![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acnnum | Structured version Visualization version GIF version |
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acnnum | ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5373 | . . . . . . 7 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V) | |
2 | difss 4128 | . . . . . . 7 ⊢ (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 | |
3 | ssdomg 9015 | . . . . . . 7 ⊢ (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)) | |
4 | 1, 2, 3 | mpisyl 21 | . . . . . 6 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋) |
5 | acndom 10069 | . . . . . 6 ⊢ ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}))) | |
6 | 4, 5 | mpcom 38 | . . . . 5 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅})) |
7 | eldifsn 4787 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅)) | |
8 | elpwi 4606 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
9 | 8 | anim1i 614 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
10 | 7, 9 | sylbi 216 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
11 | 10 | rgen 3059 | . . . . 5 ⊢ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅) |
12 | acni2 10064 | . . . . 5 ⊢ ((𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) | |
13 | 6, 11, 12 | sylancl 585 | . . . 4 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) | |
15 | 7 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥)) |
16 | impexp 450 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
17 | 15, 16 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
18 | 17 | ralbii2 3085 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
19 | 14, 18 | sylib 217 | . . . . 5 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
20 | 19 | eximi 1830 | . . . 4 ⊢ (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
21 | 13, 20 | syl 17 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
22 | dfac8a 10048 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝑋 ∈ dom card)) | |
23 | 21, 22 | mpd 15 | . 2 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ dom card) |
24 | pwexg 5373 | . . 3 ⊢ (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V) | |
25 | numacn 10067 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋)) | |
26 | 24, 25 | mpcom 38 | . 2 ⊢ (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋) |
27 | 23, 26 | impbii 208 | 1 ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 Vcvv 3470 ∖ cdif 3942 ⊆ wss 3945 ∅c0 4319 𝒫 cpw 4599 {csn 4625 class class class wbr 5143 dom cdm 5673 ⟶wf 6539 ‘cfv 6543 ≼ cdom 8956 cardccrd 9953 AC wacn 9956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-fin 8962 df-card 9957 df-acn 9960 |
This theorem is referenced by: dfac13 10160 |
Copyright terms: Public domain | W3C validator |