Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isprm4 | Structured version Visualization version GIF version |
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
Ref | Expression |
---|---|
isprm4 | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm2 16315 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | |
2 | eluz2b3 12591 | . . . . . 6 ⊢ (𝑧 ∈ (ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ≠ 1)) | |
3 | 2 | imbi1i 349 | . . . . 5 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
4 | impexp 450 | . . . . . 6 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) | |
5 | bi2.04 388 | . . . . . . . 8 ⊢ ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃))) | |
6 | df-ne 2943 | . . . . . . . . . . 11 ⊢ (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1) | |
7 | 6 | imbi1i 349 | . . . . . . . . . 10 ⊢ ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃)) |
8 | df-or 844 | . . . . . . . . . 10 ⊢ ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃)) | |
9 | 7, 8 | bitr4i 277 | . . . . . . . . 9 ⊢ ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
10 | 9 | imbi2i 335 | . . . . . . . 8 ⊢ ((𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
11 | 5, 10 | bitri 274 | . . . . . . 7 ⊢ ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
12 | 11 | imbi2i 335 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
13 | 4, 12 | bitri 274 | . . . . 5 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
14 | 3, 13 | bitri 274 | . . . 4 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
15 | 14 | ralbii2 3088 | . . 3 ⊢ (∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
16 | 15 | anbi2i 622 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
17 | 1, 16 | bitr4i 277 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 1c1 10803 ℕcn 11903 2c2 11958 ℤ≥cuz 12511 ∥ cdvds 15891 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 |
This theorem is referenced by: nprm 16321 prmuz2 16329 dvdsprm 16336 isprm5 16340 |
Copyright terms: Public domain | W3C validator |