| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdomn2 | Structured version Visualization version GIF version | ||
| Description: A ring is a domain iff all nonzero elements are regular elements. (Contributed by Mario Carneiro, 28-Mar-2015.) (Proof shortened by SN, 21-Jun-2025.) |
| Ref | Expression |
|---|---|
| isdomn2.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdomn2.t | ⊢ 𝐸 = (RLReg‘𝑅) |
| isdomn2.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isdomn2 | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | isdomn2.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdomn 20670 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 5 | eldifi 4111 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) | |
| 6 | isdomn2.t | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 7 | 6, 1, 2, 3 | isrrg 20663 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 8 | 7 | baib 535 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐸 ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → (𝑥 ∈ 𝐸 ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 10 | 9 | ralbiia 3081 | . . . 4 ⊢ (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥 ∈ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) |
| 11 | dfss3 3952 | . . . 4 ⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥 ∈ 𝐸) | |
| 12 | isdomn5 20675 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) | |
| 13 | 10, 11, 12 | 3bitr4ri 304 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸) |
| 14 | 13 | anbi2i 623 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| 15 | 4, 14 | bitri 275 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 .rcmulr 17277 0gc0g 17458 NzRingcnzr 20477 RLRegcrlreg 20656 Domncdomn 20657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-rlreg 20659 df-domn 20660 |
| This theorem is referenced by: domnrrg 20678 isdomn6 20679 drngdomn 20714 zringidom 33571 |
| Copyright terms: Public domain | W3C validator |