MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnnum Structured version   Visualization version   GIF version

Theorem acnnum 10093
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnnum (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)

Proof of Theorem acnnum
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5377 . . . . . . 7 (𝑋AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V)
2 difss 4135 . . . . . . 7 (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋
3 ssdomg 9041 . . . . . . 7 (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋))
41, 2, 3mpisyl 21 . . . . . 6 (𝑋AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)
5 acndom 10092 . . . . . 6 ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅})))
64, 5mpcom 38 . . . . 5 (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅}))
7 eldifsn 4785 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅))
8 elpwi 4606 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
98anim1i 615 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑥𝑋𝑥 ≠ ∅))
107, 9sylbi 217 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥𝑋𝑥 ≠ ∅))
1110rgen 3062 . . . . 5 𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)
12 acni2 10087 . . . . 5 ((𝑋AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
136, 11, 12sylancl 586 . . . 4 (𝑋AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
14 simpr 484 . . . . . 6 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥)
157imbi1i 349 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥))
16 impexp 450 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1715, 16bitri 275 . . . . . . 7 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1817ralbii2 3088 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1914, 18sylib 218 . . . . 5 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2019eximi 1834 . . . 4 (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2113, 20syl 17 . . 3 (𝑋AC 𝒫 𝑋 → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
22 dfac8a 10071 . . 3 (𝑋AC 𝒫 𝑋 → (∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝑋 ∈ dom card))
2321, 22mpd 15 . 2 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
24 pwexg 5377 . . 3 (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V)
25 numacn 10090 . . 3 (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋))
2624, 25mpcom 38 . 2 (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋)
2723, 26impbii 209 1 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1778  wcel 2107  wne 2939  wral 3060  Vcvv 3479  cdif 3947  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   class class class wbr 5142  dom cdm 5684  wf 6556  cfv 6560  cdom 8984  cardccrd 9976  AC wacn 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-fin 8990  df-card 9980  df-acn 9983
This theorem is referenced by:  dfac13  10184
  Copyright terms: Public domain W3C validator