MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas2 Structured version   Visualization version   GIF version

Theorem dchrelbas2 25986
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑋   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrelbas2
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas 25985 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋)))
8 eqid 2739 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
98, 3mgpbas 19377 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑍))
10 eqid 2739 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
11 cnfldbas 20234 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
1210, 11mgpbas 19377 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
139, 12mhmf 18090 . . . . . . . 8 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
1413adantl 485 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑋:𝐵⟶ℂ)
1514ffund 6519 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → Fun 𝑋)
16 funssres 6394 . . . . . 6 ((Fun 𝑋 ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
1715, 16sylan 583 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
18 simpr 488 . . . . . 6 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
19 resss 5860 . . . . . 6 (𝑋 ↾ dom ((𝐵𝑈) × {0})) ⊆ 𝑋
2018, 19eqsstrrdi 3942 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → ((𝐵𝑈) × {0}) ⊆ 𝑋)
2117, 20impbida 801 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})))
22 0cn 10724 . . . . . . . 8 0 ∈ ℂ
23 fconst6g 6578 . . . . . . . 8 (0 ∈ ℂ → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2422, 23mp1i 13 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2524fdmd 6526 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → dom ((𝐵𝑈) × {0}) = (𝐵𝑈))
2625reseq2d 5835 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = (𝑋 ↾ (𝐵𝑈)))
2726eqeq1d 2741 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}) ↔ (𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0})))
28 difss 4032 . . . . . . . 8 (𝐵𝑈) ⊆ 𝐵
29 fssres 6555 . . . . . . . 8 ((𝑋:𝐵⟶ℂ ∧ (𝐵𝑈) ⊆ 𝐵) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3014, 28, 29sylancl 589 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3130ffnd 6516 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈))
3224ffnd 6516 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}) Fn (𝐵𝑈))
33 eqfnfv 6822 . . . . . 6 (((𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈) ∧ ((𝐵𝑈) × {0}) Fn (𝐵𝑈)) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
3431, 32, 33syl2anc 587 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
35 fvres 6706 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → ((𝑋 ↾ (𝐵𝑈))‘𝑥) = (𝑋𝑥))
36 c0ex 10726 . . . . . . . . 9 0 ∈ V
3736fvconst2 6989 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → (((𝐵𝑈) × {0})‘𝑥) = 0)
3835, 37eqeq12d 2755 . . . . . . 7 (𝑥 ∈ (𝐵𝑈) → (((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
3938ralbiia 3080 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0)
40 eldif 3863 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑈) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝑈))
4140imbi1i 353 . . . . . . . 8 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ ((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0))
42 impexp 454 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)))
43 con1b 362 . . . . . . . . . 10 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
44 df-ne 2936 . . . . . . . . . . 11 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
4544imbi1i 353 . . . . . . . . . 10 (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
4643, 45bitr4i 281 . . . . . . . . 9 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
4746imbi2i 339 . . . . . . . 8 ((𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4841, 42, 473bitri 300 . . . . . . 7 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4948ralbii2 3079 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5039, 49bitri 278 . . . . 5 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5134, 50bitrdi 290 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5221, 27, 513bitrd 308 . . 3 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5352pm5.32da 582 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
547, 53bitrd 282 1 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2935  wral 3054  cdif 3850  wss 3853  {csn 4526   × cxp 5533  dom cdm 5535  cres 5537  Fun wfun 6344   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7183  cc 10626  0cc0 10628  cn 11729  Basecbs 16599   MndHom cmhm 18083  mulGrpcmgp 19371  Unitcui 19524  fldccnfld 20230  ℤ/nczn 20336  DChrcdchr 25981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-er 8333  df-map 8452  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-2 11792  df-3 11793  df-4 11794  df-5 11795  df-6 11796  df-7 11797  df-8 11798  df-9 11799  df-n0 11990  df-z 12076  df-dec 12193  df-uz 12338  df-fz 12995  df-struct 16601  df-ndx 16602  df-slot 16603  df-base 16605  df-sets 16606  df-plusg 16694  df-mulr 16695  df-starv 16696  df-tset 16700  df-ple 16701  df-ds 16703  df-unif 16704  df-mhm 18085  df-mgp 19372  df-cnfld 20231  df-dchr 25982
This theorem is referenced by:  dchrelbas3  25987  dchrelbas4  25992  dchrmulcl  25998  dchrn0  25999  dchrmulid2  26001
  Copyright terms: Public domain W3C validator