Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem2 Structured version   Visualization version   GIF version

Theorem fnwe2lem2 40792
Description: Lemma for fnwe2 40794. An element which is in a minimal fiber and minimal within its fiber is minimal globally; thus 𝑇 is well-founded. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
fnwe2.f (𝜑 → (𝐹𝐴):𝐴𝐵)
fnwe2.r (𝜑𝑅 We 𝐵)
fnwe2lem2.a (𝜑𝑎𝐴)
fnwe2lem2.n0 (𝜑𝑎 ≠ ∅)
Assertion
Ref Expression
fnwe2lem2 (𝜑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎,𝑏,𝑐   𝑥,𝑆,𝑦,𝑎,𝑏,𝑐   𝑥,𝑅,𝑦,𝑎,𝑏,𝑐   𝜑,𝑥,𝑦,𝑧,𝑐   𝑥,𝐴,𝑦,𝑧,𝑎,𝑏,𝑐   𝑥,𝐹,𝑦,𝑧,𝑎,𝑏,𝑐   𝑇,𝑎,𝑏,𝑐   𝐵,𝑎,𝑏,𝑐   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑥,𝑦,𝑧)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2lem2
Dummy variables 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe2.f . . . 4 (𝜑 → (𝐹𝐴):𝐴𝐵)
2 ffun 6587 . . . 4 ((𝐹𝐴):𝐴𝐵 → Fun (𝐹𝐴))
3 vex 3426 . . . . 5 𝑎 ∈ V
43funimaex 6505 . . . 4 (Fun (𝐹𝐴) → ((𝐹𝐴) “ 𝑎) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ∈ V)
6 fnwe2.r . . . 4 (𝜑𝑅 We 𝐵)
7 wefr 5570 . . . 4 (𝑅 We 𝐵𝑅 Fr 𝐵)
86, 7syl 17 . . 3 (𝜑𝑅 Fr 𝐵)
9 imassrn 5969 . . . 4 ((𝐹𝐴) “ 𝑎) ⊆ ran (𝐹𝐴)
101frnd 6592 . . . 4 (𝜑 → ran (𝐹𝐴) ⊆ 𝐵)
119, 10sstrid 3928 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ⊆ 𝐵)
12 incom 4131 . . . . . 6 (dom (𝐹𝐴) ∩ 𝑎) = (𝑎 ∩ dom (𝐹𝐴))
13 fnwe2lem2.a . . . . . . . 8 (𝜑𝑎𝐴)
141fdmd 6595 . . . . . . . 8 (𝜑 → dom (𝐹𝐴) = 𝐴)
1513, 14sseqtrrd 3958 . . . . . . 7 (𝜑𝑎 ⊆ dom (𝐹𝐴))
16 df-ss 3900 . . . . . . 7 (𝑎 ⊆ dom (𝐹𝐴) ↔ (𝑎 ∩ dom (𝐹𝐴)) = 𝑎)
1715, 16sylib 217 . . . . . 6 (𝜑 → (𝑎 ∩ dom (𝐹𝐴)) = 𝑎)
1812, 17syl5eq 2791 . . . . 5 (𝜑 → (dom (𝐹𝐴) ∩ 𝑎) = 𝑎)
19 fnwe2lem2.n0 . . . . 5 (𝜑𝑎 ≠ ∅)
2018, 19eqnetrd 3010 . . . 4 (𝜑 → (dom (𝐹𝐴) ∩ 𝑎) ≠ ∅)
21 imadisj 5977 . . . . 5 (((𝐹𝐴) “ 𝑎) = ∅ ↔ (dom (𝐹𝐴) ∩ 𝑎) = ∅)
2221necon3bii 2995 . . . 4 (((𝐹𝐴) “ 𝑎) ≠ ∅ ↔ (dom (𝐹𝐴) ∩ 𝑎) ≠ ∅)
2320, 22sylibr 233 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ≠ ∅)
24 fri 5540 . . 3 (((((𝐹𝐴) “ 𝑎) ∈ V ∧ 𝑅 Fr 𝐵) ∧ (((𝐹𝐴) “ 𝑎) ⊆ 𝐵 ∧ ((𝐹𝐴) “ 𝑎) ≠ ∅)) → ∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
255, 8, 11, 23, 24syl22anc 835 . 2 (𝜑 → ∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
26 df-ima 5593 . . . . . 6 ((𝐹𝐴) “ 𝑎) = ran ((𝐹𝐴) ↾ 𝑎)
2726rexeqi 3338 . . . . 5 (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
281ffnd 6585 . . . . . . 7 (𝜑 → (𝐹𝐴) Fn 𝐴)
29 fnssres 6539 . . . . . . 7 (((𝐹𝐴) Fn 𝐴𝑎𝐴) → ((𝐹𝐴) ↾ 𝑎) Fn 𝑎)
3028, 13, 29syl2anc 583 . . . . . 6 (𝜑 → ((𝐹𝐴) ↾ 𝑎) Fn 𝑎)
31 breq2 5074 . . . . . . . . 9 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (𝑒𝑅𝑑𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3231notbid 317 . . . . . . . 8 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (¬ 𝑒𝑅𝑑 ↔ ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3332ralbidv 3120 . . . . . . 7 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3433rexrn 6945 . . . . . 6 (((𝐹𝐴) ↾ 𝑎) Fn 𝑎 → (∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3530, 34syl 17 . . . . 5 (𝜑 → (∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3627, 35syl5bb 282 . . . 4 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3726raleqi 3337 . . . . . . . 8 (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓))
38 breq1 5073 . . . . . . . . . . 11 (𝑒 = (((𝐹𝐴) ↾ 𝑎)‘𝑑) → (𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3938notbid 317 . . . . . . . . . 10 (𝑒 = (((𝐹𝐴) ↾ 𝑎)‘𝑑) → (¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4039ralrn 6946 . . . . . . . . 9 (((𝐹𝐴) ↾ 𝑎) Fn 𝑎 → (∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4130, 40syl 17 . . . . . . . 8 (𝜑 → (∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4237, 41syl5bb 282 . . . . . . 7 (𝜑 → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4342adantr 480 . . . . . 6 ((𝜑𝑓𝑎) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4413resabs1d 5911 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) ↾ 𝑎) = (𝐹𝑎))
4544ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝐴) ↾ 𝑎) = (𝐹𝑎))
4645fveq1d 6758 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑑) = ((𝐹𝑎)‘𝑑))
47 fvres 6775 . . . . . . . . . . 11 (𝑑𝑎 → ((𝐹𝑎)‘𝑑) = (𝐹𝑑))
4847adantl 481 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝑎)‘𝑑) = (𝐹𝑑))
4946, 48eqtrd 2778 . . . . . . . . 9 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑑) = (𝐹𝑑))
5045fveq1d 6758 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑓) = ((𝐹𝑎)‘𝑓))
51 fvres 6775 . . . . . . . . . . 11 (𝑓𝑎 → ((𝐹𝑎)‘𝑓) = (𝐹𝑓))
5251ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝑎)‘𝑓) = (𝐹𝑓))
5350, 52eqtrd 2778 . . . . . . . . 9 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑓) = (𝐹𝑓))
5449, 53breq12d 5083 . . . . . . . 8 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ (𝐹𝑑)𝑅(𝐹𝑓)))
