Step | Hyp | Ref
| Expression |
1 | | isdomn2.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
2 | | eqid 2738 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
3 | | isdomn2.z |
. . 3
⊢ 0 =
(0g‘𝑅) |
4 | 1, 2, 3 | isdomn 20565 |
. 2
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
5 | | dfss3 3909 |
. . . 4
⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥 ∈ 𝐸) |
6 | | isdomn2.t |
. . . . . . . . 9
⊢ 𝐸 = (RLReg‘𝑅) |
7 | 6, 1, 2, 3 | isrrg 20559 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
8 | 7 | baib 536 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐸 ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
9 | 8 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → ((𝑥 ≠ 0 → 𝑥 ∈ 𝐸) ↔ (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )))) |
10 | 9 | ralbiia 3091 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 (𝑥 ≠ 0 → 𝑥 ∈ 𝐸) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
11 | | eldifsn 4720 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) |
12 | 11 | imbi1i 350 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝐸)) |
13 | | impexp 451 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝐸) ↔ (𝑥 ∈ 𝐵 → (𝑥 ≠ 0 → 𝑥 ∈ 𝐸))) |
14 | 12, 13 | bitri 274 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐸) ↔ (𝑥 ∈ 𝐵 → (𝑥 ≠ 0 → 𝑥 ∈ 𝐸))) |
15 | 14 | ralbii2 3090 |
. . . . 5
⊢
(∀𝑥 ∈
(𝐵 ∖ { 0 })𝑥 ∈ 𝐸 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → 𝑥 ∈ 𝐸)) |
16 | | con34b 316 |
. . . . . . . . 9
⊢ (((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (¬ (𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 )) |
17 | | impexp 451 |
. . . . . . . . . 10
⊢ (((¬
𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ))) |
18 | | ioran 981 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 = 0 ∨ 𝑦 = 0 ) ↔ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 )) |
19 | 18 | imbi1i 350 |
. . . . . . . . . 10
⊢ ((¬
(𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ) ↔ ((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 )) |
20 | | df-ne 2944 |
. . . . . . . . . . 11
⊢ (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0 ) |
21 | | con34b 316 |
. . . . . . . . . . 11
⊢ (((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ) ↔ (¬ 𝑦 = 0 → ¬ (𝑥(.r‘𝑅)𝑦) = 0 )) |
22 | 20, 21 | imbi12i 351 |
. . . . . . . . . 10
⊢ ((𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ))) |
23 | 17, 19, 22 | 3bitr4i 303 |
. . . . . . . . 9
⊢ ((¬
(𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ) ↔ (𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
24 | 16, 23 | bitri 274 |
. . . . . . . 8
⊢ (((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
25 | 24 | ralbii 3092 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
26 | | r19.21v 3113 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐵 (𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) ↔ (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
27 | 25, 26 | bitri 274 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
28 | 27 | ralbii 3092 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
29 | 10, 15, 28 | 3bitr4i 303 |
. . . 4
⊢
(∀𝑥 ∈
(𝐵 ∖ { 0 })𝑥 ∈ 𝐸 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) |
30 | 5, 29 | bitr2i 275 |
. . 3
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸) |
31 | 30 | anbi2i 623 |
. 2
⊢ ((𝑅 ∈ NzRing ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
32 | 4, 31 | bitri 274 |
1
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |