![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acnnum | Structured version Visualization version GIF version |
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acnnum | ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5377 | . . . . . . 7 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V) | |
2 | difss 4132 | . . . . . . 7 ⊢ (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 | |
3 | ssdomg 8996 | . . . . . . 7 ⊢ (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)) | |
4 | 1, 2, 3 | mpisyl 21 | . . . . . 6 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋) |
5 | acndom 10046 | . . . . . 6 ⊢ ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}))) | |
6 | 4, 5 | mpcom 38 | . . . . 5 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅})) |
7 | eldifsn 4791 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅)) | |
8 | elpwi 4610 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
9 | 8 | anim1i 616 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
10 | 7, 9 | sylbi 216 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
11 | 10 | rgen 3064 | . . . . 5 ⊢ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅) |
12 | acni2 10041 | . . . . 5 ⊢ ((𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) | |
13 | 6, 11, 12 | sylancl 587 | . . . 4 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) |
14 | simpr 486 | . . . . . 6 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) | |
15 | 7 | imbi1i 350 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥)) |
16 | impexp 452 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
17 | 15, 16 | bitri 275 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
18 | 17 | ralbii2 3090 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
19 | 14, 18 | sylib 217 | . . . . 5 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
20 | 19 | eximi 1838 | . . . 4 ⊢ (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
21 | 13, 20 | syl 17 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
22 | dfac8a 10025 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝑋 ∈ dom card)) | |
23 | 21, 22 | mpd 15 | . 2 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ dom card) |
24 | pwexg 5377 | . . 3 ⊢ (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V) | |
25 | numacn 10044 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋)) | |
26 | 24, 25 | mpcom 38 | . 2 ⊢ (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋) |
27 | 23, 26 | impbii 208 | 1 ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 Vcvv 3475 ∖ cdif 3946 ⊆ wss 3949 ∅c0 4323 𝒫 cpw 4603 {csn 4629 class class class wbr 5149 dom cdm 5677 ⟶wf 6540 ‘cfv 6544 ≼ cdom 8937 cardccrd 9930 AC wacn 9933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-fin 8943 df-card 9934 df-acn 9937 |
This theorem is referenced by: dfac13 10137 |
Copyright terms: Public domain | W3C validator |