Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem2 Structured version   Visualization version   GIF version

Theorem fnwe2lem2 43084
Description: Lemma for fnwe2 43086. An element which is in a minimal fiber and minimal within its fiber is minimal globally; thus 𝑇 is well-founded. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
fnwe2.f (𝜑 → (𝐹𝐴):𝐴𝐵)
fnwe2.r (𝜑𝑅 We 𝐵)
fnwe2lem2.a (𝜑𝑎𝐴)
fnwe2lem2.n0 (𝜑𝑎 ≠ ∅)
Assertion
Ref Expression
fnwe2lem2 (𝜑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎,𝑏,𝑐   𝑥,𝑆,𝑦,𝑎,𝑏,𝑐   𝑥,𝑅,𝑦,𝑎,𝑏,𝑐   𝜑,𝑥,𝑦,𝑧,𝑐   𝑥,𝐴,𝑦,𝑧,𝑎,𝑏,𝑐   𝑥,𝐹,𝑦,𝑧,𝑎,𝑏,𝑐   𝑇,𝑎,𝑏,𝑐   𝐵,𝑎,𝑏,𝑐   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑥,𝑦,𝑧)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2lem2
Dummy variables 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe2.f . . . 4 (𝜑 → (𝐹𝐴):𝐴𝐵)
2 ffun 6649 . . . 4 ((𝐹𝐴):𝐴𝐵 → Fun (𝐹𝐴))
3 vex 3440 . . . . 5 𝑎 ∈ V
43funimaex 6564 . . . 4 (Fun (𝐹𝐴) → ((𝐹𝐴) “ 𝑎) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ∈ V)
6 fnwe2.r . . . 4 (𝜑𝑅 We 𝐵)
7 wefr 5601 . . . 4 (𝑅 We 𝐵𝑅 Fr 𝐵)
86, 7syl 17 . . 3 (𝜑𝑅 Fr 𝐵)
9 imassrn 6015 . . . 4 ((𝐹𝐴) “ 𝑎) ⊆ ran (𝐹𝐴)
101frnd 6654 . . . 4 (𝜑 → ran (𝐹𝐴) ⊆ 𝐵)
119, 10sstrid 3941 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ⊆ 𝐵)
12 incom 4154 . . . . . 6 (dom (𝐹𝐴) ∩ 𝑎) = (𝑎 ∩ dom (𝐹𝐴))
13 fnwe2lem2.a . . . . . . . 8 (𝜑𝑎𝐴)
141fdmd 6656 . . . . . . . 8 (𝜑 → dom (𝐹𝐴) = 𝐴)
1513, 14sseqtrrd 3967 . . . . . . 7 (𝜑𝑎 ⊆ dom (𝐹𝐴))
16 dfss2 3915 . . . . . . 7 (𝑎 ⊆ dom (𝐹𝐴) ↔ (𝑎 ∩ dom (𝐹𝐴)) = 𝑎)
1715, 16sylib 218 . . . . . 6 (𝜑 → (𝑎 ∩ dom (𝐹𝐴)) = 𝑎)
1812, 17eqtrid 2778 . . . . 5 (𝜑 → (dom (𝐹𝐴) ∩ 𝑎) = 𝑎)
19 fnwe2lem2.n0 . . . . 5 (𝜑𝑎 ≠ ∅)
2018, 19eqnetrd 2995 . . . 4 (𝜑 → (dom (𝐹𝐴) ∩ 𝑎) ≠ ∅)
21 imadisj 6024 . . . . 5 (((𝐹𝐴) “ 𝑎) = ∅ ↔ (dom (𝐹𝐴) ∩ 𝑎) = ∅)
2221necon3bii 2980 . . . 4 (((𝐹𝐴) “ 𝑎) ≠ ∅ ↔ (dom (𝐹𝐴) ∩ 𝑎) ≠ ∅)
2320, 22sylibr 234 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ≠ ∅)
24 fri 5569 . . 3 (((((𝐹𝐴) “ 𝑎) ∈ V ∧ 𝑅 Fr 𝐵) ∧ (((𝐹𝐴) “ 𝑎) ⊆ 𝐵 ∧ ((𝐹𝐴) “ 𝑎) ≠ ∅)) → ∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
255, 8, 11, 23, 24syl22anc 838 . 2 (𝜑 → ∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
26 df-ima 5624 . . . . . 6 ((𝐹𝐴) “ 𝑎) = ran ((𝐹𝐴) ↾ 𝑎)
2726rexeqi 3291 . . . . 5 (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
281ffnd 6647 . . . . . . 7 (𝜑 → (𝐹𝐴) Fn 𝐴)
29 fnssres 6599 . . . . . . 7 (((𝐹𝐴) Fn 𝐴𝑎𝐴) → ((𝐹𝐴) ↾ 𝑎) Fn 𝑎)
3028, 13, 29syl2anc 584 . . . . . 6 (𝜑 → ((𝐹𝐴) ↾ 𝑎) Fn 𝑎)
31 breq2 5090 . . . . . . . . 9 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (𝑒𝑅𝑑𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3231notbid 318 . . . . . . . 8 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (¬ 𝑒𝑅𝑑 ↔ ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3332ralbidv 3155 . . . . . . 7 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3433rexrn 7015 . . . . . 6 (((𝐹𝐴) ↾ 𝑎) Fn 𝑎 → (∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3530, 34syl 17 . . . . 5 (𝜑 → (∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3627, 35bitrid 283 . . . 4 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3726raleqi 3290 . . . . . . . 8 (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓))
38 breq1 5089 . . . . . . . . . . 11 (𝑒 = (((𝐹𝐴) ↾ 𝑎)‘𝑑) → (𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3938notbid 318 . . . . . . . . . 10 (𝑒 = (((𝐹𝐴) ↾ 𝑎)‘𝑑) → (¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4039ralrn 7016 . . . . . . . . 9 (((𝐹𝐴) ↾ 𝑎) Fn 𝑎 → (∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4130, 40syl 17 . . . . . . . 8 (𝜑 → (∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4237, 41bitrid 283 . . . . . . 7 (𝜑 → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4342adantr 480 . . . . . 6 ((𝜑𝑓𝑎) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4413resabs1d 5952 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) ↾ 𝑎) = (𝐹𝑎))
4544ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝐴) ↾ 𝑎) = (𝐹𝑎))
4645fveq1d 6819 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑑) = ((𝐹𝑎)‘𝑑))
47 fvres 6836 . . . . . . . . . . 11 (𝑑𝑎 → ((𝐹𝑎)‘𝑑) = (𝐹𝑑))
4847adantl 481 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝑎)‘𝑑) = (𝐹𝑑))
4946, 48eqtrd 2766 . . . . . . . . 9 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑑) = (𝐹𝑑))
5045fveq1d 6819 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑓) = ((𝐹𝑎)‘𝑓))
51 fvres 6836 . . . . . . . . . . 11 (𝑓𝑎 → ((𝐹𝑎)‘𝑓) = (𝐹𝑓))
5251ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝑎)‘𝑓) = (𝐹𝑓))
5350, 52eqtrd 2766 . . . . . . . . 9 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑓) = (𝐹𝑓))
5449, 53breq12d 5099 . . . . . . . 8 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ (𝐹𝑑)𝑅(𝐹𝑓)))
