MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc3 Structured version   Visualization version   GIF version

Theorem ellimc3 23933
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ellimc3.f (𝜑𝐹:𝐴⟶ℂ)
ellimc3.a (𝜑𝐴 ⊆ ℂ)
ellimc3.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
ellimc3 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem ellimc3
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimc3.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 ellimc3.a . . 3 (𝜑𝐴 ⊆ ℂ)
3 ellimc3.b . . 3 (𝜑𝐵 ∈ ℂ)
4 eqid 2764 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
51, 2, 3, 4ellimc2 23931 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
6 cnxmet 22854 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
76a1i 11 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8 simplr 785 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
9 simpr 477 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
10 blcntr 22496 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
117, 8, 9, 10syl3anc 1490 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
12 rpxr 12038 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
1312adantl 473 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*)
144cnfldtopn 22863 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1514blopn 22583 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld))
167, 8, 13, 15syl3anc 1490 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld))
17 eleq2 2832 . . . . . . . . . . 11 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐶𝑢𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
18 sseq2 3786 . . . . . . . . . . . . 13 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
1918anbi2d 622 . . . . . . . . . . . 12 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2019rexbidv 3198 . . . . . . . . . . 11 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2117, 20imbi12d 335 . . . . . . . . . 10 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2221rspcv 3456 . . . . . . . . 9 ((𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2316, 22syl 17 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2411, 23mpid 44 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2514mopni2 22576 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣)
266, 25mp3an1 1572 . . . . . . . . . 10 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣)
27 ssrin 3996 . . . . . . . . . . . . 13 ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑣 ∩ (𝐴 ∖ {𝐵})))
28 imass2 5682 . . . . . . . . . . . . 13 (((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑣 ∩ (𝐴 ∖ {𝐵})) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))))
29 sstr2 3767 . . . . . . . . . . . . 13 ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3027, 28, 293syl 18 . . . . . . . . . . . 12 ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3130com12 32 . . . . . . . . . . 11 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3231reximdv 3161 . . . . . . . . . 10 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3326, 32syl5com 31 . . . . . . . . 9 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3433impr 446 . . . . . . . 8 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))
3534rexlimiva 3174 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))
3624, 35syl6 35 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3736ralrimdva 3115 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3814mopni2 22576 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → ∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢)
396, 38mp3an1 1572 . . . . . . . . 9 ((𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → ∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢)
40 r19.29r 3219 . . . . . . . . . . 11 ((∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑥 ∈ ℝ+ ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
416a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
423ad3antrrr 721 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ℂ)
43 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
4443rpxrd 12070 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ*)
4514blopn 22583 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld))
4641, 42, 44, 45syl3anc 1490 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld))
47 blcntr 22496 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
4841, 42, 43, 47syl3anc 1490 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
49 eleq2 2832 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐵𝑣𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
50 ineq1 3968 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})))
5150imaeq2d 5647 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))))
5251sseq1d 3791 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
5349, 52anbi12d 624 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ (𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5453rspcev 3460 . . . . . . . . . . . . . . . . 17 (((𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld) ∧ (𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
5554expr 448 . . . . . . . . . . . . . . . 16 (((𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld) ∧ 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5646, 48, 55syl2anc 579 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5756rexlimdva 3177 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
58 sstr2 3767 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
5958com12 32 . . . . . . . . . . . . . . . 16 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
6059anim2d 605 . . . . . . . . . . . . . . 15 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6160reximdv 3161 . . . . . . . . . . . . . 14 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6257, 61syl9 77 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6362impd 398 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6463rexlimdva 3177 . . . . . . . . . . 11 ((𝜑𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ+ ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6540, 64syl5 34 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → ((∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6665expd 404 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6739, 66syl5 34 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → ((𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6867expdimp 444 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (𝐶𝑢 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6968com23 86 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
7069ralrimdva 3115 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
7137, 70impbid 203 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
721ad2antrr 717 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝐹:𝐴⟶ℂ)
