![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscard2 | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
iscard2 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9880 | . . 3 ⊢ (card‘𝐴) ∈ On | |
2 | eleq1 2825 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
4 | eqss 3959 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴))) | |
5 | cardonle 9893 | . . . . . 6 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
6 | 5 | biantrurd 533 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴)))) |
7 | 4, 6 | bitr4id 289 | . . . 4 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ (card‘𝐴))) |
8 | oncardval 9891 | . . . . 5 ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
9 | 8 | sseq2d 3976 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
10 | 7, 9 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
11 | ssint 4925 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥) | |
12 | breq1 5108 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
13 | 12 | elrab 3645 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝑥 ≈ 𝐴)) |
14 | ensymb 8942 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥) | |
15 | 14 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
16 | 13, 15 | bitri 274 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
17 | 16 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ ((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥)) |
18 | impexp 451 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) | |
19 | 17, 18 | bitri 274 | . . . . 5 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
20 | 19 | ralbii2 3092 | . . . 4 ⊢ (∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
21 | 11, 20 | bitri 274 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
22 | 10, 21 | bitrdi 286 | . 2 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
23 | 3, 22 | biadanii 820 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 {crab 3407 ⊆ wss 3910 ∩ cint 4907 class class class wbr 5105 Oncon0 6317 ‘cfv 6496 ≈ cen 8880 cardccrd 9871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-ord 6320 df-on 6321 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-er 8648 df-en 8884 df-card 9875 |
This theorem is referenced by: harcard 9914 |
Copyright terms: Public domain | W3C validator |