MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgacs Structured version   Visualization version   GIF version

Theorem sdrgacs 19574
Description: Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypothesis
Ref Expression
subrgacs.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sdrgacs (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))

Proof of Theorem sdrgacs
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . . . 8 (invr𝑅) = (invr𝑅)
2 eqid 2821 . . . . . . . 8 (0g𝑅) = (0g𝑅)
31, 2issdrg2 19571 . . . . . . 7 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
4 3anass 1091 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
53, 4bitri 277 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
65baib 538 . . . . 5 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
7 subrgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
87subrgss 19530 . . . . . . . . 9 (𝑠 ∈ (SubRing‘𝑅) → 𝑠𝐵)
9 velpw 4546 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
108, 9sylibr 236 . . . . . . . 8 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ 𝒫 𝐵)
1110adantl 484 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → 𝑠 ∈ 𝒫 𝐵)
12 iftrue 4472 . . . . . . . . . . . . . 14 (𝑥 = (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = 𝑥)
1312eleq1d 2897 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦𝑥𝑦))
1413biimprd 250 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦))
15 eldifsni 4715 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
1615necon2bi 3046 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → ¬ 𝑥 ∈ (𝑦 ∖ {(0g𝑅)}))
1716pm2.21d 121 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
1814, 172thd 267 . . . . . . . . . . 11 (𝑥 = (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
19 eldifsn 4712 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) ↔ (𝑥𝑦𝑥 ≠ (0g𝑅)))
2019rbaibr 540 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (𝑥𝑦𝑥 ∈ (𝑦 ∖ {(0g𝑅)})))
21 ifnefalse 4478 . . . . . . . . . . . . 13 (𝑥 ≠ (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = ((invr𝑅)‘𝑥))
2221eleq1d 2897 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑦))
2320, 22imbi12d 347 . . . . . . . . . . 11 (𝑥 ≠ (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
2418, 23pm2.61ine 3100 . . . . . . . . . 10 ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
2524ralbii2 3163 . . . . . . . . 9 (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦)
26 difeq1 4091 . . . . . . . . . 10 (𝑦 = 𝑠 → (𝑦 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝑅)}))
27 eleq2w 2896 . . . . . . . . . 10 (𝑦 = 𝑠 → (((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑠))
2826, 27raleqbidv 3401 . . . . . . . . 9 (𝑦 = 𝑠 → (∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
2925, 28syl5bb 285 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3029elrab3 3680 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3111, 30syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3231pm5.32da 581 . . . . 5 (𝑅 ∈ DivRing → ((𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
336, 32bitr4d 284 . . . 4 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
34 elin 4168 . . . 4 (𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
3533, 34syl6bbr 291 . . 3 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ 𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
3635eqrdv 2819 . 2 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
377fvexi 6678 . . . 4 𝐵 ∈ V
38 mreacs 16923 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
3937, 38mp1i 13 . . 3 (𝑅 ∈ DivRing → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
40 drngring 19503 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
417subrgacs 19573 . . . 4 (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵))
4240, 41syl 17 . . 3 (𝑅 ∈ DivRing → (SubRing‘𝑅) ∈ (ACS‘𝐵))
43 simplr 767 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 = (0g𝑅)) → 𝑥𝐵)
44 df-ne 3017 . . . . . . 7 (𝑥 ≠ (0g𝑅) ↔ ¬ 𝑥 = (0g𝑅))
457, 2, 1drnginvrcl 19513 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
46453expa 1114 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4744, 46sylan2br 596 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ ¬ 𝑥 = (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4843, 47ifclda 4500 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑥𝐵) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
4948ralrimiva 3182 . . . 4 (𝑅 ∈ DivRing → ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
50 acsfn1 16926 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
5137, 49, 50sylancr 589 . . 3 (𝑅 ∈ DivRing → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
52 mreincl 16864 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubRing‘𝑅) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5339, 42, 51, 52syl3anc 1367 . 2 (𝑅 ∈ DivRing → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5436, 53eqeltrd 2913 1 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3494  cdif 3932  cin 3934  wss 3935  ifcif 4466  𝒫 cpw 4538  {csn 4560  cfv 6349  Basecbs 16477  0gc0g 16707  Moorecmre 16847  ACScacs 16850  Ringcrg 19291  invrcinvr 19415  DivRingcdr 19496  SubRingcsubrg 19525  SubDRingcsdrg 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-subg 18270  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-drng 19498  df-subrg 19527  df-sdrg 19567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator