Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raluz2 | Structured version Visualization version GIF version |
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
raluz2 | ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12517 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | 3anass 1093 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
3 | 1, 2 | bitri 274 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) |
4 | 3 | imbi1i 349 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑)) |
5 | impexp 450 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑))) | |
6 | impexp 450 | . . . . . . 7 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) | |
7 | 6 | imbi2i 335 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑)) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
8 | 5, 7 | bitri 274 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
9 | bi2.04 388 | . . . . 5 ⊢ ((𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) | |
10 | 8, 9 | bitri 274 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
11 | 4, 10 | bitri 274 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
12 | 11 | ralbii2 3088 | . 2 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) |
13 | r19.21v 3100 | . 2 ⊢ (∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)) ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | |
14 | 12, 13 | bitri 274 | 1 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |