Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem2 Structured version   Visualization version   GIF version

Theorem fnwe2lem2 40579
Description: Lemma for fnwe2 40581. An element which is in a minimal fiber and minimal within its fiber is minimal globally; thus 𝑇 is well-founded. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
fnwe2.f (𝜑 → (𝐹𝐴):𝐴𝐵)
fnwe2.r (𝜑𝑅 We 𝐵)
fnwe2lem2.a (𝜑𝑎𝐴)
fnwe2lem2.n0 (𝜑𝑎 ≠ ∅)
Assertion
Ref Expression
fnwe2lem2 (𝜑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎,𝑏,𝑐   𝑥,𝑆,𝑦,𝑎,𝑏,𝑐   𝑥,𝑅,𝑦,𝑎,𝑏,𝑐   𝜑,𝑥,𝑦,𝑧,𝑐   𝑥,𝐴,𝑦,𝑧,𝑎,𝑏,𝑐   𝑥,𝐹,𝑦,𝑧,𝑎,𝑏,𝑐   𝑇,𝑎,𝑏,𝑐   𝐵,𝑎,𝑏,𝑐   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑥,𝑦,𝑧)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2lem2
Dummy variables 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnwe2.f . . . 4 (𝜑 → (𝐹𝐴):𝐴𝐵)
2 ffun 6548 . . . 4 ((𝐹𝐴):𝐴𝐵 → Fun (𝐹𝐴))
3 vex 3412 . . . . 5 𝑎 ∈ V
43funimaex 6467 . . . 4 (Fun (𝐹𝐴) → ((𝐹𝐴) “ 𝑎) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ∈ V)
6 fnwe2.r . . . 4 (𝜑𝑅 We 𝐵)
7 wefr 5541 . . . 4 (𝑅 We 𝐵𝑅 Fr 𝐵)
86, 7syl 17 . . 3 (𝜑𝑅 Fr 𝐵)
9 imassrn 5940 . . . 4 ((𝐹𝐴) “ 𝑎) ⊆ ran (𝐹𝐴)
101frnd 6553 . . . 4 (𝜑 → ran (𝐹𝐴) ⊆ 𝐵)
119, 10sstrid 3912 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ⊆ 𝐵)
12 incom 4115 . . . . . 6 (dom (𝐹𝐴) ∩ 𝑎) = (𝑎 ∩ dom (𝐹𝐴))
13 fnwe2lem2.a . . . . . . . 8 (𝜑𝑎𝐴)
141fdmd 6556 . . . . . . . 8 (𝜑 → dom (𝐹𝐴) = 𝐴)
1513, 14sseqtrrd 3942 . . . . . . 7 (𝜑𝑎 ⊆ dom (𝐹𝐴))
16 df-ss 3883 . . . . . . 7 (𝑎 ⊆ dom (𝐹𝐴) ↔ (𝑎 ∩ dom (𝐹𝐴)) = 𝑎)
1715, 16sylib 221 . . . . . 6 (𝜑 → (𝑎 ∩ dom (𝐹𝐴)) = 𝑎)
1812, 17syl5eq 2790 . . . . 5 (𝜑 → (dom (𝐹𝐴) ∩ 𝑎) = 𝑎)
19 fnwe2lem2.n0 . . . . 5 (𝜑𝑎 ≠ ∅)
2018, 19eqnetrd 3008 . . . 4 (𝜑 → (dom (𝐹𝐴) ∩ 𝑎) ≠ ∅)
21 imadisj 5948 . . . . 5 (((𝐹𝐴) “ 𝑎) = ∅ ↔ (dom (𝐹𝐴) ∩ 𝑎) = ∅)
2221necon3bii 2993 . . . 4 (((𝐹𝐴) “ 𝑎) ≠ ∅ ↔ (dom (𝐹𝐴) ∩ 𝑎) ≠ ∅)
2320, 22sylibr 237 . . 3 (𝜑 → ((𝐹𝐴) “ 𝑎) ≠ ∅)
24 fri 5512 . . 3 (((((𝐹𝐴) “ 𝑎) ∈ V ∧ 𝑅 Fr 𝐵) ∧ (((𝐹𝐴) “ 𝑎) ⊆ 𝐵 ∧ ((𝐹𝐴) “ 𝑎) ≠ ∅)) → ∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
255, 8, 11, 23, 24syl22anc 839 . 2 (𝜑 → ∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
26 df-ima 5564 . . . . . 6 ((𝐹𝐴) “ 𝑎) = ran ((𝐹𝐴) ↾ 𝑎)
2726rexeqi 3324 . . . . 5 (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑)
281ffnd 6546 . . . . . . 7 (𝜑 → (𝐹𝐴) Fn 𝐴)
29 fnssres 6500 . . . . . . 7 (((𝐹𝐴) Fn 𝐴𝑎𝐴) → ((𝐹𝐴) ↾ 𝑎) Fn 𝑎)
3028, 13, 29syl2anc 587 . . . . . 6 (𝜑 → ((𝐹𝐴) ↾ 𝑎) Fn 𝑎)
31 breq2 5057 . . . . . . . . 9 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (𝑒𝑅𝑑𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3231notbid 321 . . . . . . . 8 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (¬ 𝑒𝑅𝑑 ↔ ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3332ralbidv 3118 . . . . . . 7 (𝑑 = (((𝐹𝐴) ↾ 𝑎)‘𝑓) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3433rexrn 6906 . . . . . 6 (((𝐹𝐴) ↾ 𝑎) Fn 𝑎 → (∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3530, 34syl 17 . . . . 5 (𝜑 → (∃𝑑 ∈ ran ((𝐹𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3627, 35syl5bb 286 . . . 4 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3726raleqi 3323 . . . . . . . 8 (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓))
38 breq1 5056 . . . . . . . . . . 11 (𝑒 = (((𝐹𝐴) ↾ 𝑎)‘𝑑) → (𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
3938notbid 321 . . . . . . . . . 10 (𝑒 = (((𝐹𝐴) ↾ 𝑎)‘𝑑) → (¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4039ralrn 6907 . . . . . . . . 9 (((𝐹𝐴) ↾ 𝑎) Fn 𝑎 → (∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4130, 40syl 17 . . . . . . . 8 (𝜑 → (∀𝑒 ∈ ran ((𝐹𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4237, 41syl5bb 286 . . . . . . 7 (𝜑 → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4342adantr 484 . . . . . 6 ((𝜑𝑓𝑎) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓)))
4413resabs1d 5882 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) ↾ 𝑎) = (𝐹𝑎))
4544ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝐴) ↾ 𝑎) = (𝐹𝑎))
4645fveq1d 6719 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑑) = ((𝐹𝑎)‘𝑑))
47 fvres 6736 . . . . . . . . . . 11 (𝑑𝑎 → ((𝐹𝑎)‘𝑑) = (𝐹𝑑))
4847adantl 485 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝑎)‘𝑑) = (𝐹𝑑))
4946, 48eqtrd 2777 . . . . . . . . 9 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑑) = (𝐹𝑑))
5045fveq1d 6719 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑓) = ((𝐹𝑎)‘𝑓))
51 fvres 6736 . . . . . . . . . . 11 (𝑓𝑎 → ((𝐹𝑎)‘𝑓) = (𝐹𝑓))
5251ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((𝐹𝑎)‘𝑓) = (𝐹𝑓))
5350, 52eqtrd 2777 . . . . . . . . 9 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (((𝐹𝐴) ↾ 𝑎)‘𝑓) = (𝐹𝑓))
5449, 53breq12d 5066 . . . . . . . 8 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → ((((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ (𝐹𝑑)𝑅(𝐹𝑓)))
5554notbid 321 . . . . . . 7 (((𝜑𝑓𝑎) ∧ 𝑑𝑎) → (¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5655ralbidva 3117 . . . . . 6 ((𝜑𝑓𝑎) → (∀𝑑𝑎 ¬ (((𝐹𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5743, 56bitrd 282 . . . . 5 ((𝜑𝑓𝑎) → (∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5857rexbidva 3215 . . . 4 (𝜑 → (∃𝑓𝑎𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹𝐴) ↾ 𝑎)‘𝑓) ↔ ∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
5936, 58bitrd 282 . . 3 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓)))
603inex1 5210 . . . . . . 7 (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V
6160a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V)
6213sselda 3901 . . . . . . . 8 ((𝜑𝑓𝑎) → 𝑓𝐴)
63 fnwe2.su . . . . . . . . . 10 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
64 fnwe2.t . . . . . . . . . 10 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
65 fnwe2.s . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
6663, 64, 65fnwe2lem1 40578 . . . . . . . . 9 ((𝜑𝑓𝐴) → (𝐹𝑓) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
67 wefr 5541 . . . . . . . . 9 ((𝐹𝑓) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
6866, 67syl 17 . . . . . . . 8 ((𝜑𝑓𝐴) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
6962, 68syldan 594 . . . . . . 7 ((𝜑𝑓𝑎) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
7069adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
71 inss2 4144 . . . . . . 7 (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}
7271a1i 11 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
73 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓𝑎)
74 fveqeq2 6726 . . . . . . . . 9 (𝑦 = 𝑓 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑓) = (𝐹𝑓)))
7562adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓𝐴)
76 eqidd 2738 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝐹𝑓) = (𝐹𝑓))
7774, 75, 76elrabd 3604 . . . . . . . 8 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})
7873, 77elind 4108 . . . . . . 7 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → 𝑓 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
7978ne0d 4250 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ≠ ∅)
80 fri 5512 . . . . . 6 ((((𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∈ V ∧ (𝐹𝑓) / 𝑧𝑆 Fr {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ∧ ((𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ⊆ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ∧ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ≠ ∅)) → ∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)
8161, 70, 72, 79, 80syl22anc 839 . . . . 5 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)
82 elin 3882 . . . . . . . 8 (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
83 fveqeq2 6726 . . . . . . . . . 10 (𝑦 = 𝑒 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑒) = (𝐹𝑓)))
8483elrab 3602 . . . . . . . . 9 (𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ↔ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))
8584anbi2i 626 . . . . . . . 8 ((𝑒𝑎𝑒 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))))
8682, 85bitri 278 . . . . . . 7 (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))))
87 elin 3882 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}))
88 fveqeq2 6726 . . . . . . . . . . . . . . 15 (𝑦 = 𝑔 → ((𝐹𝑦) = (𝐹𝑓) ↔ (𝐹𝑔) = (𝐹𝑓)))
8988elrab 3602 . . . . . . . . . . . . . 14 (𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)} ↔ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)))
9089anbi2i 626 . . . . . . . . . . . . 13 ((𝑔𝑎𝑔 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))))
9187, 90bitri 278 . . . . . . . . . . . 12 (𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ↔ (𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))))
9291imbi1i 353 . . . . . . . . . . 11 ((𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ ((𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
93 impexp 454 . . . . . . . . . . 11 (((𝑔𝑎 ∧ (𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓))) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ (𝑔𝑎 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)))
9492, 93bitri 278 . . . . . . . . . 10 ((𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ (𝑔𝑎 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)))
9594ralbii2 3086 . . . . . . . . 9 (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 ↔ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
96 simplrl 777 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → 𝑒𝑎)
97 fveq2 6717 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑐 → (𝐹𝑑) = (𝐹𝑐))
9897breq1d 5063 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑑)𝑅(𝐹𝑓) ↔ (𝐹𝑐)𝑅(𝐹𝑓)))
9998notbid 321 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑐 → (¬ (𝐹𝑑)𝑅(𝐹𝑓) ↔ ¬ (𝐹𝑐)𝑅(𝐹𝑓)))
100 simplrr 778 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))
101100ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))
102 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → 𝑐𝑎)
10399, 101, 102rspcdva 3539 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ (𝐹𝑐)𝑅(𝐹𝑓))
104 simprrr 782 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (𝐹𝑒) = (𝐹𝑓))
105104ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → (𝐹𝑒) = (𝐹𝑓))
106105breq2d 5065 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ((𝐹𝑐)𝑅(𝐹𝑒) ↔ (𝐹𝑐)𝑅(𝐹𝑓)))
107103, 106mtbird 328 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ (𝐹𝑐)𝑅(𝐹𝑒))
10813ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → 𝑎𝐴)
109108sselda 3901 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → 𝑐𝐴)
110109adantrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → 𝑐𝐴)
111 simprr 773 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑐) = (𝐹𝑒))
112104ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑒) = (𝐹𝑓))
113111, 112eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑐) = (𝐹𝑓))
114 eleq1w 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → (𝑔𝐴𝑐𝐴))
115 fveqeq2 6726 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → ((𝐹𝑔) = (𝐹𝑓) ↔ (𝐹𝑐) = (𝐹𝑓)))
116114, 115anbi12d 634 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑐 → ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) ↔ (𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓))))
117 breq1 5056 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑐 → (𝑔(𝐹𝑓) / 𝑧𝑆𝑒𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
118117notbid 321 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑐 → (¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 ↔ ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
119116, 118imbi12d 348 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) ↔ ((𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓)) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒)))
120 simplr 769 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒))
121 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → 𝑐𝑎)
