| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdomn2 | Structured version Visualization version GIF version | ||
| Description: A ring is a domain iff all nonzero elements are regular elements. (Contributed by Mario Carneiro, 28-Mar-2015.) (Proof shortened by SN, 21-Jun-2025.) |
| Ref | Expression |
|---|---|
| isdomn2.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdomn2.t | ⊢ 𝐸 = (RLReg‘𝑅) |
| isdomn2.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isdomn2 | ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | isdomn2.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdomn 20608 | . 2 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 5 | eldifi 4084 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) | |
| 6 | isdomn2.t | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 7 | 6, 1, 2, 3 | isrrg 20601 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 8 | 7 | baib 535 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐸 ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → (𝑥 ∈ 𝐸 ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 10 | 9 | ralbiia 3073 | . . . 4 ⊢ (∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥 ∈ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) |
| 11 | dfss3 3926 | . . . 4 ⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥 ∈ 𝐸) | |
| 12 | isdomn5 20613 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) | |
| 13 | 10, 11, 12 | 3bitr4ri 304 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸) |
| 14 | 13 | anbi2i 623 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| 15 | 4, 14 | bitri 275 | 1 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3902 ⊆ wss 3905 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 0gc0g 17361 NzRingcnzr 20415 RLRegcrlreg 20594 Domncdomn 20595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-rlreg 20597 df-domn 20598 |
| This theorem is referenced by: domnrrg 20616 isdomn6 20617 drngdomn 20652 zringidom 33501 |
| Copyright terms: Public domain | W3C validator |