Step | Hyp | Ref
| Expression |
1 | | nrmtop 22395 |
. . 3
⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
2 | | nrmsep2 22415 |
. . . . . 6
⊢ ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐 ∩ 𝑑) = ∅)) → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) |
3 | 2 | 3exp2 1352 |
. . . . 5
⊢ (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))) |
4 | 3 | impd 410 |
. . . 4
⊢ (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))) |
5 | 4 | ralrimivv 3113 |
. . 3
⊢ (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) |
6 | 1, 5 | jca 511 |
. 2
⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))) |
7 | | simpl 482 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → 𝐽 ∈ Top) |
8 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
9 | 8 | opncld 22092 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
10 | 9 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∪
𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
11 | | ineq2 4137 |
. . . . . . . . . . . 12
⊢ (𝑑 = (∪
𝐽 ∖ 𝑥) → (𝑐 ∩ 𝑑) = (𝑐 ∩ (∪ 𝐽 ∖ 𝑥))) |
12 | 11 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑑 = (∪
𝐽 ∖ 𝑥) → ((𝑐 ∩ 𝑑) = ∅ ↔ (𝑐 ∩ (∪ 𝐽 ∖ 𝑥)) = ∅)) |
13 | | ineq2 4137 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = (∪
𝐽 ∖ 𝑥) → (((cls‘𝐽)‘𝑜) ∩ 𝑑) = (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥))) |
14 | 13 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (∪
𝐽 ∖ 𝑥) → ((((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅ ↔ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅)) |
15 | 14 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑑 = (∪
𝐽 ∖ 𝑥) → ((𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅) ↔ (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅))) |
16 | 15 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑑 = (∪
𝐽 ∖ 𝑥) → (∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅) ↔ ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅))) |
17 | 12, 16 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑑 = (∪
𝐽 ∖ 𝑥) → (((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) ↔ ((𝑐 ∩ (∪ 𝐽 ∖ 𝑥)) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅)))) |
18 | 17 | rspcv 3547 |
. . . . . . . . 9
⊢ ((∪ 𝐽
∖ 𝑥) ∈
(Clsd‘𝐽) →
(∀𝑑 ∈
(Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ((𝑐 ∩ (∪ 𝐽 ∖ 𝑥)) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅)))) |
19 | 10, 18 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ((𝑐 ∩ (∪ 𝐽 ∖ 𝑥)) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅)))) |
20 | | inssdif0 4300 |
. . . . . . . . . 10
⊢ ((𝑐 ∩ ∪ 𝐽)
⊆ 𝑥 ↔ (𝑐 ∩ (∪ 𝐽
∖ 𝑥)) =
∅) |
21 | 8 | cldss 22088 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ (Clsd‘𝐽) → 𝑐 ⊆ ∪ 𝐽) |
22 | 21 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → 𝑐 ⊆ ∪ 𝐽) |
23 | | df-ss 3900 |
. . . . . . . . . . . 12
⊢ (𝑐 ⊆ ∪ 𝐽
↔ (𝑐 ∩ ∪ 𝐽) =
𝑐) |
24 | 22, 23 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝑐 ∩ ∪ 𝐽) = 𝑐) |
25 | 24 | sseq1d 3948 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((𝑐 ∩ ∪ 𝐽) ⊆ 𝑥 ↔ 𝑐 ⊆ 𝑥)) |
26 | 20, 25 | bitr3id 284 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((𝑐 ∩ (∪ 𝐽 ∖ 𝑥)) = ∅ ↔ 𝑐 ⊆ 𝑥)) |
27 | | inssdif0 4300 |
. . . . . . . . . . . 12
⊢
((((cls‘𝐽)‘𝑜) ∩ ∪ 𝐽) ⊆ 𝑥 ↔ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅) |
28 | | simpll 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
29 | | elssuni 4868 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽) |
30 | 8 | clsss3 22118 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑜 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑜) ⊆ ∪ 𝐽) |
31 | 28, 29, 30 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜 ∈ 𝐽) → ((cls‘𝐽)‘𝑜) ⊆ ∪ 𝐽) |
32 | | df-ss 3900 |
. . . . . . . . . . . . . 14
⊢
(((cls‘𝐽)‘𝑜) ⊆ ∪ 𝐽 ↔ (((cls‘𝐽)‘𝑜) ∩ ∪ 𝐽) = ((cls‘𝐽)‘𝑜)) |
33 | 31, 32 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜 ∈ 𝐽) → (((cls‘𝐽)‘𝑜) ∩ ∪ 𝐽) = ((cls‘𝐽)‘𝑜)) |
34 | 33 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜 ∈ 𝐽) → ((((cls‘𝐽)‘𝑜) ∩ ∪ 𝐽) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) |
35 | 27, 34 | bitr3id 284 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜 ∈ 𝐽) → ((((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅ ↔ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) |
36 | 35 | anbi2d 628 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜 ∈ 𝐽) → ((𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅) ↔ (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))) |
37 | 36 | rexbidva 3224 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅) ↔ ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))) |
38 | 26, 37 | imbi12d 344 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (((𝑐 ∩ (∪ 𝐽 ∖ 𝑥)) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ (∪ 𝐽 ∖ 𝑥)) = ∅)) ↔ (𝑐 ⊆ 𝑥 → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))) |
39 | 19, 38 | sylibd 238 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → (𝑐 ⊆ 𝑥 → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))) |
40 | 39 | ralimdva 3102 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)(𝑐 ⊆ 𝑥 → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))) |
41 | | elin 3899 |
. . . . . . . . . 10
⊢ (𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ∈ 𝒫 𝑥)) |
42 | | velpw 4535 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 𝑥 ↔ 𝑐 ⊆ 𝑥) |
43 | 42 | anbi2i 622 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ∈ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ⊆ 𝑥)) |
44 | 41, 43 | bitri 274 |
. . . . . . . . 9
⊢ (𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ⊆ 𝑥)) |
45 | 44 | imbi1i 349 |
. . . . . . . 8
⊢ ((𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ⊆ 𝑥) → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))) |
46 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ⊆ 𝑥) → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ (𝑐 ∈ (Clsd‘𝐽) → (𝑐 ⊆ 𝑥 → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))) |
47 | 45, 46 | bitri 274 |
. . . . . . 7
⊢ ((𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ (𝑐 ∈ (Clsd‘𝐽) → (𝑐 ⊆ 𝑥 → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))) |
48 | 47 | ralbii2 3088 |
. . . . . 6
⊢
(∀𝑐 ∈
((Clsd‘𝐽) ∩
𝒫 𝑥)∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥) ↔ ∀𝑐 ∈ (Clsd‘𝐽)(𝑐 ⊆ 𝑥 → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))) |
49 | 40, 48 | syl6ibr 251 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))) |
50 | 49 | ralrimdva 3112 |
. . . 4
⊢ (𝐽 ∈ Top →
(∀𝑐 ∈
(Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑥 ∈ 𝐽 ∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))) |
51 | 50 | imp 406 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → ∀𝑥 ∈ 𝐽 ∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) |
52 | | isnrm 22394 |
. . 3
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))) |
53 | 7, 51, 52 | sylanbrc 582 |
. 2
⊢ ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → 𝐽 ∈ Nrm) |
54 | 6, 53 | impbii 208 |
1
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑜 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))) |