MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas2 Structured version   Visualization version   GIF version

Theorem dchrelbas2 25821
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑋   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrelbas2
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas 25820 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋)))
8 eqid 2798 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
98, 3mgpbas 19238 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑍))
10 eqid 2798 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
11 cnfldbas 20095 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
1210, 11mgpbas 19238 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
139, 12mhmf 17953 . . . . . . . 8 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
1413adantl 485 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑋:𝐵⟶ℂ)
1514ffund 6491 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → Fun 𝑋)
16 funssres 6368 . . . . . 6 ((Fun 𝑋 ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
1715, 16sylan 583 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
18 simpr 488 . . . . . 6 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
19 resss 5843 . . . . . 6 (𝑋 ↾ dom ((𝐵𝑈) × {0})) ⊆ 𝑋
2018, 19eqsstrrdi 3970 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → ((𝐵𝑈) × {0}) ⊆ 𝑋)
2117, 20impbida 800 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})))
22 0cn 10622 . . . . . . . 8 0 ∈ ℂ
23 fconst6g 6542 . . . . . . . 8 (0 ∈ ℂ → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2422, 23mp1i 13 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2524fdmd 6497 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → dom ((𝐵𝑈) × {0}) = (𝐵𝑈))
2625reseq2d 5818 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = (𝑋 ↾ (𝐵𝑈)))
2726eqeq1d 2800 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}) ↔ (𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0})))
28 difss 4059 . . . . . . . 8 (𝐵𝑈) ⊆ 𝐵
29 fssres 6518 . . . . . . . 8 ((𝑋:𝐵⟶ℂ ∧ (𝐵𝑈) ⊆ 𝐵) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3014, 28, 29sylancl 589 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3130ffnd 6488 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈))
3224ffnd 6488 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}) Fn (𝐵𝑈))
33 eqfnfv 6779 . . . . . 6 (((𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈) ∧ ((𝐵𝑈) × {0}) Fn (𝐵𝑈)) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
3431, 32, 33syl2anc 587 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
35 fvres 6664 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → ((𝑋 ↾ (𝐵𝑈))‘𝑥) = (𝑋𝑥))
36 c0ex 10624 . . . . . . . . 9 0 ∈ V
3736fvconst2 6943 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → (((𝐵𝑈) × {0})‘𝑥) = 0)
3835, 37eqeq12d 2814 . . . . . . 7 (𝑥 ∈ (𝐵𝑈) → (((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
3938ralbiia 3132 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0)
40 eldif 3891 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑈) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝑈))
4140imbi1i 353 . . . . . . . 8 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ ((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0))
42 impexp 454 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)))
43 con1b 362 . . . . . . . . . 10 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
44 df-ne 2988 . . . . . . . . . . 11 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
4544imbi1i 353 . . . . . . . . . 10 (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
4643, 45bitr4i 281 . . . . . . . . 9 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
4746imbi2i 339 . . . . . . . 8 ((𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4841, 42, 473bitri 300 . . . . . . 7 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4948ralbii2 3131 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5039, 49bitri 278 . . . . 5 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5134, 50syl6bb 290 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5221, 27, 513bitrd 308 . . 3 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5352pm5.32da 582 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
547, 53bitrd 282 1 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  wss 3881  {csn 4525   × cxp 5517  dom cdm 5519  cres 5521  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  cn 11625  Basecbs 16475   MndHom cmhm 17946  mulGrpcmgp 19232  Unitcui 19385  fldccnfld 20091  ℤ/nczn 20196  DChrcdchr 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-mhm 17948  df-mgp 19233  df-cnfld 20092  df-dchr 25817
This theorem is referenced by:  dchrelbas3  25822  dchrelbas4  25827  dchrmulcl  25833  dchrn0  25834  dchrmulid2  25836
  Copyright terms: Public domain W3C validator