Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acnnum | Structured version Visualization version GIF version |
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acnnum | ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5305 | . . . . . . 7 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V) | |
2 | difss 4071 | . . . . . . 7 ⊢ (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 | |
3 | ssdomg 8769 | . . . . . . 7 ⊢ (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)) | |
4 | 1, 2, 3 | mpisyl 21 | . . . . . 6 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋) |
5 | acndom 9808 | . . . . . 6 ⊢ ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}))) | |
6 | 4, 5 | mpcom 38 | . . . . 5 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅})) |
7 | eldifsn 4726 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅)) | |
8 | elpwi 4548 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
9 | 8 | anim1i 615 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
10 | 7, 9 | sylbi 216 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
11 | 10 | rgen 3076 | . . . . 5 ⊢ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅) |
12 | acni2 9803 | . . . . 5 ⊢ ((𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) | |
13 | 6, 11, 12 | sylancl 586 | . . . 4 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) |
14 | simpr 485 | . . . . . 6 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) | |
15 | 7 | imbi1i 350 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥)) |
16 | impexp 451 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
17 | 15, 16 | bitri 274 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
18 | 17 | ralbii2 3091 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
19 | 14, 18 | sylib 217 | . . . . 5 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
20 | 19 | eximi 1841 | . . . 4 ⊢ (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
21 | 13, 20 | syl 17 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
22 | dfac8a 9787 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝑋 ∈ dom card)) | |
23 | 21, 22 | mpd 15 | . 2 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ dom card) |
24 | pwexg 5305 | . . 3 ⊢ (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V) | |
25 | numacn 9806 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋)) | |
26 | 24, 25 | mpcom 38 | . 2 ⊢ (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋) |
27 | 23, 26 | impbii 208 | 1 ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1786 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 Vcvv 3431 ∖ cdif 3889 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 {csn 4567 class class class wbr 5079 dom cdm 5590 ⟶wf 6428 ‘cfv 6432 ≼ cdom 8714 cardccrd 9694 AC wacn 9697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-fin 8720 df-card 9698 df-acn 9701 |
This theorem is referenced by: dfac13 9899 |
Copyright terms: Public domain | W3C validator |