![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscard2 | Structured version Visualization version GIF version |
Description: Two ways to express the property of being a cardinal number. Definition 8 of [Suppes] p. 225. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
iscard2 | ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9219 | . . 3 ⊢ (card‘𝐴) ∈ On | |
2 | eleq1 2870 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
3 | 1, 2 | mpbii 234 | . 2 ⊢ ((card‘𝐴) = 𝐴 → 𝐴 ∈ On) |
4 | cardonle 9232 | . . . . . 6 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
5 | 4 | biantrurd 533 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴)))) |
6 | eqss 3904 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴 ∧ 𝐴 ⊆ (card‘𝐴))) | |
7 | 5, 6 | syl6rbbr 291 | . . . 4 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ (card‘𝐴))) |
8 | oncardval 9230 | . . . . 5 ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
9 | 8 | sseq2d 3920 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ⊆ (card‘𝐴) ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
10 | 7, 9 | bitrd 280 | . . 3 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ 𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴})) |
11 | ssint 4798 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥) | |
12 | breq1 4965 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
13 | 12 | elrab 3618 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝑥 ≈ 𝐴)) |
14 | ensymb 8405 | . . . . . . . . 9 ⊢ (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥) | |
15 | 14 | anbi2i 622 | . . . . . . . 8 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
16 | 13, 15 | bitri 276 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ (𝑥 ∈ On ∧ 𝐴 ≈ 𝑥)) |
17 | 16 | imbi1i 351 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ ((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥)) |
18 | impexp 451 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≈ 𝑥) → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) | |
19 | 17, 18 | bitri 276 | . . . . 5 ⊢ ((𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ On → (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
20 | 19 | ralbii2 3130 | . . . 4 ⊢ (∀𝑥 ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
21 | 11, 20 | bitri 276 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥)) |
22 | 10, 21 | syl6bb 288 | . 2 ⊢ (𝐴 ∈ On → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
23 | 3, 22 | biadanii 819 | 1 ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ On (𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 {crab 3109 ⊆ wss 3859 ∩ cint 4782 class class class wbr 4962 Oncon0 6066 ‘cfv 6225 ≈ cen 8354 cardccrd 9210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-ord 6069 df-on 6070 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-er 8139 df-en 8358 df-card 9214 |
This theorem is referenced by: harcard 9253 |
Copyright terms: Public domain | W3C validator |