Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem2 Structured version   Visualization version   GIF version

Theorem fnwe2lem2 40876
Description: Lemma for fnwe2 40878. An element which is in a minimal fiber and minimal within its fiber is minimal globally; thus 𝑇 is well-founded. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
fnwe2.f (𝜑 → (𝐹𝐴):𝐴𝐵)
fnwe2.r (𝜑𝑅 We 𝐵)
fnwe2lem2.a (𝜑𝑎𝐴)
fnwe2lem2.n0 (𝜑𝑎 ≠ ∅)
Assertion
Ref Expression
fnwe2lem2 (𝜑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎,𝑏,𝑐   𝑥,𝑆,𝑦,𝑎,𝑏,𝑐   𝑥,𝑅,𝑦,𝑎,𝑏,𝑐   𝜑,𝑥,𝑦,𝑧,𝑐   𝑥,𝐴,𝑦,𝑧,𝑎,𝑏,𝑐   𝑥,𝐹,𝑦,𝑧,𝑎,𝑏,𝑐   𝑇,𝑎,𝑏,𝑐   𝐵,𝑎,𝑏,𝑐   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑥,𝑦,𝑧)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2lem2
Dummy variables 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe2.f . . . 4 (𝜑 → (𝐹𝐴):𝐴𝐵)
2 ffun 6603 . . . 4 ((𝐹𝐴):𝐴𝐵 → Fun (𝐹𝐴))
3 vex 3436 . . . . 5 𝑎 ∈ V
43funimaex 6521 . . . 4 (Fun (𝐹𝐴) → ((𝐹𝐴) “ 𝑎) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ∈ V)
6 fnwe2.r . . . 4 (𝜑𝑅 We 𝐵)
7 wefr 5579 . . . 4 (𝑅 We 𝐵𝑅 Fr 𝐵)
86, 7syl 17 . . 3 (𝜑𝑅 Fr 𝐵)
9 imassrn 5980 . . . 4 ((𝐹𝐴) “ 𝑎) ⊆ ran (𝐹𝐴)
101frnd 6608 . . . 4 (𝜑 → ran (𝐹𝐴) ⊆ 𝐵)
119, 10sstrid 3932 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ⊆ 𝐵)
12 incom 4135 . . . . . 6 (dom (𝐹𝐴) ∩ 𝑎) = (𝑎 ∩ dom (𝐹𝐴))
13 fnwe2lem2.a . . . . . . . 8 (𝜑𝑎𝐴)
141fdmd 6611 . . . . . . . 8 (𝜑 → dom (𝐹𝐴) = 𝐴)
1513, 14sseqtrrd 3962 . . . . . . 7 (𝜑𝑎 ⊆ dom (𝐹𝐴))
16 df-ss 3904 . . . . . . 7 (𝑎 ⊆ dom (𝐹𝐴) ↔ (𝑎 ∩ dom (𝐹𝐴)) = 𝑎)
1715, 16sylib 217 . . . . . 6 (𝜑 → (𝑎 ∩ dom (𝐹𝐴)) = 𝑎)
1812, 17eqtrid 2790 . . . . 5 (𝜑 → (dom (𝐹𝐴) ∩ 𝑎) = 𝑎)
19 fnwe2lem2.n0 . . . . 5 (𝜑𝑎 ≠ ∅)
2018, 19eqnetrd 3011 . . . 4 (𝜑 → (dom (𝐹𝐴) ∩ 𝑎) ≠ ∅)
21 imadisj 5988 . . . . 5 (((𝐹𝐴) “ 𝑎) = ∅ ↔ (dom (𝐹𝐴) ∩ 𝑎) = ∅)
2221necon3bii 2996 . . . 4 (((𝐹𝐴) “ 𝑎) ≠ ∅ ↔ (dom (𝐹𝐴) ∩ 𝑎) ≠ ∅)
2320, 22sylibr 233 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ≠ ∅)
24 fri 5549 . . 3 (((((𝐹𝐴) “ 𝑎) ∈ V ∧ 𝑅 Fr 𝐵) ∧ (((𝐹𝐴) “ 𝑎) ⊆ 𝐵 ∧ ((𝐹𝐴) “ 𝑎) ≠ ∅)) → ∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
255, 8, 11, 23, 24syl22anc 836 . 2 (𝜑 → ∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
26 df-ima 5602 . . . . . 6 ((𝐹𝐴) “ 𝑎) = ran ((𝐹𝐴) ↾ 𝑎)
2726rexeqi 3347 . . . . 5 (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
281ffnd 6601 . . . . . . 7 (𝜑 → (𝐹𝐴) Fn 𝐴)
29 fnssres 6555 . . . . . . 7 (((𝐹𝐴) Fn 𝐴𝑎𝐴) → ((𝐹𝐴) ↾ 𝑎) Fn 𝑎)
3028, 13, 29syl2anc 584 . . . . . 6 (𝜑 → ((𝐹𝐴) ↾ 𝑎) Fn 𝑎)
31 breq2 5078 . . . . . . . . 9 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (𝑒𝑅𝑑𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3231notbid 318 . . . . . . . 8 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (¬ 𝑒𝑅𝑑 ↔ ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3332ralbidv 3112 . . . . . . 7 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3433rexrn 6963 . . . . . 6 (((𝐹𝐴) ↾ 𝑎) Fn 𝑎 → (∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3530, 34syl 17 . . . . 5 (𝜑 → (∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3627, 35syl5bb 283 . . . 4 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3726raleqi 3346 . . . . . . . 8 (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓))
38 breq1 5077 . . . . . . . . . . 11 (𝑒 = (((𝐹𝐴) ↾ 𝑎)‘𝑑) → (𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3938notbid 318 . . . . . . . . . 10 (𝑒 = (((𝐹𝐴) ↾ 𝑎)‘𝑑) → (¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4039ralrn 6964 . . . . . . . . 9 (((𝐹𝐴) ↾ 𝑎) Fn 𝑎 → (∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4130, 40syl 17 . . . . . . . 8 (𝜑 → (∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4237, 41syl5bb 283 . . . . . . 7 (𝜑 → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4342adantr 481 . . . . . 6 ((𝜑𝑓𝑎) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4413resabs1d 5922 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) ↾ 𝑎) = (𝐹𝑎))
4544ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝐴) ↾ 𝑎) = (𝐹𝑎))
4645fveq1d 6776 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑑) = ((𝐹𝑎)‘𝑑))
47 fvres 6793 . . . . . . . . . . 11 (𝑑𝑎 → ((𝐹𝑎)‘𝑑) = (𝐹𝑑))
4847adantl 482 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝑎)‘𝑑) = (𝐹𝑑))
4946, 48eqtrd 2778 . . . . . . . . 9 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑑) = (𝐹𝑑))
5045fveq1d 6776 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑓) = ((𝐹𝑎)‘𝑓))
51 fvres 6793 . . . . . . . . . . 11 (𝑓𝑎 → ((𝐹𝑎)‘𝑓) = (𝐹𝑓))
5251ad2antlr 724 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝑎)‘𝑓) = (𝐹𝑓))
5350, 52eqtrd 2778 . . . . . . . . 9 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑓) = (𝐹𝑓))
5449, 53breq12d 5087 . . . . . . . 8 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ (𝐹𝑑)𝑅(𝐹𝑓)))