5554notbid 318 . . . . . . 7 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5655ralbidva 3153 . . . . . 6 ((𝜑𝑓𝑎) → (∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5743, 56bitrd 279 . . . . 5 ((𝜑𝑓𝑎) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5857rexbidva 3154 . . . 4 (𝜑 → (∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5936, 58bitrd 279 . . 3 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
603inex1 5250 . . . . . . 7 (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V
6160a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V)
6213sselda 3929 . . . . . . . 8 ((𝜑𝑓𝑎) → 𝑓𝐴)
63 fnwe2.su . . . . . . . . . 10 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
64 fnwe2.t . . . . . . . . . 10 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
65 fnwe2.s . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
6663, 64, 65fnwe2lem1 43083 . . . . . . . . 9 ((𝜑𝑓𝐴) → (𝐹𝑓) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
67 wefr 5601 . . . . . . . . 9 ((𝐹𝑓) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
6866, 67syl 17 . . . . . . . 8 ((𝜑𝑓𝐴) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
6962, 68syldan 591 . . . . . . 7 ((𝜑𝑓𝑎) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
7069adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
71 inss2 4183 . . . . . . 7 (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}
7271a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
73 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓𝑎)
74 fveqeq2 6826 . . . . . . . . 9 (𝑦 = 𝑓 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑓) = (𝐹𝑓)))
7562adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓𝐴)
76 eqidd 2732 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝐹𝑓) = (𝐹𝑓))
7774, 75, 76elrabd 3644 . . . . . . . 8 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
7873, 77elind 4145 . . . . . . 7 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
7978ne0d 4287 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ≠ ∅)
80 fri 5569 . . . . . 6 ((((𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V ∧ (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∧ ((𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ∧ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ≠ ∅)) → ∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)
8161, 70, 72, 79, 80syl22anc 838 . . . . 5 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)
82 elin 3913 . . . . . . . 8 (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
83 fveqeq2 6826 . . . . . . . . . 10 (𝑦 = 𝑒 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑒) = (𝐹𝑓)))
8483elrab 3642 . . . . . . . . 9 (𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ↔ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))
8584anbi2i 623 . . . . . . . 8 ((𝑒𝑎𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))))
8682, 85bitri 275 . . . . . . 7 (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))))
87 elin 3913 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
88 fveqeq2 6826 . . . . . . . . . . . . . . 15 (𝑦 = 𝑔 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑔) = (𝐹𝑓)))
8988elrab 3642 . . . . . . . . . . . . . 14 (𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ↔ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)))
9089anbi2i 623 . . . . . . . . . . . . 13 ((𝑔𝑎𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))))
9187, 90bitri 275 . . . . . . . . . . . 12 (𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))))
9291imbi1i 349 . . . . . . . . . . 11 ((𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ ((𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
93 impexp 450 . . . . . . . . . . 11 (((𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ (𝑔𝑎 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)))
9492, 93bitri 275 . . . . . . . . . 10 ((𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ (𝑔𝑎 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)))
9594ralbii2 3074 . . . . . . . . 9 (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 ↔ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
96 simplrl 776 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → 𝑒𝑎)
97 fveq2 6817 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑐 → (𝐹𝑑) = (𝐹𝑐))
9897breq1d 5096 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑑)𝑅(𝐹𝑓) ↔ (𝐹𝑐)𝑅(𝐹𝑓)))
9998notbid 318 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑐 → (¬ (𝐹𝑑)𝑅(𝐹𝑓) ↔ ¬ (𝐹𝑐)𝑅(𝐹𝑓)))
100 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))
101100ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))
102 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → 𝑐𝑎)
10399, 101, 102rspcdva 3573 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ (𝐹𝑐)𝑅(𝐹𝑓))
104 simprrr 781 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (𝐹𝑒) = (𝐹𝑓))
105104ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → (𝐹𝑒) = (𝐹𝑓))
