| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isprm4 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
| Ref | Expression |
|---|---|
| isprm4 | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 16652 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | |
| 2 | eluz2b3 12881 | . . . . . 6 ⊢ (𝑧 ∈ (ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ≠ 1)) | |
| 3 | 2 | imbi1i 349 | . . . . 5 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
| 4 | impexp 450 | . . . . . 6 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) | |
| 5 | bi2.04 387 | . . . . . . . 8 ⊢ ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃))) | |
| 6 | df-ne 2926 | . . . . . . . . . . 11 ⊢ (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1) | |
| 7 | 6 | imbi1i 349 | . . . . . . . . . 10 ⊢ ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃)) |
| 8 | df-or 848 | . . . . . . . . . 10 ⊢ ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃)) | |
| 9 | 7, 8 | bitr4i 278 | . . . . . . . . 9 ⊢ ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
| 10 | 9 | imbi2i 336 | . . . . . . . 8 ⊢ ((𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
| 11 | 5, 10 | bitri 275 | . . . . . . 7 ⊢ ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
| 12 | 11 | imbi2i 336 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 13 | 4, 12 | bitri 275 | . . . . 5 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 14 | 3, 13 | bitri 275 | . . . 4 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 15 | 14 | ralbii2 3071 | . . 3 ⊢ (∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
| 16 | 15 | anbi2i 623 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 17 | 1, 16 | bitr4i 278 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 class class class wbr 5107 ‘cfv 6511 1c1 11069 ℕcn 12186 2c2 12241 ℤ≥cuz 12793 ∥ cdvds 16222 ℙcprime 16641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-prm 16642 |
| This theorem is referenced by: nprm 16658 prmuz2 16666 dvdsprm 16673 isprm5 16677 |
| Copyright terms: Public domain | W3C validator |