5554notbid 318 . . . . . . 7 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5655ralbidva 3111 . . . . . 6 ((𝜑𝑓𝑎) → (∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5743, 56bitrd 278 . . . . 5 ((𝜑𝑓𝑎) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5857rexbidva 3225 . . . 4 (𝜑 → (∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5936, 58bitrd 278 . . 3 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
603inex1 5241 . . . . . . 7 (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V
6160a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V)
6213sselda 3921 . . . . . . . 8 ((𝜑𝑓𝑎) → 𝑓𝐴)
63 fnwe2.su . . . . . . . . . 10 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
64 fnwe2.t . . . . . . . . . 10 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
65 fnwe2.s . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
6663, 64, 65fnwe2lem1 40875 . . . . . . . . 9 ((𝜑𝑓𝐴) → (𝐹𝑓) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
67 wefr 5579 . . . . . . . . 9 ((𝐹𝑓) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
6866, 67syl 17 . . . . . . . 8 ((𝜑𝑓𝐴) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
6962, 68syldan 591 . . . . . . 7 ((𝜑𝑓𝑎) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
7069adantrr 714 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
71 inss2 4163 . . . . . . 7 (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}
7271a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
73 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓𝑎)
74 fveqeq2 6783 . . . . . . . . 9 (𝑦 = 𝑓 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑓) = (𝐹𝑓)))
7562adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓𝐴)
76 eqidd 2739 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝐹𝑓) = (𝐹𝑓))
7774, 75, 76elrabd 3626 . . . . . . . 8 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
7873, 77elind 4128 . . . . . . 7 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
7978ne0d 4269 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ≠ ∅)
80 fri 5549 . . . . . 6 ((((𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V ∧ (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∧ ((𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ∧ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ≠ ∅)) → ∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)
8161, 70, 72, 79, 80syl22anc 836 . . . . 5 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)
82 elin 3903 . . . . . . . 8 (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
83 fveqeq2 6783 . . . . . . . . . 10 (𝑦 = 𝑒 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑒) = (𝐹𝑓)))
8483elrab 3624 . . . . . . . . 9 (𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ↔ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))
8584anbi2i 623 . . . . . . . 8 ((𝑒𝑎𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))))
8682, 85bitri 274 . . . . . . 7 (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))))
87 elin 3903 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
88 fveqeq2 6783 . . . . . . . . . . . . . . 15 (𝑦 = 𝑔 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑔) = (𝐹𝑓)))
8988elrab 3624 . . . . . . . . . . . . . 14 (𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ↔ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)))
9089anbi2i 623 . . . . . . . . . . . . 13 ((𝑔𝑎𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))))
9187, 90bitri 274 . . . . . . . . . . . 12 (𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))))
9291imbi1i 350 . . . . . . . . . . 11 ((𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ ((𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
93 impexp 451 . . . . . . . . . . 11 (((𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ (𝑔𝑎 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)))
9492, 93bitri 274 . . . . . . . . . 10 ((𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ (𝑔𝑎 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)))
9594ralbii2 3090 . . . . . . . . 9 (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 ↔ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
96 simplrl 774 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → 𝑒𝑎)
97 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑐 → (𝐹𝑑) = (𝐹𝑐))
9897breq1d 5084 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑑)𝑅(𝐹𝑓) ↔ (𝐹𝑐)𝑅(𝐹𝑓)))
9998notbid 318 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑐 → (¬ (𝐹𝑑)𝑅(𝐹𝑓) ↔ ¬ (𝐹𝑐)𝑅(𝐹𝑓)))
100 simplrr 775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))
101100ad2antrr 723 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))
102 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → 𝑐𝑎)
10399, 101, 102rspcdva 3562 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ (𝐹𝑐)𝑅(𝐹𝑓))
104 simprrr 779 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (𝐹𝑒) = (𝐹𝑓))
