MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard2 Structured version   Visualization version   GIF version

Theorem iscard2 9665
Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard2 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem iscard2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardon 9633 . . 3 (card‘𝐴) ∈ On
2 eleq1 2826 . . 3 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 232 . 2 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 eqss 3932 . . . . 5 ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴)))
5 cardonle 9646 . . . . . 6 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
65biantrurd 532 . . . . 5 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴))))
74, 6bitr4id 289 . . . 4 (𝐴 ∈ On → ((card‘𝐴) = 𝐴𝐴 ⊆ (card‘𝐴)))
8 oncardval 9644 . . . . 5 (𝐴 ∈ On → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
98sseq2d 3949 . . . 4 (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ 𝐴 {𝑦 ∈ On ∣ 𝑦𝐴}))
107, 9bitrd 278 . . 3 (𝐴 ∈ On → ((card‘𝐴) = 𝐴𝐴 {𝑦 ∈ On ∣ 𝑦𝐴}))
11 ssint 4892 . . . 4 (𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ↔ ∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦𝐴}𝐴𝑥)
12 breq1 5073 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
1312elrab 3617 . . . . . . . 8 (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦𝐴} ↔ (𝑥 ∈ On ∧ 𝑥𝐴))
14 ensymb 8743 . . . . . . . . 9 (𝑥𝐴𝐴𝑥)
1514anbi2i 622 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ (𝑥 ∈ On ∧ 𝐴𝑥))
1613, 15bitri 274 . . . . . . 7 (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦𝐴} ↔ (𝑥 ∈ On ∧ 𝐴𝑥))
1716imbi1i 349 . . . . . 6 ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦𝐴} → 𝐴𝑥) ↔ ((𝑥 ∈ On ∧ 𝐴𝑥) → 𝐴𝑥))
18 impexp 450 . . . . . 6 (((𝑥 ∈ On ∧ 𝐴𝑥) → 𝐴𝑥) ↔ (𝑥 ∈ On → (𝐴𝑥𝐴𝑥)))
1917, 18bitri 274 . . . . 5 ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦𝐴} → 𝐴𝑥) ↔ (𝑥 ∈ On → (𝐴𝑥𝐴𝑥)))
2019ralbii2 3088 . . . 4 (∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦𝐴}𝐴𝑥 ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥))
2111, 20bitri 274 . . 3 (𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥))
2210, 21bitrdi 286 . 2 (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
233, 22biadanii 818 1 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  wss 3883   cint 4876   class class class wbr 5070  Oncon0 6251  cfv 6418  cen 8688  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-card 9628
This theorem is referenced by:  harcard  9667
  Copyright terms: Public domain W3C validator