MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgacs Structured version   Visualization version   GIF version

Theorem sdrgacs 20710
Description: Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypothesis
Ref Expression
subrgacs.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sdrgacs (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))

Proof of Theorem sdrgacs
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 (invr𝑅) = (invr𝑅)
2 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
31, 2issdrg2 20704 . . . . . . 7 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
4 3anass 1094 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
53, 4bitri 275 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
65baib 535 . . . . 5 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
7 subrgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
87subrgss 20481 . . . . . . . . 9 (𝑠 ∈ (SubRing‘𝑅) → 𝑠𝐵)
9 velpw 4568 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
108, 9sylibr 234 . . . . . . . 8 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ 𝒫 𝐵)
1110adantl 481 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → 𝑠 ∈ 𝒫 𝐵)
12 iftrue 4494 . . . . . . . . . . . . . 14 (𝑥 = (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = 𝑥)
1312eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦𝑥𝑦))
1413biimprd 248 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦))
15 eldifsni 4754 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
1615necon2bi 2955 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → ¬ 𝑥 ∈ (𝑦 ∖ {(0g𝑅)}))
1716pm2.21d 121 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
1814, 172thd 265 . . . . . . . . . . 11 (𝑥 = (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
19 eldifsn 4750 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) ↔ (𝑥𝑦𝑥 ≠ (0g𝑅)))
2019rbaibr 537 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (𝑥𝑦𝑥 ∈ (𝑦 ∖ {(0g𝑅)})))
21 ifnefalse 4500 . . . . . . . . . . . . 13 (𝑥 ≠ (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = ((invr𝑅)‘𝑥))
2221eleq1d 2813 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑦))
2320, 22imbi12d 344 . . . . . . . . . . 11 (𝑥 ≠ (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
2418, 23pm2.61ine 3008 . . . . . . . . . 10 ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
2524ralbii2 3071 . . . . . . . . 9 (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦)
26 difeq1 4082 . . . . . . . . . 10 (𝑦 = 𝑠 → (𝑦 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝑅)}))
27 eleq2w 2812 . . . . . . . . . 10 (𝑦 = 𝑠 → (((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑠))
2826, 27raleqbidv 3319 . . . . . . . . 9 (𝑦 = 𝑠 → (∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
2925, 28bitrid 283 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3029elrab3 3660 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3111, 30syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3231pm5.32da 579 . . . . 5 (𝑅 ∈ DivRing → ((𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
336, 32bitr4d 282 . . . 4 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
34 elin 3930 . . . 4 (𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
3533, 34bitr4di 289 . . 3 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ 𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
3635eqrdv 2727 . 2 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
377fvexi 6872 . . . 4 𝐵 ∈ V
38 mreacs 17619 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
3937, 38mp1i 13 . . 3 (𝑅 ∈ DivRing → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
40 drngring 20645 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
417subrgacs 20709 . . . 4 (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵))
4240, 41syl 17 . . 3 (𝑅 ∈ DivRing → (SubRing‘𝑅) ∈ (ACS‘𝐵))
43 simplr 768 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 = (0g𝑅)) → 𝑥𝐵)
44 df-ne 2926 . . . . . . 7 (𝑥 ≠ (0g𝑅) ↔ ¬ 𝑥 = (0g𝑅))
457, 2, 1drnginvrcl 20662 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
46453expa 1118 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4744, 46sylan2br 595 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ ¬ 𝑥 = (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4843, 47ifclda 4524 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑥𝐵) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
4948ralrimiva 3125 . . . 4 (𝑅 ∈ DivRing → ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
50 acsfn1 17622 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
5137, 49, 50sylancr 587 . . 3 (𝑅 ∈ DivRing → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
52 mreincl 17560 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubRing‘𝑅) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5339, 42, 51, 52syl3anc 1373 . 2 (𝑅 ∈ DivRing → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5436, 53eqeltrd 2828 1 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  ifcif 4488  𝒫 cpw 4563  {csn 4589  cfv 6511  Basecbs 17179  0gc0g 17402  Moorecmre 17543  ACScacs 17546  Ringcrg 20142  invrcinvr 20296  SubRingcsubrg 20478  DivRingcdr 20638  SubDRingcsdrg 20695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-subrng 20455  df-subrg 20479  df-drng 20640  df-sdrg 20696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator