MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard2 Structured version   Visualization version   GIF version

Theorem iscard2 9971
Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard2 ((cardβ€˜π΄) = 𝐴 ↔ (𝐴 ∈ On ∧ βˆ€π‘₯ ∈ On (𝐴 β‰ˆ π‘₯ β†’ 𝐴 βŠ† π‘₯)))
Distinct variable group:   π‘₯,𝐴

Proof of Theorem iscard2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardon 9939 . . 3 (cardβ€˜π΄) ∈ On
2 eleq1 2822 . . 3 ((cardβ€˜π΄) = 𝐴 β†’ ((cardβ€˜π΄) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 232 . 2 ((cardβ€˜π΄) = 𝐴 β†’ 𝐴 ∈ On)
4 eqss 3998 . . . . 5 ((cardβ€˜π΄) = 𝐴 ↔ ((cardβ€˜π΄) βŠ† 𝐴 ∧ 𝐴 βŠ† (cardβ€˜π΄)))
5 cardonle 9952 . . . . . 6 (𝐴 ∈ On β†’ (cardβ€˜π΄) βŠ† 𝐴)
65biantrurd 534 . . . . 5 (𝐴 ∈ On β†’ (𝐴 βŠ† (cardβ€˜π΄) ↔ ((cardβ€˜π΄) βŠ† 𝐴 ∧ 𝐴 βŠ† (cardβ€˜π΄))))
74, 6bitr4id 290 . . . 4 (𝐴 ∈ On β†’ ((cardβ€˜π΄) = 𝐴 ↔ 𝐴 βŠ† (cardβ€˜π΄)))
8 oncardval 9950 . . . . 5 (𝐴 ∈ On β†’ (cardβ€˜π΄) = ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴})
98sseq2d 4015 . . . 4 (𝐴 ∈ On β†’ (𝐴 βŠ† (cardβ€˜π΄) ↔ 𝐴 βŠ† ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴}))
107, 9bitrd 279 . . 3 (𝐴 ∈ On β†’ ((cardβ€˜π΄) = 𝐴 ↔ 𝐴 βŠ† ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴}))
11 ssint 4969 . . . 4 (𝐴 βŠ† ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} ↔ βˆ€π‘₯ ∈ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴}𝐴 βŠ† π‘₯)
12 breq1 5152 . . . . . . . . 9 (𝑦 = π‘₯ β†’ (𝑦 β‰ˆ 𝐴 ↔ π‘₯ β‰ˆ 𝐴))
1312elrab 3684 . . . . . . . 8 (π‘₯ ∈ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} ↔ (π‘₯ ∈ On ∧ π‘₯ β‰ˆ 𝐴))
14 ensymb 8998 . . . . . . . . 9 (π‘₯ β‰ˆ 𝐴 ↔ 𝐴 β‰ˆ π‘₯)
1514anbi2i 624 . . . . . . . 8 ((π‘₯ ∈ On ∧ π‘₯ β‰ˆ 𝐴) ↔ (π‘₯ ∈ On ∧ 𝐴 β‰ˆ π‘₯))
1613, 15bitri 275 . . . . . . 7 (π‘₯ ∈ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} ↔ (π‘₯ ∈ On ∧ 𝐴 β‰ˆ π‘₯))
1716imbi1i 350 . . . . . 6 ((π‘₯ ∈ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} β†’ 𝐴 βŠ† π‘₯) ↔ ((π‘₯ ∈ On ∧ 𝐴 β‰ˆ π‘₯) β†’ 𝐴 βŠ† π‘₯))
18 impexp 452 . . . . . 6 (((π‘₯ ∈ On ∧ 𝐴 β‰ˆ π‘₯) β†’ 𝐴 βŠ† π‘₯) ↔ (π‘₯ ∈ On β†’ (𝐴 β‰ˆ π‘₯ β†’ 𝐴 βŠ† π‘₯)))
1917, 18bitri 275 . . . . 5 ((π‘₯ ∈ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} β†’ 𝐴 βŠ† π‘₯) ↔ (π‘₯ ∈ On β†’ (𝐴 β‰ˆ π‘₯ β†’ 𝐴 βŠ† π‘₯)))
2019ralbii2 3090 . . . 4 (βˆ€π‘₯ ∈ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴}𝐴 βŠ† π‘₯ ↔ βˆ€π‘₯ ∈ On (𝐴 β‰ˆ π‘₯ β†’ 𝐴 βŠ† π‘₯))
2111, 20bitri 275 . . 3 (𝐴 βŠ† ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ 𝐴} ↔ βˆ€π‘₯ ∈ On (𝐴 β‰ˆ π‘₯ β†’ 𝐴 βŠ† π‘₯))
2210, 21bitrdi 287 . 2 (𝐴 ∈ On β†’ ((cardβ€˜π΄) = 𝐴 ↔ βˆ€π‘₯ ∈ On (𝐴 β‰ˆ π‘₯ β†’ 𝐴 βŠ† π‘₯)))
233, 22biadanii 821 1 ((cardβ€˜π΄) = 𝐴 ↔ (𝐴 ∈ On ∧ βˆ€π‘₯ ∈ On (𝐴 β‰ˆ π‘₯ β†’ 𝐴 βŠ† π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433   βŠ† wss 3949  βˆ© cint 4951   class class class wbr 5149  Oncon0 6365  β€˜cfv 6544   β‰ˆ cen 8936  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-card 9934
This theorem is referenced by:  harcard  9973
  Copyright terms: Public domain W3C validator