5554notbid 317 . . . . . . 7 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5655ralbidva 3119 . . . . . 6 ((𝜑𝑓𝑎) → (∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5743, 56bitrd 278 . . . . 5 ((𝜑𝑓𝑎) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5857rexbidva 3224 . . . 4 (𝜑 → (∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5936, 58bitrd 278 . . 3 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
603inex1 5236 . . . . . . 7 (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V
6160a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V)
6213sselda 3917 . . . . . . . 8 ((𝜑𝑓𝑎) → 𝑓𝐴)
63 fnwe2.su . . . . . . . . . 10 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
64 fnwe2.t . . . . . . . . . 10 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
65 fnwe2.s . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
6663, 64, 65fnwe2lem1 40791 . . . . . . . . 9 ((𝜑𝑓𝐴) → (𝐹𝑓) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
67 wefr 5570 . . . . . . . . 9 ((𝐹𝑓) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
6866, 67syl 17 . . . . . . . 8 ((𝜑𝑓𝐴) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
6962, 68syldan 590 . . . . . . 7 ((𝜑𝑓𝑎) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
7069adantrr 713 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
71 inss2 4160 . . . . . . 7 (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}
7271a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
73 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓𝑎)
74 fveqeq2 6765 . . . . . . . . 9 (𝑦 = 𝑓 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑓) = (𝐹𝑓)))
7562adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓𝐴)
76 eqidd 2739 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝐹𝑓) = (𝐹𝑓))
7774, 75, 76elrabd 3619 . . . . . . . 8 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
7873, 77elind 4124 . . . . . . 7 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
7978ne0d 4266 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ≠ ∅)
80 fri 5540 . . . . . 6 ((((𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V ∧ (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∧ ((𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ∧ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ≠ ∅)) → ∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)
8161, 70, 72, 79, 80syl22anc 835 . . . . 5 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)
82 elin 3899 . . . . . . . 8 (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
83 fveqeq2 6765 . . . . . . . . . 10 (𝑦 = 𝑒 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑒) = (𝐹𝑓)))
8483elrab 3617 . . . . . . . . 9 (𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ↔ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))
8584anbi2i 622 . . . . . . . 8 ((𝑒𝑎𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))))
8682, 85bitri 274 . . . . . . 7 (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))))
87 elin 3899 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
88 fveqeq2 6765 . . . . . . . . . . . . . . 15 (𝑦 = 𝑔 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑔) = (𝐹𝑓)))
8988elrab 3617 . . . . . . . . . . . . . 14 (𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ↔ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)))
9089anbi2i 622 . . . . . . . . . . . . 13 ((𝑔𝑎𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))))
9187, 90bitri 274 . . . . . . . . . . . 12 (𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))))
9291imbi1i 349 . . . . . . . . . . 11 ((𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ ((𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
93 impexp 450 . . . . . . . . . . 11 (((𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ (𝑔𝑎 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)))
9492, 93bitri 274 . . . . . . . . . 10 ((𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ (𝑔𝑎 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)))
9594ralbii2 3088 . . . . . . . . 9 (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 ↔ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
96 simplrl 773 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → 𝑒𝑎)
97 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑐 → (𝐹𝑑) = (𝐹𝑐))
9897breq1d 5080 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑑)𝑅(𝐹𝑓) ↔ (𝐹𝑐)𝑅(𝐹𝑓)))
9998notbid 317 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑐 → (¬ (𝐹𝑑)𝑅(𝐹𝑓) ↔ ¬ (𝐹𝑐)𝑅(𝐹𝑓)))
100 simplrr 774 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))
101100ad2antrr 722 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))
102 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → 𝑐𝑎)
10399, 101, 102rspcdva 3554 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ (𝐹𝑐)𝑅(𝐹𝑓))
104 simprrr 778 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (𝐹𝑒) = (𝐹𝑓))
