MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgacs Structured version   Visualization version   GIF version

Theorem sdrgacs 20678
Description: Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypothesis
Ref Expression
subrgacs.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sdrgacs (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))

Proof of Theorem sdrgacs
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . . . . . . 8 (invr𝑅) = (invr𝑅)
2 eqid 2727 . . . . . . . 8 (0g𝑅) = (0g𝑅)
31, 2issdrg2 20672 . . . . . . 7 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
4 3anass 1093 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
53, 4bitri 275 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
65baib 535 . . . . 5 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
7 subrgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
87subrgss 20500 . . . . . . . . 9 (𝑠 ∈ (SubRing‘𝑅) → 𝑠𝐵)
9 velpw 4603 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
108, 9sylibr 233 . . . . . . . 8 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ 𝒫 𝐵)
1110adantl 481 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → 𝑠 ∈ 𝒫 𝐵)
12 iftrue 4530 . . . . . . . . . . . . . 14 (𝑥 = (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = 𝑥)
1312eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦𝑥𝑦))
1413biimprd 247 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦))
15 eldifsni 4789 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
1615necon2bi 2966 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → ¬ 𝑥 ∈ (𝑦 ∖ {(0g𝑅)}))
1716pm2.21d 121 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
1814, 172thd 265 . . . . . . . . . . 11 (𝑥 = (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
19 eldifsn 4786 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) ↔ (𝑥𝑦𝑥 ≠ (0g𝑅)))
2019rbaibr 537 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (𝑥𝑦𝑥 ∈ (𝑦 ∖ {(0g𝑅)})))
21 ifnefalse 4536 . . . . . . . . . . . . 13 (𝑥 ≠ (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = ((invr𝑅)‘𝑥))
2221eleq1d 2813 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑦))
2320, 22imbi12d 344 . . . . . . . . . . 11 (𝑥 ≠ (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
2418, 23pm2.61ine 3020 . . . . . . . . . 10 ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
2524ralbii2 3084 . . . . . . . . 9 (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦)
26 difeq1 4111 . . . . . . . . . 10 (𝑦 = 𝑠 → (𝑦 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝑅)}))
27 eleq2w 2812 . . . . . . . . . 10 (𝑦 = 𝑠 → (((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑠))
2826, 27raleqbidv 3337 . . . . . . . . 9 (𝑦 = 𝑠 → (∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
2925, 28bitrid 283 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3029elrab3 3681 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3111, 30syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3231pm5.32da 578 . . . . 5 (𝑅 ∈ DivRing → ((𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
336, 32bitr4d 282 . . . 4 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
34 elin 3960 . . . 4 (𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
3533, 34bitr4di 289 . . 3 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ 𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
3635eqrdv 2725 . 2 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
377fvexi 6905 . . . 4 𝐵 ∈ V
38 mreacs 17629 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
3937, 38mp1i 13 . . 3 (𝑅 ∈ DivRing → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
40 drngring 20620 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
417subrgacs 20677 . . . 4 (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵))
4240, 41syl 17 . . 3 (𝑅 ∈ DivRing → (SubRing‘𝑅) ∈ (ACS‘𝐵))
43 simplr 768 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 = (0g𝑅)) → 𝑥𝐵)
44 df-ne 2936 . . . . . . 7 (𝑥 ≠ (0g𝑅) ↔ ¬ 𝑥 = (0g𝑅))
457, 2, 1drnginvrcl 20635 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
46453expa 1116 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4744, 46sylan2br 594 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ ¬ 𝑥 = (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4843, 47ifclda 4559 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑥𝐵) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
4948ralrimiva 3141 . . . 4 (𝑅 ∈ DivRing → ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
50 acsfn1 17632 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
5137, 49, 50sylancr 586 . . 3 (𝑅 ∈ DivRing → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
52 mreincl 17570 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubRing‘𝑅) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5339, 42, 51, 52syl3anc 1369 . 2 (𝑅 ∈ DivRing → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5436, 53eqeltrd 2828 1 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  {crab 3427  Vcvv 3469  cdif 3941  cin 3943  wss 3944  ifcif 4524  𝒫 cpw 4598  {csn 4624  cfv 6542  Basecbs 17171  0gc0g 17412  Moorecmre 17553  ACScacs 17556  Ringcrg 20164  invrcinvr 20315  SubRingcsubrg 20495  DivRingcdr 20613  SubDRingcsdrg 20663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-0g 17414  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-grp 18884  df-minusg 18885  df-subg 19069  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-subrng 20472  df-subrg 20497  df-drng 20615  df-sdrg 20664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator