Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaglbN Structured version   Visualization version   GIF version

Theorem diaglbN 41044
Description: Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaglb.g 𝐺 = (glb‘𝐾)
diaglb.h 𝐻 = (LHyp‘𝐾)
diaglb.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaglbN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊

Proof of Theorem diaglbN
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 hlclat 39347 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
32ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
4 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2729 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
6 diaglb.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 diaglb.i . . . . . . . . . 10 𝐼 = ((DIsoA‘𝐾)‘𝑊)
84, 5, 6, 7diadm 41024 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
98sseq2d 3968 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ⊆ dom 𝐼𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}))
109biimpa 476 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆 ⊆ dom 𝐼) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
1110adantrr 717 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})
12 ssrab2 4031 . . . . . 6 {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
1311, 12sstrdi 3948 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾))
14 diaglb.g . . . . . 6 𝐺 = (glb‘𝐾)
154, 14clatglbcl 18411 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺𝑆) ∈ (Base‘𝐾))
163, 13, 15syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐺𝑆) ∈ (Base‘𝐾))
17 simprr 772 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
18 n0 4304 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
1917, 18sylib 218 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ∃𝑥 𝑥𝑆)
20 hllat 39352 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2120ad3antrrr 730 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
2216adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆) ∈ (Base‘𝐾))
23 ssel2 3930 . . . . . . . . . 10 ((𝑆 ⊆ dom 𝐼𝑥𝑆) → 𝑥 ∈ dom 𝐼)
2423adantlr 715 . . . . . . . . 9 (((𝑆 ⊆ dom 𝐼𝑆 ≠ ∅) ∧ 𝑥𝑆) → 𝑥 ∈ dom 𝐼)
2524adantll 714 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ dom 𝐼)
264, 5, 6, 7diaeldm 41025 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
2726ad2antrr 726 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
2825, 27mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))
2928simpld 494 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐾))
304, 6lhpbase 39987 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3130ad3antlr 731 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑊 ∈ (Base‘𝐾))
322ad3antrrr 730 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
3313adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐾))
34 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝑆)
354, 5, 14clatglble 18423 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
3632, 33, 34, 35syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑥)
3728simprd 495 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥(le‘𝐾)𝑊)
384, 5, 21, 22, 29, 31, 36, 37lattrd 18352 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐺𝑆)(le‘𝐾)𝑊)
3919, 38exlimddv 1935 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐺𝑆)(le‘𝐾)𝑊)
40 eqid 2729 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
41 eqid 2729 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
424, 5, 6, 40, 41, 7diaelval 41022 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑆) ∈ (Base‘𝐾) ∧ (𝐺𝑆)(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆))))
431, 16, 39, 42syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆))))
44 r19.28zv 4452 . . . . . 6 (𝑆 ≠ ∅ → (∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4544ad2antll 729 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
46 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
474, 5, 6, 40, 41, 7diaelval 41022 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4846, 28, 47syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑓 ∈ (𝐼𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
4948ralbidva 3150 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (∀𝑥𝑆 𝑓 ∈ (𝐼𝑥) ↔ ∀𝑥𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
502ad3antrrr 730 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ CLat)
514, 6, 40, 41trlcl 40153 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5251adantlr 715 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾))
5313adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ⊆ (Base‘𝐾))
544, 5, 14clatleglb 18424 . . . . . . 7 ((𝐾 ∈ CLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾) ∧ 𝑆 ⊆ (Base‘𝐾)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆) ↔ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))
5550, 52, 53, 54syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆) ↔ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))
5655pm5.32da 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)))
5745, 49, 563bitr4rd 312 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥)))
58 vex 3440 . . . . 5 𝑓 ∈ V
59 eliin 4946 . . . . 5 (𝑓 ∈ V → (𝑓 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥)))
6058, 59ax-mp 5 . . . 4 (𝑓 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 𝑓 ∈ (𝐼𝑥))
6157, 60bitr4di 289 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (𝐼𝑥)))
6243, 61bitrd 279 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺𝑆)) ↔ 𝑓 𝑥𝑆 (𝐼𝑥)))
6362eqrdv 2727 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ dom 𝐼𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  {crab 3394  Vcvv 3436  wss 3903  c0 4284   ciin 4942   class class class wbr 5092  dom cdm 5619  cfv 6482  Basecbs 17120  lecple 17168  glbcglb 18216  Latclat 18337  CLatccla 18404  HLchlt 39339  LHypclh 39973  LTrncltrn 40090  trLctrl 40147  DIsoAcdia 41017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-disoa 41018
This theorem is referenced by:  diameetN  41045  diaintclN  41047  dibglbN  41155
  Copyright terms: Public domain W3C validator