105104ad2antrr 723 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → (𝐹𝑒) = (𝐹𝑓))
106105breq2d 5086 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ((𝐹𝑐)𝑅(𝐹𝑒) ↔ (𝐹𝑐)𝑅(𝐹𝑓)))
107103, 106mtbird 325 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ (𝐹𝑐)𝑅(𝐹𝑒))
10813ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → 𝑎𝐴)
109108sselda 3921 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → 𝑐𝐴)
110109adantrr 714 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → 𝑐𝐴)
111 simprr 770 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑐) = (𝐹𝑒))
112104ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑒) = (𝐹𝑓))
113111, 112eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑐) = (𝐹𝑓))
114 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → (𝑔𝐴𝑐𝐴))
115 fveqeq2 6783 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → ((𝐹𝑔) = (𝐹𝑓) ↔ (𝐹𝑐) = (𝐹𝑓)))
116114, 115anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑐 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) ↔ (𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓))))
117 breq1 5077 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → (𝑔(𝐹𝑓) / 𝑧𝑆𝑒𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
118117notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑐 → (¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 ↔ ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
119116, 118imbi12d 345 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ ((𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓)) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒)))
120 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
121 simprl 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → 𝑐𝑎)
122119, 120, 121rspcdva 3562 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ((𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓)) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
123110, 113, 122mp2and 696 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒)
124111, 112eqtr2d 2779 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑓) = (𝐹𝑐))
125124csbeq1d 3836 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑓) / 𝑧𝑆 = (𝐹𝑐) / 𝑧𝑆)
126125breqd 5085 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝑐(𝐹𝑓) / 𝑧𝑆𝑒𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
127123, 126mtbid 324 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)
128127expr 457 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ((𝐹𝑐) = (𝐹𝑒) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
129 imnan 400 . . . . . . . . . . . . . . 15 (((𝐹𝑐) = (𝐹𝑒) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒) ↔ ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
130128, 129sylib 217 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
131 ioran 981 . . . . . . . . . . . . . 14 (¬ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)) ↔ (¬ (𝐹𝑐)𝑅(𝐹𝑒) ∧ ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
132107, 130, 131sylanbrc 583 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
13363, 64fnwe2val 40874 . . . . . . . . . . . . 13 (𝑐𝑇𝑒 ↔ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
134132, 133sylnibr 329 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ 𝑐𝑇𝑒)
135134ralrimiva 3103 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → ∀𝑐𝑎 ¬ 𝑐𝑇𝑒)
136 breq2 5078 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (𝑐𝑇𝑏𝑐𝑇𝑒))
137136notbid 318 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → (¬ 𝑐𝑇𝑏 ↔ ¬ 𝑐𝑇𝑒))
138137ralbidv 3112 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (∀𝑐𝑎 ¬ 𝑐𝑇𝑏 ↔ ∀𝑐𝑎 ¬ 𝑐𝑇𝑒))
139138rspcev 3561 . . . . . . . . . . 11 ((𝑒𝑎 ∧ ∀𝑐𝑎 ¬ 𝑐𝑇𝑒) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
14096, 135, 139syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
141140ex 413 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14295, 141syl5bi 241 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
143142ex 413 . . . . . . 7 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ((𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)))
14486, 143syl5bi 241 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)))
145144rexlimdv 3212 . . . . 5 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14681, 145mpd 15 . . . 4 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
147146rexlimdvaa 3214 . . 3 (𝜑 → (∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14859, 147sylbid 239 . 2 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14925, 148mpd 15 1 (𝜑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  csb 3832  cin 3886  wss 3887  c0 4256   class class class wbr 5074  {copab 5136   Fr wfr 5541   We wwe 5543  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  fnwe2  40878
  Copyright terms: Public domain W3C validator