MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas2 Structured version   Visualization version   GIF version

Theorem dchrelbas2 26290
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑋   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrelbas2
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas 26289 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋)))
8 eqid 2738 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
98, 3mgpbas 19641 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑍))
10 eqid 2738 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
11 cnfldbas 20514 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
1210, 11mgpbas 19641 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
139, 12mhmf 18350 . . . . . . . 8 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
1413adantl 481 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑋:𝐵⟶ℂ)
1514ffund 6588 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → Fun 𝑋)
16 funssres 6462 . . . . . 6 ((Fun 𝑋 ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
1715, 16sylan 579 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
18 simpr 484 . . . . . 6 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
19 resss 5905 . . . . . 6 (𝑋 ↾ dom ((𝐵𝑈) × {0})) ⊆ 𝑋
2018, 19eqsstrrdi 3972 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → ((𝐵𝑈) × {0}) ⊆ 𝑋)
2117, 20impbida 797 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})))
22 0cn 10898 . . . . . . . 8 0 ∈ ℂ
23 fconst6g 6647 . . . . . . . 8 (0 ∈ ℂ → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2422, 23mp1i 13 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2524fdmd 6595 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → dom ((𝐵𝑈) × {0}) = (𝐵𝑈))
2625reseq2d 5880 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = (𝑋 ↾ (𝐵𝑈)))
2726eqeq1d 2740 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}) ↔ (𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0})))
28 difss 4062 . . . . . . . 8 (𝐵𝑈) ⊆ 𝐵
29 fssres 6624 . . . . . . . 8 ((𝑋:𝐵⟶ℂ ∧ (𝐵𝑈) ⊆ 𝐵) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3014, 28, 29sylancl 585 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3130ffnd 6585 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈))
3224ffnd 6585 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}) Fn (𝐵𝑈))
33 eqfnfv 6891 . . . . . 6 (((𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈) ∧ ((𝐵𝑈) × {0}) Fn (𝐵𝑈)) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
3431, 32, 33syl2anc 583 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
35 fvres 6775 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → ((𝑋 ↾ (𝐵𝑈))‘𝑥) = (𝑋𝑥))
36 c0ex 10900 . . . . . . . . 9 0 ∈ V
3736fvconst2 7061 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → (((𝐵𝑈) × {0})‘𝑥) = 0)
3835, 37eqeq12d 2754 . . . . . . 7 (𝑥 ∈ (𝐵𝑈) → (((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
3938ralbiia 3089 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0)
40 eldif 3893 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑈) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝑈))
4140imbi1i 349 . . . . . . . 8 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ ((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0))
42 impexp 450 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)))
43 con1b 358 . . . . . . . . . 10 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
44 df-ne 2943 . . . . . . . . . . 11 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
4544imbi1i 349 . . . . . . . . . 10 (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
4643, 45bitr4i 277 . . . . . . . . 9 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
4746imbi2i 335 . . . . . . . 8 ((𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4841, 42, 473bitri 296 . . . . . . 7 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4948ralbii2 3088 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5039, 49bitri 274 . . . . 5 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5134, 50bitrdi 286 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5221, 27, 513bitrd 304 . . 3 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5352pm5.32da 578 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
547, 53bitrd 278 1 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  wss 3883  {csn 4558   × cxp 5578  dom cdm 5580  cres 5582  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  cn 11903  Basecbs 16840   MndHom cmhm 18343  mulGrpcmgp 19635  Unitcui 19796  fldccnfld 20510  ℤ/nczn 20616  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-mhm 18345  df-mgp 19636  df-cnfld 20511  df-dchr 26286
This theorem is referenced by:  dchrelbas3  26291  dchrelbas4  26296  dchrmulcl  26302  dchrn0  26303  dchrmulid2  26305
  Copyright terms: Public domain W3C validator