MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnnum Structured version   Visualization version   GIF version

Theorem acnnum 10047
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnnum (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)

Proof of Theorem acnnum
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5377 . . . . . . 7 (𝑋AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V)
2 difss 4132 . . . . . . 7 (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋
3 ssdomg 8996 . . . . . . 7 (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋))
41, 2, 3mpisyl 21 . . . . . 6 (𝑋AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)
5 acndom 10046 . . . . . 6 ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅})))
64, 5mpcom 38 . . . . 5 (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅}))
7 eldifsn 4791 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅))
8 elpwi 4610 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
98anim1i 616 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑥𝑋𝑥 ≠ ∅))
107, 9sylbi 216 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥𝑋𝑥 ≠ ∅))
1110rgen 3064 . . . . 5 𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)
12 acni2 10041 . . . . 5 ((𝑋AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
136, 11, 12sylancl 587 . . . 4 (𝑋AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
14 simpr 486 . . . . . 6 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥)
157imbi1i 350 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥))
16 impexp 452 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1715, 16bitri 275 . . . . . . 7 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1817ralbii2 3090 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1914, 18sylib 217 . . . . 5 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2019eximi 1838 . . . 4 (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2113, 20syl 17 . . 3 (𝑋AC 𝒫 𝑋 → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
22 dfac8a 10025 . . 3 (𝑋AC 𝒫 𝑋 → (∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝑋 ∈ dom card))
2321, 22mpd 15 . 2 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
24 pwexg 5377 . . 3 (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V)
25 numacn 10044 . . 3 (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋))
2624, 25mpcom 38 . 2 (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋)
2723, 26impbii 208 1 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wex 1782  wcel 2107  wne 2941  wral 3062  Vcvv 3475  cdif 3946  wss 3949  c0 4323  𝒫 cpw 4603  {csn 4629   class class class wbr 5149  dom cdm 5677  wf 6540  cfv 6544  cdom 8937  cardccrd 9930  AC wacn 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-fin 8943  df-card 9934  df-acn 9937
This theorem is referenced by:  dfac13  10137
  Copyright terms: Public domain W3C validator