![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscard2 | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
iscard2 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9982 | . . 3 ⊢ (card‘𝐴) ∈ On | |
2 | eleq1 2827 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
3 | 1, 2 | mpbii 233 | . 2 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
4 | eqss 4011 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴))) | |
5 | cardonle 9995 | . . . . . 6 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
6 | 5 | biantrurd 532 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴)))) |
7 | 4, 6 | bitr4id 290 | . . . 4 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ (card‘𝐴))) |
8 | oncardval 9993 | . . . . 5 ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
9 | 8 | sseq2d 4028 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
10 | 7, 9 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
11 | ssint 4969 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥) | |
12 | breq1 5151 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
13 | 12 | elrab 3695 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝑥 ≈ 𝐴)) |
14 | ensymb 9041 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥) | |
15 | 14 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
16 | 13, 15 | bitri 275 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
17 | 16 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ ((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥)) |
18 | impexp 450 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) | |
19 | 17, 18 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
20 | 19 | ralbii2 3087 | . . . 4 ⊢ (∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
21 | 11, 20 | bitri 275 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
22 | 10, 21 | bitrdi 287 | . 2 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
23 | 3, 22 | biadanii 822 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ⊆ wss 3963 ∩ cint 4951 class class class wbr 5148 Oncon0 6386 ‘cfv 6563 ≈ cen 8981 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-card 9977 |
This theorem is referenced by: harcard 10016 |
Copyright terms: Public domain | W3C validator |