Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscard2 | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
iscard2 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9560 | . . 3 ⊢ (card‘𝐴) ∈ On | |
2 | eleq1 2825 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
3 | 1, 2 | mpbii 236 | . 2 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
4 | eqss 3916 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴))) | |
5 | cardonle 9573 | . . . . . 6 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
6 | 5 | biantrurd 536 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴)))) |
7 | 4, 6 | bitr4id 293 | . . . 4 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ (card‘𝐴))) |
8 | oncardval 9571 | . . . . 5 ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
9 | 8 | sseq2d 3933 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
10 | 7, 9 | bitrd 282 | . . 3 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
11 | ssint 4875 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥) | |
12 | breq1 5056 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
13 | 12 | elrab 3602 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝑥 ≈ 𝐴)) |
14 | ensymb 8676 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥) | |
15 | 14 | anbi2i 626 | . . . . . . . 8 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
16 | 13, 15 | bitri 278 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
17 | 16 | imbi1i 353 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ ((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥)) |
18 | impexp 454 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) | |
19 | 17, 18 | bitri 278 | . . . . 5 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
20 | 19 | ralbii2 3086 | . . . 4 ⊢ (∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
21 | 11, 20 | bitri 278 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
22 | 10, 21 | bitrdi 290 | . 2 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
23 | 3, 22 | biadanii 822 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 ⊆ wss 3866 ∩ cint 4859 class class class wbr 5053 Oncon0 6213 ‘cfv 6380 ≈ cen 8623 cardccrd 9551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-er 8391 df-en 8627 df-card 9555 |
This theorem is referenced by: harcard 9594 |
Copyright terms: Public domain | W3C validator |