MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm2 Structured version   Visualization version   GIF version

Theorem isnrm2 22109
Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
Distinct variable group:   𝑐,𝑑,𝑜,𝐽

Proof of Theorem isnrm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nrmtop 22087 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 nrmsep2 22107 . . . . . 6 ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐𝑑) = ∅)) → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))
323exp2 1355 . . . . 5 (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))))
43impd 414 . . . 4 (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
54ralrimivv 3102 . . 3 (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))
61, 5jca 515 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
7 simpl 486 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → 𝐽 ∈ Top)
8 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
98opncld 21784 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
109adantr 484 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
11 ineq2 4097 . . . . . . . . . . . 12 (𝑑 = ( 𝐽𝑥) → (𝑐𝑑) = (𝑐 ∩ ( 𝐽𝑥)))
1211eqeq1d 2740 . . . . . . . . . . 11 (𝑑 = ( 𝐽𝑥) → ((𝑐𝑑) = ∅ ↔ (𝑐 ∩ ( 𝐽𝑥)) = ∅))
13 ineq2 4097 . . . . . . . . . . . . . 14 (𝑑 = ( 𝐽𝑥) → (((cls‘𝐽)‘𝑜) ∩ 𝑑) = (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)))
1413eqeq1d 2740 . . . . . . . . . . . . 13 (𝑑 = ( 𝐽𝑥) → ((((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅ ↔ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))
1514anbi2d 632 . . . . . . . . . . . 12 (𝑑 = ( 𝐽𝑥) → ((𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅) ↔ (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)))
1615rexbidv 3207 . . . . . . . . . . 11 (𝑑 = ( 𝐽𝑥) → (∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅) ↔ ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)))
1712, 16imbi12d 348 . . . . . . . . . 10 (𝑑 = ( 𝐽𝑥) → (((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) ↔ ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
1817rspcv 3521 . . . . . . . . 9 (( 𝐽𝑥) ∈ (Clsd‘𝐽) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
1910, 18syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
20 inssdif0 4258 . . . . . . . . . 10 ((𝑐 𝐽) ⊆ 𝑥 ↔ (𝑐 ∩ ( 𝐽𝑥)) = ∅)
218cldss 21780 . . . . . . . . . . . . 13 (𝑐 ∈ (Clsd‘𝐽) → 𝑐 𝐽)
2221adantl 485 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → 𝑐 𝐽)
23 df-ss 3860 . . . . . . . . . . . 12 (𝑐 𝐽 ↔ (𝑐 𝐽) = 𝑐)
2422, 23sylib 221 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝑐 𝐽) = 𝑐)
2524sseq1d 3908 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((𝑐 𝐽) ⊆ 𝑥𝑐𝑥))
2620, 25bitr3id 288 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ ↔ 𝑐𝑥))
27 inssdif0 4258 . . . . . . . . . . . 12 ((((cls‘𝐽)‘𝑜) ∩ 𝐽) ⊆ 𝑥 ↔ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)
28 simpll 767 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
29 elssuni 4828 . . . . . . . . . . . . . . 15 (𝑜𝐽𝑜 𝐽)
308clsss3 21810 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑜 𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝐽)
3128, 29, 30syl2an 599 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝐽)
32 df-ss 3860 . . . . . . . . . . . . . 14 (((cls‘𝐽)‘𝑜) ⊆ 𝐽 ↔ (((cls‘𝐽)‘𝑜) ∩ 𝐽) = ((cls‘𝐽)‘𝑜))
3331, 32sylib 221 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → (((cls‘𝐽)‘𝑜) ∩ 𝐽) = ((cls‘𝐽)‘𝑜))
3433sseq1d 3908 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((((cls‘𝐽)‘𝑜) ∩ 𝐽) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
3527, 34bitr3id 288 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅ ↔ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
3635anbi2d 632 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅) ↔ (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
3736rexbidva 3206 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅) ↔ ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
3826, 37imbi12d 348 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)) ↔ (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
3919, 38sylibd 242 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4039ralimdva 3091 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)(𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
41 elin 3859 . . . . . . . . . 10 (𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ∈ 𝒫 𝑥))
42 velpw 4493 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 𝑥𝑐𝑥)
4342anbi2i 626 . . . . . . . . . 10 ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ∈ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥))
4441, 43bitri 278 . . . . . . . . 9 (𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥))
4544imbi1i 353 . . . . . . . 8 ((𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
46 impexp 454 . . . . . . . 8 (((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ (𝑐 ∈ (Clsd‘𝐽) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4745, 46bitri 278 . . . . . . 7 ((𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ (𝑐 ∈ (Clsd‘𝐽) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4847ralbii2 3078 . . . . . 6 (∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥) ↔ ∀𝑐 ∈ (Clsd‘𝐽)(𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
4940, 48syl6ibr 255 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
5049ralrimdva 3101 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
5150imp 410 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
52 isnrm 22086 . . 3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
537, 51, 52sylanbrc 586 . 2 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → 𝐽 ∈ Nrm)
546, 53impbii 212 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053  wrex 3054  cdif 3840  cin 3842  wss 3843  c0 4211  𝒫 cpw 4488   cuni 4796  cfv 6339  Topctop 21644  Clsdccld 21767  clsccl 21769  Nrmcnrm 22061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-top 21645  df-cld 21770  df-cls 21772  df-nrm 22068
This theorem is referenced by:  isnrm3  22110
  Copyright terms: Public domain W3C validator