122119, 120, 121rspcdva 3539 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ((𝑐𝐴 ∧ (𝐹𝑐) = (𝐹𝑓)) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒))
123110, 113, 122mp2and 699 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ¬ 𝑐(𝐹𝑓) / 𝑧𝑆𝑒)
124111, 112eqtr2d 2778 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑓) = (𝐹𝑐))
125124csbeq1d 3815 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝐹𝑓) / 𝑧𝑆 = (𝐹𝑐) / 𝑧𝑆)
126125breqd 5064 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → (𝑐(𝐹𝑓) / 𝑧𝑆𝑒𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
127123, 126mtbid 327 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ (𝑐𝑎 ∧ (𝐹𝑐) = (𝐹𝑒))) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)
128127expr 460 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ((𝐹𝑐) = (𝐹𝑒) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
129 imnan 403 . . . . . . . . . . . . . . 15 (((𝐹𝑐) = (𝐹𝑒) → ¬ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒) ↔ ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
130128, 129sylib 221 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒))
131 ioran 984 . . . . . . . . . . . . . 14 (¬ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)) ↔ (¬ (𝐹𝑐)𝑅(𝐹𝑒) ∧ ¬ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
132107, 130, 131sylanbrc 586 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
13363, 64fnwe2val 40577 . . . . . . . . . . . . 13 (𝑐𝑇𝑒 ↔ ((𝐹𝑐)𝑅(𝐹𝑒) ∨ ((𝐹𝑐) = (𝐹𝑒) ∧ 𝑐(𝐹𝑐) / 𝑧𝑆𝑒)))
134132, 133sylnibr 332 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) ∧ 𝑐𝑎) → ¬ 𝑐𝑇𝑒)
135134ralrimiva 3105 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → ∀𝑐𝑎 ¬ 𝑐𝑇𝑒)
136 breq2 5057 . . . . . . . . . . . . . 14 (𝑏 = 𝑒 → (𝑐𝑇𝑏𝑐𝑇𝑒))
137136notbid 321 . . . . . . . . . . . . 13 (𝑏 = 𝑒 → (¬ 𝑐𝑇𝑏 ↔ ¬ 𝑐𝑇𝑒))
138137ralbidv 3118 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (∀𝑐𝑎 ¬ 𝑐𝑇𝑏 ↔ ∀𝑐𝑎 ¬ 𝑐𝑇𝑒))
139138rspcev 3537 . . . . . . . . . . 11 ((𝑒𝑎 ∧ ∀𝑐𝑎 ¬ 𝑐𝑇𝑒) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
14096, 135, 139syl2anc 587 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) ∧ ∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒)) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
141140ex 416 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (∀𝑔𝑎 ((𝑔𝐴 ∧ (𝐹𝑔) = (𝐹𝑓)) → ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14295, 141syl5bi 245 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) ∧ (𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓)))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
143142ex 416 . . . . . . 7 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ((𝑒𝑎 ∧ (𝑒𝐴 ∧ (𝐹𝑒) = (𝐹𝑓))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)))
14486, 143syl5bi 245 . . . . . 6 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) → (∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)))
145144rexlimdv 3202 . . . . 5 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → (∃𝑒 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑓)}) ¬ 𝑔(𝐹𝑓) / 𝑧𝑆𝑒 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14681, 145mpd 15 . . . 4 ((𝜑 ∧ (𝑓𝑎 ∧ ∀𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓))) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
147146rexlimdvaa 3204 . . 3 (𝜑 → (∃𝑓𝑎𝑑𝑎 ¬ (𝐹𝑑)𝑅(𝐹𝑓) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14859, 147sylbid 243 . 2 (𝜑 → (∃𝑑 ∈ ((𝐹𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏))
14925, 148mpd 15 1 (𝜑 → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑇𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  {crab 3065  Vcvv 3408  csb 3811  cin 3865  wss 3866  c0 4237   class class class wbr 5053  {copab 5115   Fr wfr 5506   We wwe 5508  dom cdm 5551  ran crn 5552  cres 5553  cima 5554  Fun wfun 6374   Fn wfn 6375  wf 6376  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388
This theorem is referenced by:  fnwe2  40581
  Copyright terms: Public domain W3C validator