106105breq2d 5098 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ((𝐹𝑐)𝑅(𝐹𝑒) ↔ (𝐹𝑐)𝑅(𝐹𝑓)))
107103, 106mtbird 325 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ (𝐹𝑐)𝑅(𝐹𝑒))
10813ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → 𝑎𝐴)
109108sselda 3929 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → 𝑐𝐴)
110109adantrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → 𝑐𝐴)
111 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑐) = (𝐹𝑒))
112104ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑒) = (𝐹𝑓))
113111, 112eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑐) = (𝐹𝑓))
114 eleq1w 2814 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → (𝑔𝐴𝑐𝐴))
115 fveqeq2 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → ((𝐹𝑔) = (𝐹𝑓) ↔ (𝐹𝑐) = (𝐹𝑓)))
116114, 115anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑐 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) ↔ (𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓))))
117 breq1 5089 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → (𝑔(𝐹𝑓) / 𝑧𝑆𝑒𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
118117notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑐 → (¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 ↔ ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
119116, 118imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ ((𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓)) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒)))
120 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
121 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → 𝑐𝑎)
122119, 120, 121rspcdva 3573 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ((𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓)) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
123110, 113, 122mp2and 699 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒)
124111, 112eqtr2d 2767 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑓) = (𝐹𝑐))
125124csbeq1d 3849 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑓) / 𝑧𝑆 = (𝐹𝑐) / 𝑧𝑆)
126125breqd 5097 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝑐(𝐹𝑓) / 𝑧𝑆𝑒𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
127123, 126mtbid 324 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)
128127expr 456 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ((𝐹𝑐) = (𝐹𝑒) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
129 imnan 399 . . . . . . . . . . . . . . 15 (((𝐹𝑐) = (𝐹𝑒) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒) ↔ ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
130128, 129sylib 218 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
131 ioran 985 . . . . . . . . . . . . . 14 (¬ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)) ↔ (¬ (𝐹𝑐)𝑅(𝐹𝑒) ∧ ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
132107, 130, 131sylanbrc 583 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
13363, 64fnwe2val 43082 . . . . . . . . . . . . 13 (𝑐𝑇𝑒 ↔ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
134132, 133sylnibr 329 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ 𝑐𝑇𝑒)
135134ralrimiva 3124 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → ∀𝑐𝑎 ¬ 𝑐𝑇𝑒)
136 breq2 5090 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (𝑐𝑇𝑏𝑐𝑇𝑒))
137136notbid 318 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → (¬ 𝑐𝑇𝑏 ↔ ¬ 𝑐𝑇𝑒))
138137ralbidv 3155 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (∀𝑐𝑎 ¬ 𝑐𝑇𝑏 ↔ ∀𝑐𝑎 ¬ 𝑐𝑇𝑒))
139138rspcev 3572 . . . . . . . . . . 11 ((𝑒𝑎 ∧ ∀𝑐𝑎 ¬ 𝑐𝑇𝑒) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
14096, 135, 139syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
141140ex 412 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14295, 141biimtrid 242 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
143142ex 412 . . . . . . 7 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ((𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)))
14486, 143biimtrid 242 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)))
145144rexlimdv 3131 . . . . 5 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14681, 145mpd 15 . . . 4 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
147146rexlimdvaa 3134 . . 3 (𝜑 → (∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14859, 147sylbid 240 . 2 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14925, 148mpd 15 1 (𝜑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  csb 3845  cin 3896  wss 3897  c0 4278   class class class wbr 5086  {copab 5148   Fr wfr 5561   We wwe 5563  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  Fun wfun 6470   Fn wfn 6471  wf 6472  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484
This theorem is referenced by:  fnwe2  43086
  Copyright terms: Public domain W3C validator