7372ffund 6226 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → Fun 𝐹)
74 inss2 3992 . . . . . . . . . 10 ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
75 difss 3898 . . . . . . . . . . 11 (𝐴 ∖ {𝐵}) ⊆ 𝐴
7672fdmd 6231 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → dom 𝐹 = 𝐴)
7775, 76syl5sseqr 3813 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝐴 ∖ {𝐵}) ⊆ dom 𝐹)
7874, 77syl5ss 3771 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹)
79 funimass4 6435 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
8073, 78, 79syl2anc 579 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
816a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (abs ∘ − ) ∈ (∞Met‘ℂ))
82 simplrr 796 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℝ+)
8382rpxrd 12070 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℝ*)
843ad3antrrr 721 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
8575, 2syl5ss 3771 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
8685ad2antrr 717 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
8786sselda 3760 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
88 elbl3 22475 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℝ*) ∧ (𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧(abs ∘ − )𝐵) < 𝑦))
8981, 83, 84, 87, 88syl22anc 867 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧(abs ∘ − )𝐵) < 𝑦))
90 eqid 2764 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
9190cnmetdval 22852 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
9287, 84, 91syl2anc 579 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
9392breq1d 4818 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝑧(abs ∘ − )𝐵) < 𝑦 ↔ (abs‘(𝑧𝐵)) < 𝑦))
9489, 93bitrd 270 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (abs‘(𝑧𝐵)) < 𝑦))
95 simplrl 795 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ+)
9695rpxrd 12070 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ*)
97 simpllr 793 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐶 ∈ ℂ)
98 eldifi 3893 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐴)
99 ffvelrn 6546 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℂ ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
10072, 98, 99syl2an 589 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
101 elbl3 22475 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ)) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥))
10281, 96, 97, 100, 101syl22anc 867 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥))
10390cnmetdval 22852 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹𝑧)(abs ∘ − )𝐶) = (abs‘((𝐹𝑧) − 𝐶)))
104100, 97, 103syl2anc 579 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧)(abs ∘ − )𝐶) = (abs‘((𝐹𝑧) − 𝐶)))
105104breq1d 4818 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
106102, 105bitrd 270 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
10794, 106imbi12d 335 . . . . . . . . . 10 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
108107ralbidva 3131 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (∀𝑧 ∈ (𝐴 ∖ {𝐵})(𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ∀𝑧 ∈ (𝐴 ∖ {𝐵})((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
109 elin 3957 . . . . . . . . . . . . 13 (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})))
110 ancom 452 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
111109, 110bitri 266 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
112111imbi1i 340 . . . . . . . . . . 11 ((𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
113 impexp 441 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))))
114112, 113bitr2i 267 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))) ↔ (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
115114ralbii2 3124 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 ∖ {𝐵})(𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
116 impexp 441 . . . . . . . . . . 11 (((𝑧𝐴𝑧𝐵) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
117 eldifsn 4471 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴𝑧𝐵))
118117imbi1i 340 . . . . . . . . . . 11 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ ((𝑧𝐴𝑧𝐵) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
119 impexp 441 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
120119imbi2i 327 . . . . . . . . . . 11 ((𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
121116, 118, 1203bitr4i 294 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
122121ralbii2 3124 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 ∖ {𝐵})((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
123108, 115, 1223bitr3g 304 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
12480, 123bitrd 270 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
125124anassrs 459 . . . . . 6 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
126125rexbidva 3195 . . . . 5 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
127126ralbidva 3131 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
12871, 127bitrd 270 . . 3 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
129128pm5.32da 574 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
1305, 129bitrd 270 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2936  wral 3054  wrex 3055  cdif 3728  cin 3730  wss 3731  {csn 4333   class class class wbr 4808  dom cdm 5276  cima 5279  ccom 5280  Fun wfun 6061  wf 6063  cfv 6067  (class class class)co 6841  cc 10186  *cxr 10326   < clt 10327  cmin 10519  +crp 12027  abscabs 14260  TopOpenctopn 16349  ∞Metcxmet 20003  ballcbl 20005  fldccnfld 20018   lim climc 23916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fi 8523  df-sup 8554  df-inf 8555  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-z 11624  df-dec 11740  df-uz 11886  df-q 11989  df-rp 12028  df-xneg 12145  df-xadd 12146  df-xmul 12147  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-plusg 16228  df-mulr 16229  df-starv 16230  df-tset 16234  df-ple 16235  df-ds 16237  df-unif 16238  df-rest 16350  df-topn 16351  df-topgen 16371  df-psmet 20010  df-xmet 20011  df-met 20012  df-bl 20013  df-mopn 20014  df-cnfld 20019  df-top 20977  df-topon 20994  df-topsp 21016  df-bases 21029  df-cnp 21311  df-xms 22403  df-ms 22404  df-limc 23920
This theorem is referenced by:  dveflem  24032  dvferm1  24038  dvferm2  24040  lhop1  24067  ftc1lem6  24094  ulmdvlem3  24446  unblimceq0  32868  ftc1cnnc  33839  mullimc  40418  ellimcabssub0  40419  limcdm0  40420  mullimcf  40425  constlimc  40426  idlimc  40428  limcperiod  40430  limcrecl  40431  limcleqr  40446  neglimc  40449  addlimc  40450  0ellimcdiv  40451  limclner  40453  fperdvper  40703  ioodvbdlimc1lem2  40717  ioodvbdlimc2lem  40719
  Copyright terms: Public domain W3C validator