MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn2 Structured version   Visualization version   GIF version

Theorem isdomn2 21263
Description: A ring is a domain iff all nonzero elements are nonzero-divisors. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn2.b 𝐵 = (Base‘𝑅)
isdomn2.t 𝐸 = (RLReg‘𝑅)
isdomn2.z 0 = (0g𝑅)
Assertion
Ref Expression
isdomn2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))

Proof of Theorem isdomn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn2.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2725 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn2.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 21258 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 dfss3 3965 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸)
6 isdomn2.t . . . . . . . . 9 𝐸 = (RLReg‘𝑅)
76, 1, 2, 3isrrg 21252 . . . . . . . 8 (𝑥𝐸 ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
87baib 534 . . . . . . 7 (𝑥𝐵 → (𝑥𝐸 ↔ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
98imbi2d 339 . . . . . 6 (𝑥𝐵 → ((𝑥0𝑥𝐸) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 ))))
109ralbiia 3080 . . . . 5 (∀𝑥𝐵 (𝑥0𝑥𝐸) ↔ ∀𝑥𝐵 (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
11 eldifsn 4792 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
1211imbi1i 348 . . . . . . 7 ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐸) ↔ ((𝑥𝐵𝑥0 ) → 𝑥𝐸))
13 impexp 449 . . . . . . 7 (((𝑥𝐵𝑥0 ) → 𝑥𝐸) ↔ (𝑥𝐵 → (𝑥0𝑥𝐸)))
1412, 13bitri 274 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐸) ↔ (𝑥𝐵 → (𝑥0𝑥𝐸)))
1514ralbii2 3078 . . . . 5 (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸 ↔ ∀𝑥𝐵 (𝑥0𝑥𝐸))
16 con34b 315 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
17 impexp 449 . . . . . . . . . 10 (((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 )))
18 ioran 981 . . . . . . . . . . 11 (¬ (𝑥 = 0𝑦 = 0 ) ↔ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ))
1918imbi1i 348 . . . . . . . . . 10 ((¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ ((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
20 df-ne 2930 . . . . . . . . . . 11 (𝑥0 ↔ ¬ 𝑥 = 0 )
21 con34b 315 . . . . . . . . . . 11 (((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 ) ↔ (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2220, 21imbi12i 349 . . . . . . . . . 10 ((𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 )))
2317, 19, 223bitr4i 302 . . . . . . . . 9 ((¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2416, 23bitri 274 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2524ralbii 3082 . . . . . . 7 (∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑦𝐵 (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
26 r19.21v 3169 . . . . . . 7 (∀𝑦𝐵 (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2725, 26bitri 274 . . . . . 6 (∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2827ralbii 3082 . . . . 5 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵 (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2910, 15, 283bitr4i 302 . . . 4 (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
305, 29bitr2i 275 . . 3 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸)
3130anbi2i 621 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
324, 31bitri 274 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  wral 3050  cdif 3941  wss 3944  {csn 4630  cfv 6549  (class class class)co 7419  Basecbs 17183  .rcmulr 17237  0gc0g 17424  NzRingcnzr 20463  RLRegcrlreg 21243  Domncdomn 21244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-rlreg 21247  df-domn 21248
This theorem is referenced by:  domnrrg  21264  drngdomn  21270  isdomn6  33071  zringidom  33366
  Copyright terms: Public domain W3C validator