| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | hlclat 39360 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | 
| 3 | 2 | ad2antrr 726 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat) | 
| 4 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 5 |  | eqid 2736 | . . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 6 |  | diaglb.h | . . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 |  | diaglb.i | . . . . . . . . . 10
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | 
| 8 | 4, 5, 6, 7 | diadm 41038 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) | 
| 9 | 8 | sseq2d 4015 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ⊆ dom 𝐼 ↔ 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊})) | 
| 10 | 9 | biimpa 476 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ⊆ dom 𝐼) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) | 
| 11 | 10 | adantrr 717 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊}) | 
| 12 |  | ssrab2 4079 | . . . . . 6
⊢ {𝑦 ∈ (Base‘𝐾) ∣ 𝑦(le‘𝐾)𝑊} ⊆ (Base‘𝐾) | 
| 13 | 11, 12 | sstrdi 3995 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ (Base‘𝐾)) | 
| 14 |  | diaglb.g | . . . . . 6
⊢ 𝐺 = (glb‘𝐾) | 
| 15 | 4, 14 | clatglbcl 18551 | . . . . 5
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) | 
| 16 | 3, 13, 15 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆) ∈ (Base‘𝐾)) | 
| 17 |  | simprr 772 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) | 
| 18 |  | n0 4352 | . . . . . 6
⊢ (𝑆 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑆) | 
| 19 | 17, 18 | sylib 218 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ∃𝑥 𝑥 ∈ 𝑆) | 
| 20 |  | hllat 39365 | . . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 21 | 20 | ad3antrrr 730 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ Lat) | 
| 22 | 16 | adantr 480 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆) ∈ (Base‘𝐾)) | 
| 23 |  | ssel2 3977 | . . . . . . . . . 10
⊢ ((𝑆 ⊆ dom 𝐼 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) | 
| 24 | 23 | adantlr 715 | . . . . . . . . 9
⊢ (((𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) | 
| 25 | 24 | adantll 714 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ dom 𝐼) | 
| 26 | 4, 5, 6, 7 | diaeldm 41039 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) | 
| 27 | 26 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) | 
| 28 | 25, 27 | mpbid 232 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) | 
| 29 | 28 | simpld 494 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐾)) | 
| 30 | 4, 6 | lhpbase 40001 | . . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 31 | 30 | ad3antlr 731 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ (Base‘𝐾)) | 
| 32 | 2 | ad3antrrr 730 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝐾 ∈ CLat) | 
| 33 | 13 | adantr 480 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐾)) | 
| 34 |  | simpr 484 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | 
| 35 | 4, 5, 14 | clatglble 18563 | . . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) | 
| 36 | 32, 33, 34, 35 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑥) | 
| 37 | 28 | simprd 495 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥(le‘𝐾)𝑊) | 
| 38 | 4, 5, 21, 22, 29, 31, 36, 37 | lattrd 18492 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑆)(le‘𝐾)𝑊) | 
| 39 | 19, 38 | exlimddv 1934 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐺‘𝑆)(le‘𝐾)𝑊) | 
| 40 |  | eqid 2736 | . . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | 
| 41 |  | eqid 2736 | . . . . 5
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | 
| 42 | 4, 5, 6, 40, 41, 7 | diaelval 41036 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐺‘𝑆) ∈ (Base‘𝐾) ∧ (𝐺‘𝑆)(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)))) | 
| 43 | 1, 16, 39, 42 | syl12anc 836 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)))) | 
| 44 |  | r19.28zv 4500 | . . . . . 6
⊢ (𝑆 ≠ ∅ →
(∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) | 
| 45 | 44 | ad2antll 729 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) | 
| 46 |  | simpll 766 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 47 | 4, 5, 6, 40, 41, 7 | diaelval 41036 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝑓 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) | 
| 48 | 46, 28, 47 | syl2anc 584 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑓 ∈ (𝐼‘𝑥) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) | 
| 49 | 48 | ralbidva 3175 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) | 
| 50 | 2 | ad3antrrr 730 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ CLat) | 
| 51 | 4, 6, 40, 41 | trlcl 40167 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) | 
| 52 | 51 | adantlr 715 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾)) | 
| 53 | 13 | adantr 480 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑆 ⊆ (Base‘𝐾)) | 
| 54 | 4, 5, 14 | clatleglb 18564 | . . . . . . 7
⊢ ((𝐾 ∈ CLat ∧
(((trL‘𝐾)‘𝑊)‘𝑓) ∈ (Base‘𝐾) ∧ 𝑆 ⊆ (Base‘𝐾)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆) ↔ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)) | 
| 55 | 50, 52, 53, 54 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆) ↔ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥)) | 
| 56 | 55 | pm5.32da 579 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ ∀𝑥 ∈ 𝑆 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑥))) | 
| 57 | 45, 49, 56 | 3bitr4rd 312 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥))) | 
| 58 |  | vex 3483 | . . . . 5
⊢ 𝑓 ∈ V | 
| 59 |  | eliin 4995 | . . . . 5
⊢ (𝑓 ∈ V → (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥))) | 
| 60 | 58, 59 | ax-mp 5 | . . . 4
⊢ (𝑓 ∈ ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝑓 ∈ (𝐼‘𝑥)) | 
| 61 | 57, 60 | bitr4di 289 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)(𝐺‘𝑆)) ↔ 𝑓 ∈ ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥))) | 
| 62 | 43, 61 | bitrd 279 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑓 ∈ (𝐼‘(𝐺‘𝑆)) ↔ 𝑓 ∈ ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥))) | 
| 63 | 62 | eqrdv 2734 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩
𝑥 ∈ 𝑆 (𝐼‘𝑥)) |