![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isdomn2 | Structured version Visualization version GIF version |
Description: A ring is a domain iff all nonzero elements are regular elements. (Contributed by Mario Carneiro, 28-Mar-2015.) (Proof shortened by SN, 21-Jun-2025.) |
Ref | Expression |
---|---|
isdomn2.b | ⊢ 𝐵 = (Base‘𝑅) |
isdomn2.t | ⊢ 𝐸 = (RLReg‘𝑅) |
isdomn2.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isdomn2 | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdomn2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | isdomn2.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | isdomn 20727 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
5 | eldifi 4154 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) | |
6 | isdomn2.t | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
7 | 6, 1, 2, 3 | isrrg 20720 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
8 | 7 | baib 535 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐸 ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → (𝑥 ∈ 𝐸 ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
10 | 9 | ralbiia 3097 | . . . 4 ⊢ (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥 ∈ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) |
11 | dfss3 3997 | . . . 4 ⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥 ∈ 𝐸) | |
12 | isdomn5 20732 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) | |
13 | 10, 11, 12 | 3bitr4ri 304 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸) |
14 | 13 | anbi2i 622 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
15 | 4, 14 | bitri 275 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 NzRingcnzr 20538 RLRegcrlreg 20713 Domncdomn 20714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-rlreg 20716 df-domn 20717 |
This theorem is referenced by: domnrrg 20735 isdomn6 20736 drngdomn 20771 zringidom 33544 |
Copyright terms: Public domain | W3C validator |