MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgacs Structured version   Visualization version   GIF version

Theorem sdrgacs 20718
Description: Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypothesis
Ref Expression
subrgacs.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sdrgacs (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))

Proof of Theorem sdrgacs
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . 8 (invr𝑅) = (invr𝑅)
2 eqid 2733 . . . . . . . 8 (0g𝑅) = (0g𝑅)
31, 2issdrg2 20712 . . . . . . 7 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
4 3anass 1094 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
53, 4bitri 275 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
65baib 535 . . . . 5 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
7 subrgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
87subrgss 20489 . . . . . . . . 9 (𝑠 ∈ (SubRing‘𝑅) → 𝑠𝐵)
9 velpw 4554 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
108, 9sylibr 234 . . . . . . . 8 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ 𝒫 𝐵)
1110adantl 481 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → 𝑠 ∈ 𝒫 𝐵)
12 iftrue 4480 . . . . . . . . . . . . . 14 (𝑥 = (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = 𝑥)
1312eleq1d 2818 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦𝑥𝑦))
1413biimprd 248 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦))
15 eldifsni 4741 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
1615necon2bi 2959 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → ¬ 𝑥 ∈ (𝑦 ∖ {(0g𝑅)}))
1716pm2.21d 121 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
1814, 172thd 265 . . . . . . . . . . 11 (𝑥 = (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
19 eldifsn 4737 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) ↔ (𝑥𝑦𝑥 ≠ (0g𝑅)))
2019rbaibr 537 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (𝑥𝑦𝑥 ∈ (𝑦 ∖ {(0g𝑅)})))
21 ifnefalse 4486 . . . . . . . . . . . . 13 (𝑥 ≠ (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = ((invr𝑅)‘𝑥))
2221eleq1d 2818 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑦))
2320, 22imbi12d 344 . . . . . . . . . . 11 (𝑥 ≠ (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
2418, 23pm2.61ine 3012 . . . . . . . . . 10 ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
2524ralbii2 3075 . . . . . . . . 9 (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦)
26 difeq1 4068 . . . . . . . . . 10 (𝑦 = 𝑠 → (𝑦 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝑅)}))
27 eleq2w 2817 . . . . . . . . . 10 (𝑦 = 𝑠 → (((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑠))
2826, 27raleqbidv 3313 . . . . . . . . 9 (𝑦 = 𝑠 → (∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
2925, 28bitrid 283 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3029elrab3 3644 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3111, 30syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3231pm5.32da 579 . . . . 5 (𝑅 ∈ DivRing → ((𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
336, 32bitr4d 282 . . . 4 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
34 elin 3914 . . . 4 (𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
3533, 34bitr4di 289 . . 3 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ 𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
3635eqrdv 2731 . 2 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
377fvexi 6842 . . . 4 𝐵 ∈ V
38 mreacs 17566 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
3937, 38mp1i 13 . . 3 (𝑅 ∈ DivRing → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
40 drngring 20653 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
417subrgacs 20717 . . . 4 (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵))
4240, 41syl 17 . . 3 (𝑅 ∈ DivRing → (SubRing‘𝑅) ∈ (ACS‘𝐵))
43 simplr 768 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 = (0g𝑅)) → 𝑥𝐵)
44 df-ne 2930 . . . . . . 7 (𝑥 ≠ (0g𝑅) ↔ ¬ 𝑥 = (0g𝑅))
457, 2, 1drnginvrcl 20670 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
46453expa 1118 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4744, 46sylan2br 595 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ ¬ 𝑥 = (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4843, 47ifclda 4510 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑥𝐵) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
4948ralrimiva 3125 . . . 4 (𝑅 ∈ DivRing → ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
50 acsfn1 17569 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
5137, 49, 50sylancr 587 . . 3 (𝑅 ∈ DivRing → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
52 mreincl 17503 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubRing‘𝑅) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5339, 42, 51, 52syl3anc 1373 . 2 (𝑅 ∈ DivRing → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5436, 53eqeltrd 2833 1 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  Vcvv 3437  cdif 3895  cin 3897  wss 3898  ifcif 4474  𝒫 cpw 4549  {csn 4575  cfv 6486  Basecbs 17122  0gc0g 17345  Moorecmre 17486  ACScacs 17489  Ringcrg 20153  invrcinvr 20307  SubRingcsubrg 20486  DivRingcdr 20646  SubDRingcsdrg 20703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-subrng 20463  df-subrg 20487  df-drng 20648  df-sdrg 20704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator