MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnnum Structured version   Visualization version   GIF version

Theorem acnnum 10005
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnnum (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)

Proof of Theorem acnnum
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5333 . . . . . . 7 (𝑋AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V)
2 difss 4099 . . . . . . 7 (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋
3 ssdomg 8971 . . . . . . 7 (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋))
41, 2, 3mpisyl 21 . . . . . 6 (𝑋AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)
5 acndom 10004 . . . . . 6 ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅})))
64, 5mpcom 38 . . . . 5 (𝑋AC 𝒫 𝑋𝑋AC (𝒫 𝑋 ∖ {∅}))
7 eldifsn 4750 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅))
8 elpwi 4570 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
98anim1i 615 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑥𝑋𝑥 ≠ ∅))
107, 9sylbi 217 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥𝑋𝑥 ≠ ∅))
1110rgen 3046 . . . . 5 𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)
12 acni2 9999 . . . . 5 ((𝑋AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥𝑋𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
136, 11, 12sylancl 586 . . . 4 (𝑋AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥))
14 simpr 484 . . . . . 6 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥)
157imbi1i 349 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥))
16 impexp 450 . . . . . . . 8 (((𝑥 ∈ 𝒫 𝑋𝑥 ≠ ∅) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1715, 16bitri 275 . . . . . . 7 ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
1817ralbii2 3071 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1914, 18sylib 218 . . . . 5 ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2019eximi 1835 . . . 4 (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
2113, 20syl 17 . . 3 (𝑋AC 𝒫 𝑋 → ∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
22 dfac8a 9983 . . 3 (𝑋AC 𝒫 𝑋 → (∃𝑓𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → 𝑋 ∈ dom card))
2321, 22mpd 15 . 2 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
24 pwexg 5333 . . 3 (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V)
25 numacn 10002 . . 3 (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋))
2624, 25mpcom 38 . 2 (𝑋 ∈ dom card → 𝑋AC 𝒫 𝑋)
2723, 26impbii 209 1 (𝑋AC 𝒫 𝑋𝑋 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cdif 3911  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  cdom 8916  cardccrd 9888  AC wacn 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-fin 8922  df-card 9892  df-acn 9895
This theorem is referenced by:  dfac13  10096
  Copyright terms: Public domain W3C validator