)
3728simprd 495 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯(leβ€˜πΎ)π‘Š)
384, 5, 21, 22, 29, 31, 36, 37lattrd 18409 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ (πΊβ€˜π‘†)(leβ€˜πΎ)π‘Š)
3919, 38exlimddv 1937 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΊβ€˜π‘†)(leβ€˜πΎ)π‘Š)
40 eqid 2731 . . . . 5 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
41 eqid 2731 . . . . 5 ((trLβ€˜πΎ)β€˜π‘Š) = ((trLβ€˜πΎ)β€˜π‘Š)
424, 5, 6, 40, 41, 7diaelval 40371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((πΊβ€˜π‘†) ∈ (Baseβ€˜πΎ) ∧ (πΊβ€˜π‘†)(leβ€˜πΎ)π‘Š)) β†’ (𝑓 ∈ (πΌβ€˜(πΊβ€˜π‘†)) ↔ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)(πΊβ€˜π‘†))))
431, 16, 39, 42syl12anc 834 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝑓 ∈ (πΌβ€˜(πΊβ€˜π‘†)) ↔ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)(πΊβ€˜π‘†))))
44 r19.28zv 4500 . . . . . 6 (𝑆 β‰  βˆ… β†’ (βˆ€π‘₯ ∈ 𝑆 (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯) ↔ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘₯ ∈ 𝑆 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯)))
4544ad2antll 726 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (βˆ€π‘₯ ∈ 𝑆 (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯) ↔ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘₯ ∈ 𝑆 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯)))
46 simpll 764 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
474, 5, 6, 40, 41, 7diaelval 40371 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)) β†’ (𝑓 ∈ (πΌβ€˜π‘₯) ↔ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯)))
4846, 28, 47syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ 𝑆) β†’ (𝑓 ∈ (πΌβ€˜π‘₯) ↔ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯)))
4948ralbidva 3174 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (βˆ€π‘₯ ∈ 𝑆 𝑓 ∈ (πΌβ€˜π‘₯) ↔ βˆ€π‘₯ ∈ 𝑆 (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯)))
502ad3antrrr 727 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)) β†’ 𝐾 ∈ CLat)
514, 6, 40, 41trlcl 39502 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ∈ (Baseβ€˜πΎ))
5251adantlr 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ∈ (Baseβ€˜πΎ))
5313adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)) β†’ 𝑆 βŠ† (Baseβ€˜πΎ))
544, 5, 14clatleglb 18481 . . . . . . 7 ((𝐾 ∈ CLat ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“) ∈ (Baseβ€˜πΎ) ∧ 𝑆 βŠ† (Baseβ€˜πΎ)) β†’ ((((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)(πΊβ€˜π‘†) ↔ βˆ€π‘₯ ∈ 𝑆 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯))
5550, 52, 53, 54syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)) β†’ ((((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)(πΊβ€˜π‘†) ↔ βˆ€π‘₯ ∈ 𝑆 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯))
5655pm5.32da 578 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)(πΊβ€˜π‘†)) ↔ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘₯ ∈ 𝑆 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)π‘₯)))
5745, 49, 563bitr4rd 312 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)(πΊβ€˜π‘†)) ↔ βˆ€π‘₯ ∈ 𝑆 𝑓 ∈ (πΌβ€˜π‘₯)))
58 vex 3477 . . . . 5 𝑓 ∈ V
59 eliin 5002 . . . . 5 (𝑓 ∈ V β†’ (𝑓 ∈ ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯) ↔ βˆ€π‘₯ ∈ 𝑆 𝑓 ∈ (πΌβ€˜π‘₯)))
6058, 59ax-mp 5 . . . 4 (𝑓 ∈ ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯) ↔ βˆ€π‘₯ ∈ 𝑆 𝑓 ∈ (πΌβ€˜π‘₯))
6157, 60bitr4di 289 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘“)(leβ€˜πΎ)(πΊβ€˜π‘†)) ↔ 𝑓 ∈ ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯)))
6243, 61bitrd 279 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝑓 ∈ (πΌβ€˜(πΊβ€˜π‘†)) ↔ 𝑓 ∈ ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯)))
6362eqrdv 2729 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† dom 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  {crab 3431  Vcvv 3473   βŠ† wss 3948  βˆ…c0 4322  βˆ© ciin 4998   class class class wbr 5148  dom cdm 5676  β€˜cfv 6543  Basecbs 17151  lecple 17211  glbcglb 18273  Latclat 18394  CLatccla 18461  HLchlt 38687  LHypclh 39322  LTrncltrn 39439  trLctrl 39496  DIsoAcdia 40366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38513  df-ol 38515  df-oml 38516  df-covers 38603  df-ats 38604  df-atl 38635  df-cvlat 38659  df-hlat 38688  df-lhyp 39326  df-laut 39327  df-ldil 39442  df-ltrn 39443  df-trl 39497  df-disoa 40367
This theorem is referenced by:  diameetN  40394  diaintclN  40396  dibglbN  40504
  Copyright terms: Public domain W3C validator