MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn2 Structured version   Visualization version   GIF version

Theorem isdomn2 19796
Description: A ring is a domain iff all nonzero elements are nonzero-divisors. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn2.b 𝐵 = (Base‘𝑅)
isdomn2.t 𝐸 = (RLReg‘𝑅)
isdomn2.z 0 = (0g𝑅)
Assertion
Ref Expression
isdomn2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))

Proof of Theorem isdomn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn2.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2778 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn2.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 19791 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 dfss3 3849 . . . 4 ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸)
6 isdomn2.t . . . . . . . . 9 𝐸 = (RLReg‘𝑅)
76, 1, 2, 3isrrg 19785 . . . . . . . 8 (𝑥𝐸 ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
87baib 528 . . . . . . 7 (𝑥𝐵 → (𝑥𝐸 ↔ ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
98imbi2d 333 . . . . . 6 (𝑥𝐵 → ((𝑥0𝑥𝐸) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 ))))
109ralbiia 3114 . . . . 5 (∀𝑥𝐵 (𝑥0𝑥𝐸) ↔ ∀𝑥𝐵 (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
11 eldifsn 4594 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
1211imbi1i 342 . . . . . . 7 ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐸) ↔ ((𝑥𝐵𝑥0 ) → 𝑥𝐸))
13 impexp 443 . . . . . . 7 (((𝑥𝐵𝑥0 ) → 𝑥𝐸) ↔ (𝑥𝐵 → (𝑥0𝑥𝐸)))
1412, 13bitri 267 . . . . . 6 ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐸) ↔ (𝑥𝐵 → (𝑥0𝑥𝐸)))
1514ralbii2 3113 . . . . 5 (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸 ↔ ∀𝑥𝐵 (𝑥0𝑥𝐸))
16 con34b 308 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
17 impexp 443 . . . . . . . . . 10 (((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 )))
18 ioran 966 . . . . . . . . . . 11 (¬ (𝑥 = 0𝑦 = 0 ) ↔ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ))
1918imbi1i 342 . . . . . . . . . 10 ((¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ ((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
20 df-ne 2968 . . . . . . . . . . 11 (𝑥0 ↔ ¬ 𝑥 = 0 )
21 con34b 308 . . . . . . . . . . 11 (((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 ) ↔ (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2220, 21imbi12i 343 . . . . . . . . . 10 ((𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r𝑅)𝑦) = 0 )))
2317, 19, 223bitr4i 295 . . . . . . . . 9 ((¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ) ↔ (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2416, 23bitri 267 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2524ralbii 3115 . . . . . . 7 (∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑦𝐵 (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
26 r19.21v 3125 . . . . . . 7 (∀𝑦𝐵 (𝑥0 → ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2725, 26bitri 267 . . . . . 6 (∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2827ralbii 3115 . . . . 5 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵 (𝑥0 → ∀𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0𝑦 = 0 )))
2910, 15, 283bitr4i 295 . . . 4 (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝐸 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
305, 29bitr2i 268 . . 3 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸)
3130anbi2i 613 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
324, 31bitri 267 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  wne 2967  wral 3088  cdif 3828  wss 3831  {csn 4442  cfv 6190  (class class class)co 6978  Basecbs 16342  .rcmulr 16425  0gc0g 16572  NzRingcnzr 19754  RLRegcrlreg 19776  Domncdomn 19777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-iota 6154  df-fun 6192  df-fv 6198  df-ov 6981  df-rlreg 19780  df-domn 19781
This theorem is referenced by:  domnrrg  19797  drngdomn  19800
  Copyright terms: Public domain W3C validator