| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscard2 | Structured version Visualization version GIF version | ||
| Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| Ref | Expression |
|---|---|
| iscard2 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9832 | . . 3 ⊢ (card‘𝐴) ∈ On | |
| 2 | eleq1 2819 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpbii 233 | . 2 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
| 4 | eqss 3945 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴))) | |
| 5 | cardonle 9845 | . . . . . 6 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
| 6 | 5 | biantrurd 532 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴)))) |
| 7 | 4, 6 | bitr4id 290 | . . . 4 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ (card‘𝐴))) |
| 8 | oncardval 9843 | . . . . 5 ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 9 | 8 | sseq2d 3962 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
| 10 | 7, 9 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
| 11 | ssint 4909 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥) | |
| 12 | breq1 5089 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
| 13 | 12 | elrab 3642 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝑥 ≈ 𝐴)) |
| 14 | ensymb 8919 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥) | |
| 15 | 14 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
| 16 | 13, 15 | bitri 275 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
| 17 | 16 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ ((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥)) |
| 18 | impexp 450 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) | |
| 19 | 17, 18 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
| 20 | 19 | ralbii2 3074 | . . . 4 ⊢ (∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
| 21 | 11, 20 | bitri 275 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
| 22 | 10, 21 | bitrdi 287 | . 2 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
| 23 | 3, 22 | biadanii 821 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 ∩ cint 4892 class class class wbr 5086 Oncon0 6301 ‘cfv 6476 ≈ cen 8861 cardccrd 9823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-card 9827 |
| This theorem is referenced by: harcard 9866 |
| Copyright terms: Public domain | W3C validator |