MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn2 Structured version   Visualization version   GIF version

Theorem isdomn2 20074
Description: A ring is a domain iff all nonzero elements are nonzero-divisors. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn2.b 𝐵 = (Base‘𝑅)
isdomn2.t 𝐸 = (RLReg‘𝑅)
isdomn2.z 0 = (0g𝑅)
Assertion
Ref Expression
isdomn2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))

Proof of Theorem isdomn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn2.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2823 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn2.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 20069 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 dfss3 3958 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸)
6 isdomn2.t . . . . . . . . 9 𝐸 = (RLReg‘𝑅)
76, 1, 2, 3isrrg 20063 . . . . . . . 8 (𝑥𝐸 ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
87baib 538 . . . . . . 7 (𝑥𝐵 → (𝑥𝐸 ↔ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
98imbi2d 343 . . . . . 6 (𝑥𝐵 → ((𝑥0𝑥𝐸) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 ))))
109ralbiia 3166 . . . . 5 (∀𝑥𝐵 (𝑥0𝑥𝐸) ↔ ∀𝑥𝐵 (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
11 eldifsn 4721 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
1211imbi1i 352 . . . . . . 7 ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐸) ↔ ((𝑥𝐵𝑥0 ) → 𝑥𝐸))
13 impexp 453 . . . . . . 7 (((𝑥𝐵𝑥0 ) → 𝑥𝐸) ↔ (𝑥𝐵 → (𝑥0𝑥𝐸)))
1412, 13bitri 277 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐸) ↔ (𝑥𝐵 → (𝑥0𝑥𝐸)))
1514ralbii2 3165 . . . . 5 (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸 ↔ ∀𝑥𝐵 (𝑥0𝑥𝐸))
16 con34b 318 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
17 impexp 453 . . . . . . . . . 10 (((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 )))
18 ioran 980 . . . . . . . . . . 11 (¬ (𝑥 = 0𝑦 = 0 ) ↔ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ))
1918imbi1i 352 . . . . . . . . . 10 ((¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ ((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
20 df-ne 3019 . . . . . . . . . . 11 (𝑥0 ↔ ¬ 𝑥 = 0 )
21 con34b 318 . . . . . . . . . . 11 (((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 ) ↔ (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2220, 21imbi12i 353 . . . . . . . . . 10 ((𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 )))
2317, 19, 223bitr4i 305 . . . . . . . . 9 ((¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2416, 23bitri 277 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2524ralbii 3167 . . . . . . 7 (∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑦𝐵 (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
26 r19.21v 3177 . . . . . . 7 (∀𝑦𝐵 (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2725, 26bitri 277 . . . . . 6 (∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2827ralbii 3167 . . . . 5 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵 (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2910, 15, 283bitr4i 305 . . . 4 (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
305, 29bitr2i 278 . . 3 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸)
3130anbi2i 624 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
324, 31bitri 277 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wral 3140  cdif 3935  wss 3938  {csn 4569  cfv 6357  (class class class)co 7158  Basecbs 16485  .rcmulr 16568  0gc0g 16715  NzRingcnzr 20032  RLRegcrlreg 20054  Domncdomn 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-rlreg 20058  df-domn 20059
This theorem is referenced by:  domnrrg  20075  drngdomn  20078
  Copyright terms: Public domain W3C validator