Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm4 Structured version   Visualization version   GIF version

Theorem isprm4 16038
 Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm4 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm4
StepHypRef Expression
1 isprm2 16036 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2 eluz2b3 12330 . . . . . 6 (𝑧 ∈ (ℤ‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ≠ 1))
32imbi1i 353 . . . . 5 ((𝑧 ∈ (ℤ‘2) → (𝑧𝑃𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧𝑃𝑧 = 𝑃)))
4 impexp 454 . . . . . 6 (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧𝑃𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧𝑃𝑧 = 𝑃))))
5 bi2.04 392 . . . . . . . 8 ((𝑧 ≠ 1 → (𝑧𝑃𝑧 = 𝑃)) ↔ (𝑧𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃)))
6 df-ne 2988 . . . . . . . . . . 11 (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1)
76imbi1i 353 . . . . . . . . . 10 ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃))
8 df-or 845 . . . . . . . . . 10 ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃))
97, 8bitr4i 281 . . . . . . . . 9 ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃))
109imbi2i 339 . . . . . . . 8 ((𝑧𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃)) ↔ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
115, 10bitri 278 . . . . . . 7 ((𝑧 ≠ 1 → (𝑧𝑃𝑧 = 𝑃)) ↔ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
1211imbi2i 339 . . . . . 6 ((𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧𝑃𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
134, 12bitri 278 . . . . 5 (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧𝑃𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
143, 13bitri 278 . . . 4 ((𝑧 ∈ (ℤ‘2) → (𝑧𝑃𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
1514ralbii2 3131 . . 3 (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
1615anbi2i 625 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
171, 16bitr4i 281 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106   class class class wbr 5034  ‘cfv 6332  1c1 10545  ℕcn 11643  2c2 11698  ℤ≥cuz 12251   ∥ cdvds 15619  ℙcprime 16025 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-seq 13385  df-exp 13446  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-dvds 15620  df-prm 16026 This theorem is referenced by:  nprm  16042  prmuz2  16050  dvdsprm  16057  isprm5  16061
 Copyright terms: Public domain W3C validator