MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas2 Structured version   Visualization version   GIF version

Theorem dchrelbas2 27154
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑋   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrelbas2
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas 27153 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋)))
8 eqid 2730 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
98, 3mgpbas 20060 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑍))
10 eqid 2730 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
11 cnfldbas 21274 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
1210, 11mgpbas 20060 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
139, 12mhmf 18722 . . . . . . . 8 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
1413adantl 481 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑋:𝐵⟶ℂ)
1514ffund 6694 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → Fun 𝑋)
16 funssres 6562 . . . . . 6 ((Fun 𝑋 ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
1715, 16sylan 580 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
18 simpr 484 . . . . . 6 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
19 resss 5974 . . . . . 6 (𝑋 ↾ dom ((𝐵𝑈) × {0})) ⊆ 𝑋
2018, 19eqsstrrdi 3994 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → ((𝐵𝑈) × {0}) ⊆ 𝑋)
2117, 20impbida 800 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})))
22 0cn 11172 . . . . . . . 8 0 ∈ ℂ
23 fconst6g 6751 . . . . . . . 8 (0 ∈ ℂ → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2422, 23mp1i 13 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2524fdmd 6700 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → dom ((𝐵𝑈) × {0}) = (𝐵𝑈))
2625reseq2d 5952 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = (𝑋 ↾ (𝐵𝑈)))
2726eqeq1d 2732 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}) ↔ (𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0})))
28 difss 4101 . . . . . . . 8 (𝐵𝑈) ⊆ 𝐵
29 fssres 6728 . . . . . . . 8 ((𝑋:𝐵⟶ℂ ∧ (𝐵𝑈) ⊆ 𝐵) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3014, 28, 29sylancl 586 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3130ffnd 6691 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈))
3224ffnd 6691 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}) Fn (𝐵𝑈))
33 eqfnfv 7005 . . . . . 6 (((𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈) ∧ ((𝐵𝑈) × {0}) Fn (𝐵𝑈)) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
3431, 32, 33syl2anc 584 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
35 fvres 6879 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → ((𝑋 ↾ (𝐵𝑈))‘𝑥) = (𝑋𝑥))
36 c0ex 11174 . . . . . . . . 9 0 ∈ V
3736fvconst2 7180 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → (((𝐵𝑈) × {0})‘𝑥) = 0)
3835, 37eqeq12d 2746 . . . . . . 7 (𝑥 ∈ (𝐵𝑈) → (((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
3938ralbiia 3074 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0)
40 eldif 3926 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑈) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝑈))
4140imbi1i 349 . . . . . . . 8 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ ((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0))
42 impexp 450 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)))
43 con1b 358 . . . . . . . . . 10 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
44 df-ne 2927 . . . . . . . . . . 11 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
4544imbi1i 349 . . . . . . . . . 10 (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
4643, 45bitr4i 278 . . . . . . . . 9 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
4746imbi2i 336 . . . . . . . 8 ((𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4841, 42, 473bitri 297 . . . . . . 7 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4948ralbii2 3072 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5039, 49bitri 275 . . . . 5 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5134, 50bitrdi 287 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5221, 27, 513bitrd 305 . . 3 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5352pm5.32da 579 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
547, 53bitrd 279 1 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3913  wss 3916  {csn 4591   × cxp 5638  dom cdm 5640  cres 5642  Fun wfun 6507   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  cc 11072  0cc0 11074  cn 12187  Basecbs 17185   MndHom cmhm 18714  mulGrpcmgp 20055  Unitcui 20270  fldccnfld 21270  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-mhm 18716  df-mgp 20056  df-cnfld 21271  df-dchr 27150
This theorem is referenced by:  dchrelbas3  27155  dchrelbas4  27160  dchrmulcl  27166  dchrn0  27167  dchrmullid  27169
  Copyright terms: Public domain W3C validator