MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas2 Structured version   Visualization version   GIF version

Theorem dchrelbas2 25740
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑋   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrelbas2
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas 25739 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋)))
8 eqid 2818 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
98, 3mgpbas 19174 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑍))
10 eqid 2818 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
11 cnfldbas 20477 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
1210, 11mgpbas 19174 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
139, 12mhmf 17949 . . . . . . . 8 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
1413adantl 482 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑋:𝐵⟶ℂ)
1514ffund 6511 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → Fun 𝑋)
16 funssres 6391 . . . . . 6 ((Fun 𝑋 ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
1715, 16sylan 580 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
18 simpr 485 . . . . . 6 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}))
19 resss 5871 . . . . . 6 (𝑋 ↾ dom ((𝐵𝑈) × {0})) ⊆ 𝑋
2018, 19eqsstrrdi 4019 . . . . 5 (((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})) → ((𝐵𝑈) × {0}) ⊆ 𝑋)
2117, 20impbida 797 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ (𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0})))
22 0cn 10621 . . . . . . . 8 0 ∈ ℂ
23 fconst6g 6561 . . . . . . . 8 (0 ∈ ℂ → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2422, 23mp1i 13 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}):(𝐵𝑈)⟶ℂ)
2524fdmd 6516 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → dom ((𝐵𝑈) × {0}) = (𝐵𝑈))
2625reseq2d 5846 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ dom ((𝐵𝑈) × {0})) = (𝑋 ↾ (𝐵𝑈)))
2726eqeq1d 2820 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ dom ((𝐵𝑈) × {0})) = ((𝐵𝑈) × {0}) ↔ (𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0})))
28 difss 4105 . . . . . . . 8 (𝐵𝑈) ⊆ 𝐵
29 fssres 6537 . . . . . . . 8 ((𝑋:𝐵⟶ℂ ∧ (𝐵𝑈) ⊆ 𝐵) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3014, 28, 29sylancl 586 . . . . . . 7 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)):(𝐵𝑈)⟶ℂ)
3130ffnd 6508 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈))
3224ffnd 6508 . . . . . 6 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝐵𝑈) × {0}) Fn (𝐵𝑈))
33 eqfnfv 6794 . . . . . 6 (((𝑋 ↾ (𝐵𝑈)) Fn (𝐵𝑈) ∧ ((𝐵𝑈) × {0}) Fn (𝐵𝑈)) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
3431, 32, 33syl2anc 584 . . . . 5 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥)))
35 fvres 6682 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → ((𝑋 ↾ (𝐵𝑈))‘𝑥) = (𝑋𝑥))
36 c0ex 10623 . . . . . . . . 9 0 ∈ V
3736fvconst2 6958 . . . . . . . 8 (𝑥 ∈ (𝐵𝑈) → (((𝐵𝑈) × {0})‘𝑥) = 0)
3835, 37eqeq12d 2834 . . . . . . 7 (𝑥 ∈ (𝐵𝑈) → (((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
3938ralbiia 3161 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0)
40 eldif 3943 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑈) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝑈))
4140imbi1i 351 . . . . . . . 8 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ ((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0))
42 impexp 451 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)))
43 con1b 360 . . . . . . . . . 10 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
44 df-ne 3014 . . . . . . . . . . 11 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
4544imbi1i 351 . . . . . . . . . 10 (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ (¬ (𝑋𝑥) = 0 → 𝑥𝑈))
4643, 45bitr4i 279 . . . . . . . . 9 ((¬ 𝑥𝑈 → (𝑋𝑥) = 0) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
4746imbi2i 337 . . . . . . . 8 ((𝑥𝐵 → (¬ 𝑥𝑈 → (𝑋𝑥) = 0)) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4841, 42, 473bitri 298 . . . . . . 7 ((𝑥 ∈ (𝐵𝑈) → (𝑋𝑥) = 0) ↔ (𝑥𝐵 → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
4948ralbii2 3160 . . . . . 6 (∀𝑥 ∈ (𝐵𝑈)(𝑋𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5039, 49bitri 276 . . . . 5 (∀𝑥 ∈ (𝐵𝑈)((𝑋 ↾ (𝐵𝑈))‘𝑥) = (((𝐵𝑈) × {0})‘𝑥) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
5134, 50syl6bb 288 . . . 4 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → ((𝑋 ↾ (𝐵𝑈)) = ((𝐵𝑈) × {0}) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5221, 27, 513bitrd 306 . . 3 ((𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (((𝐵𝑈) × {0}) ⊆ 𝑋 ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
5352pm5.32da 579 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ((𝐵𝑈) × {0}) ⊆ 𝑋) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
547, 53bitrd 280 1 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  cdif 3930  wss 3933  {csn 4557   × cxp 5546  dom cdm 5548  cres 5550  Fun wfun 6342   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  cn 11626  Basecbs 16471   MndHom cmhm 17942  mulGrpcmgp 19168  Unitcui 19318  fldccnfld 20473  ℤ/nczn 20578  DChrcdchr 25735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-mhm 17944  df-mgp 19169  df-cnfld 20474  df-dchr 25736
This theorem is referenced by:  dchrelbas3  25741  dchrelbas4  25746  dchrmulcl  25752  dchrn0  25753  dchrmulid2  25755
  Copyright terms: Public domain W3C validator