105104ad2antrr 722 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → (𝐹𝑒) = (𝐹𝑓))
106105breq2d 5082 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ((𝐹𝑐)𝑅(𝐹𝑒) ↔ (𝐹𝑐)𝑅(𝐹𝑓)))
107103, 106mtbird 324 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ (𝐹𝑐)𝑅(𝐹𝑒))
10813ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → 𝑎𝐴)
109108sselda 3917 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → 𝑐𝐴)
110109adantrr 713 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → 𝑐𝐴)
111 simprr 769 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑐) = (𝐹𝑒))
112104ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑒) = (𝐹𝑓))
113111, 112eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑐) = (𝐹𝑓))
114 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → (𝑔𝐴𝑐𝐴))
115 fveqeq2 6765 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → ((𝐹𝑔) = (𝐹𝑓) ↔ (𝐹𝑐) = (𝐹𝑓)))
116114, 115anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑐 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) ↔ (𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓))))
117 breq1 5073 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → (𝑔(𝐹𝑓) / 𝑧𝑆𝑒𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
118117notbid 317 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑐 → (¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 ↔ ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
119116, 118imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ ((𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓)) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒)))
120 simplr 765 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
121 simprl 767 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → 𝑐𝑎)
122119, 120, 121rspcdva 3554 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ((𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓)) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
123110, 113, 122mp2and 695 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒)
124111, 112eqtr2d 2779 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑓) = (𝐹𝑐))
125124csbeq1d 3832 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑓) / 𝑧𝑆 = (𝐹𝑐) / 𝑧𝑆)
126125breqd 5081 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝑐(𝐹𝑓) / 𝑧𝑆𝑒𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
127123, 126mtbid 323 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)
128127expr 456 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ((𝐹𝑐) = (𝐹𝑒) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
129 imnan 399 . . . . . . . . . . . . . . 15 (((𝐹𝑐) = (𝐹𝑒) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒) ↔ ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
130128, 129sylib 217 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
131 ioran 980 . . . . . . . . . . . . . 14 (¬ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)) ↔ (¬ (𝐹𝑐)𝑅(𝐹𝑒) ∧ ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
132107, 130, 131sylanbrc 582 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
13363, 64fnwe2val 40790 . . . . . . . . . . . . 13 (𝑐𝑇𝑒 ↔ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
134132, 133sylnibr 328 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ 𝑐𝑇𝑒)
135134ralrimiva 3107 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → ∀𝑐𝑎 ¬ 𝑐𝑇𝑒)
136 breq2 5074 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (𝑐𝑇𝑏𝑐𝑇𝑒))
137136notbid 317 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → (¬ 𝑐𝑇𝑏 ↔ ¬ 𝑐𝑇𝑒))
138137ralbidv 3120 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (∀𝑐𝑎 ¬ 𝑐𝑇𝑏 ↔ ∀𝑐𝑎 ¬ 𝑐𝑇𝑒))
139138rspcev 3552 . . . . . . . . . . 11 ((𝑒𝑎 ∧ ∀𝑐𝑎 ¬ 𝑐𝑇𝑒) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
14096, 135, 139syl2anc 583 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
141140ex 412 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14295, 141syl5bi 241 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
143142ex 412 . . . . . . 7 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ((𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)))
14486, 143syl5bi 241 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)))
145144rexlimdv 3211 . . . . 5 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14681, 145mpd 15 . . . 4 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
147146rexlimdvaa 3213 . . 3 (𝜑 → (∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14859, 147sylbid 239 . 2 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14925, 148mpd 15 1 (𝜑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  csb 3828  cin 3882  wss 3883  c0 4253   class class class wbr 5070  {copab 5132   Fr wfr 5532   We wwe 5534  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  fnwe2  40794
  Copyright terms: Public domain W3C validator