Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acnnum | Structured version Visualization version GIF version |
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acnnum | ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5296 | . . . . . . 7 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V) | |
2 | difss 4062 | . . . . . . 7 ⊢ (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 | |
3 | ssdomg 8741 | . . . . . . 7 ⊢ (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)) | |
4 | 1, 2, 3 | mpisyl 21 | . . . . . 6 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋) |
5 | acndom 9738 | . . . . . 6 ⊢ ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}))) | |
6 | 4, 5 | mpcom 38 | . . . . 5 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅})) |
7 | eldifsn 4717 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅)) | |
8 | elpwi 4539 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
9 | 8 | anim1i 614 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
10 | 7, 9 | sylbi 216 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
11 | 10 | rgen 3073 | . . . . 5 ⊢ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅) |
12 | acni2 9733 | . . . . 5 ⊢ ((𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) | |
13 | 6, 11, 12 | sylancl 585 | . . . 4 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) | |
15 | 7 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥)) |
16 | impexp 450 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
17 | 15, 16 | bitri 274 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
18 | 17 | ralbii2 3088 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
19 | 14, 18 | sylib 217 | . . . . 5 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
20 | 19 | eximi 1838 | . . . 4 ⊢ (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
21 | 13, 20 | syl 17 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
22 | dfac8a 9717 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝑋 ∈ dom card)) | |
23 | 21, 22 | mpd 15 | . 2 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ dom card) |
24 | pwexg 5296 | . . 3 ⊢ (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V) | |
25 | numacn 9736 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋)) | |
26 | 24, 25 | mpcom 38 | . 2 ⊢ (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋) |
27 | 23, 26 | impbii 208 | 1 ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 ≼ cdom 8689 cardccrd 9624 AC wacn 9627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-fin 8695 df-card 9628 df-acn 9631 |
This theorem is referenced by: dfac13 9829 |
Copyright terms: Public domain | W3C validator |