MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgacs Structured version   Visualization version   GIF version

Theorem sdrgacs 20717
Description: Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypothesis
Ref Expression
subrgacs.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sdrgacs (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))

Proof of Theorem sdrgacs
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 (invr𝑅) = (invr𝑅)
2 eqid 2730 . . . . . . . 8 (0g𝑅) = (0g𝑅)
31, 2issdrg2 20711 . . . . . . 7 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
4 3anass 1094 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
53, 4bitri 275 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
65baib 535 . . . . 5 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
7 subrgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
87subrgss 20488 . . . . . . . . 9 (𝑠 ∈ (SubRing‘𝑅) → 𝑠𝐵)
9 velpw 4571 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
108, 9sylibr 234 . . . . . . . 8 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ 𝒫 𝐵)
1110adantl 481 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → 𝑠 ∈ 𝒫 𝐵)
12 iftrue 4497 . . . . . . . . . . . . . 14 (𝑥 = (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = 𝑥)
1312eleq1d 2814 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦𝑥𝑦))
1413biimprd 248 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦))
15 eldifsni 4757 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
1615necon2bi 2956 . . . . . . . . . . . . 13 (𝑥 = (0g𝑅) → ¬ 𝑥 ∈ (𝑦 ∖ {(0g𝑅)}))
1716pm2.21d 121 . . . . . . . . . . . 12 (𝑥 = (0g𝑅) → (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
1814, 172thd 265 . . . . . . . . . . 11 (𝑥 = (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
19 eldifsn 4753 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) ↔ (𝑥𝑦𝑥 ≠ (0g𝑅)))
2019rbaibr 537 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (𝑥𝑦𝑥 ∈ (𝑦 ∖ {(0g𝑅)})))
21 ifnefalse 4503 . . . . . . . . . . . . 13 (𝑥 ≠ (0g𝑅) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) = ((invr𝑅)‘𝑥))
2221eleq1d 2814 . . . . . . . . . . . 12 (𝑥 ≠ (0g𝑅) → (if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑦))
2320, 22imbi12d 344 . . . . . . . . . . 11 (𝑥 ≠ (0g𝑅) → ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦)))
2418, 23pm2.61ine 3009 . . . . . . . . . 10 ((𝑥𝑦 → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦) ↔ (𝑥 ∈ (𝑦 ∖ {(0g𝑅)}) → ((invr𝑅)‘𝑥) ∈ 𝑦))
2524ralbii2 3072 . . . . . . . . 9 (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦)
26 difeq1 4085 . . . . . . . . . 10 (𝑦 = 𝑠 → (𝑦 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝑅)}))
27 eleq2w 2813 . . . . . . . . . 10 (𝑦 = 𝑠 → (((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ((invr𝑅)‘𝑥) ∈ 𝑠))
2826, 27raleqbidv 3321 . . . . . . . . 9 (𝑦 = 𝑠 → (∀𝑥 ∈ (𝑦 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
2925, 28bitrid 283 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3029elrab3 3663 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3111, 30syl 17 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ↔ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠))
3231pm5.32da 579 . . . . 5 (𝑅 ∈ DivRing → ((𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑠 ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ 𝑠)))
336, 32bitr4d 282 . . . 4 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
34 elin 3933 . . . 4 (𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ↔ (𝑠 ∈ (SubRing‘𝑅) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
3533, 34bitr4di 289 . . 3 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) ↔ 𝑠 ∈ ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦})))
3635eqrdv 2728 . 2 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}))
377fvexi 6875 . . . 4 𝐵 ∈ V
38 mreacs 17626 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
3937, 38mp1i 13 . . 3 (𝑅 ∈ DivRing → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
40 drngring 20652 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
417subrgacs 20716 . . . 4 (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵))
4240, 41syl 17 . . 3 (𝑅 ∈ DivRing → (SubRing‘𝑅) ∈ (ACS‘𝐵))
43 simplr 768 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 = (0g𝑅)) → 𝑥𝐵)
44 df-ne 2927 . . . . . . 7 (𝑥 ≠ (0g𝑅) ↔ ¬ 𝑥 = (0g𝑅))
457, 2, 1drnginvrcl 20669 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
46453expa 1118 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ 𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4744, 46sylan2br 595 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑥𝐵) ∧ ¬ 𝑥 = (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
4843, 47ifclda 4527 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑥𝐵) → if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
4948ralrimiva 3126 . . . 4 (𝑅 ∈ DivRing → ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵)
50 acsfn1 17629 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
5137, 49, 50sylancr 587 . . 3 (𝑅 ∈ DivRing → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵))
52 mreincl 17567 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubRing‘𝑅) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5339, 42, 51, 52syl3anc 1373 . 2 (𝑅 ∈ DivRing → ((SubRing‘𝑅) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 if(𝑥 = (0g𝑅), 𝑥, ((invr𝑅)‘𝑥)) ∈ 𝑦}) ∈ (ACS‘𝐵))
5436, 53eqeltrd 2829 1 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  ifcif 4491  𝒫 cpw 4566  {csn 4592  cfv 6514  Basecbs 17186  0gc0g 17409  Moorecmre 17550  ACScacs 17553  Ringcrg 20149  invrcinvr 20303  SubRingcsubrg 20485  DivRingcdr 20645  SubDRingcsdrg 20702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-subrng 20462  df-subrg 20486  df-drng 20647  df-sdrg 20703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator