![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raluz2 | Structured version Visualization version GIF version |
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
raluz2 | ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12853 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | 3anass 1093 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
3 | 1, 2 | bitri 275 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) |
4 | 3 | imbi1i 349 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑)) |
5 | impexp 450 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑))) | |
6 | impexp 450 | . . . . . . 7 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) | |
7 | 6 | imbi2i 336 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑)) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
8 | 5, 7 | bitri 275 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
9 | bi2.04 387 | . . . . 5 ⊢ ((𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) | |
10 | 8, 9 | bitri 275 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
11 | 4, 10 | bitri 275 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
12 | 11 | ralbii2 3085 | . 2 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) |
13 | r19.21v 3175 | . 2 ⊢ (∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)) ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | |
14 | 12, 13 | bitri 275 | 1 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ∀wral 3057 class class class wbr 5143 ‘cfv 6543 ≤ cle 11274 ℤcz 12583 ℤ≥cuz 12847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-cnex 11189 ax-resscn 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7418 df-neg 11472 df-z 12584 df-uz 12848 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |