MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc3 Structured version   Visualization version   GIF version

Theorem ellimc3 25928
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ellimc3.f (𝜑𝐹:𝐴⟶ℂ)
ellimc3.a (𝜑𝐴 ⊆ ℂ)
ellimc3.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
ellimc3 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem ellimc3
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimc3.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 ellimc3.a . . 3 (𝜑𝐴 ⊆ ℂ)
3 ellimc3.b . . 3 (𝜑𝐵 ∈ ℂ)
4 eqid 2734 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
51, 2, 3, 4ellimc2 25926 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
6 cnxmet 24808 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
7 simplr 769 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
8 simpr 484 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9 blcntr 24438 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
106, 7, 8, 9mp3an2i 1465 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
11 rpxr 13041 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
1211adantl 481 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*)
134cnfldtopn 24817 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1413blopn 24528 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld))
156, 7, 12, 14mp3an2i 1465 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld))
16 eleq2 2827 . . . . . . . . . . 11 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐶𝑢𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
17 sseq2 4021 . . . . . . . . . . . . 13 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
1817anbi2d 630 . . . . . . . . . . . 12 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
1918rexbidv 3176 . . . . . . . . . . 11 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2016, 19imbi12d 344 . . . . . . . . . 10 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2120rspcv 3617 . . . . . . . . 9 ((𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2215, 21syl 17 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2310, 22mpid 44 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2413mopni2 24521 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣)
256, 24mp3an1 1447 . . . . . . . . . 10 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣)
26 ssrin 4249 . . . . . . . . . . . . 13 ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑣 ∩ (𝐴 ∖ {𝐵})))
27 imass2 6122 . . . . . . . . . . . . 13 (((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑣 ∩ (𝐴 ∖ {𝐵})) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))))
28 sstr2 4001 . . . . . . . . . . . . 13 ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
2926, 27, 283syl 18 . . . . . . . . . . . 12 ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3029com12 32 . . . . . . . . . . 11 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3130reximdv 3167 . . . . . . . . . 10 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3225, 31syl5com 31 . . . . . . . . 9 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3332impr 454 . . . . . . . 8 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))
3433rexlimiva 3144 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))
3523, 34syl6 35 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3635ralrimdva 3151 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3713mopni2 24521 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → ∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢)
386, 37mp3an1 1447 . . . . . . . . 9 ((𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → ∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢)
39 r19.29r 3113 . . . . . . . . . . 11 ((∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑥 ∈ ℝ+ ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
403ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ℂ)
41 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
4241rpxrd 13075 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ*)
4313blopn 24528 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld))
446, 40, 42, 43mp3an2i 1465 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld))
45 blcntr 24438 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
466, 40, 41, 45mp3an2i 1465 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
47 eleq2 2827 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐵𝑣𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
48 ineq1 4220 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})))
4948imaeq2d 6079 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))))
5049sseq1d 4026 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
5147, 50anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ (𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5251rspcev 3621 . . . . . . . . . . . . . . . . 17 (((𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld) ∧ (𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
5352expr 456 . . . . . . . . . . . . . . . 16 (((𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld) ∧ 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5444, 46, 53syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5554rexlimdva 3152 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
56 sstr2 4001 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
5756com12 32 . . . . . . . . . . . . . . . 16 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
5857anim2d 612 . . . . . . . . . . . . . . 15 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
5958reximdv 3167 . . . . . . . . . . . . . 14 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6055, 59syl9 77 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6160impd 410 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6261rexlimdva 3152 . . . . . . . . . . 11 ((𝜑𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ+ ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6339, 62syl5 34 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → ((∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6463expd 415 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6538, 64syl5 34 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → ((𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6665expdimp 452 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (𝐶𝑢 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6766com23 86 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6867ralrimdva 3151 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6936, 68impbid 212 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
701ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝐹:𝐴⟶ℂ)
7170ffund 6740 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → Fun 𝐹)
72 inss2 4245 . . . . . . . . . 10 ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
73 difss 4145 . . . . . . . . . . 11 (𝐴 ∖ {𝐵}) ⊆ 𝐴
7470fdmd 6746 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → dom 𝐹 = 𝐴)
7573, 74sseqtrrid 4048 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝐴 ∖ {𝐵}) ⊆ dom 𝐹)
7672, 75sstrid 4006 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹)
77 funimass4 6972 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
7871, 76, 77syl2anc 584 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
796a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (abs ∘ − ) ∈ (∞Met‘ℂ))
80 simplrr 778 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℝ+)
8180rpxrd 13075 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℝ*)
823ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
8373, 2sstrid 4006 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
8483ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
8584sselda 3994 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
86 elbl3 24417 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℝ*) ∧ (𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧(abs ∘ − )𝐵) < 𝑦))
8779, 81, 82, 85, 86syl22anc 839 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧(abs ∘ − )𝐵) < 𝑦))
88 eqid 2734 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
8988cnmetdval 24806 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
9085, 82, 89syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
9190breq1d 5157 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝑧(abs ∘ − )𝐵) < 𝑦 ↔ (abs‘(𝑧𝐵)) < 𝑦))
9287, 91bitrd 279 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (abs‘(𝑧𝐵)) < 𝑦))
93 simplrl 777 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ+)
9493rpxrd 13075 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ*)
95 simpllr 776 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐶 ∈ ℂ)
96 eldifi 4140 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐴)
97 ffvelcdm 7100 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℂ ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
9870, 96, 97syl2an 596 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
99 elbl3 24417 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ)) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥))
10079, 94, 95, 98, 99syl22anc 839 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥))
10188cnmetdval 24806 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹𝑧)(abs ∘ − )𝐶) = (abs‘((𝐹𝑧) − 𝐶)))
10298, 95, 101syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧)(abs ∘ − )𝐶) = (abs‘((𝐹𝑧) − 𝐶)))
103102breq1d 5157 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
104100, 103bitrd 279 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
10592, 104imbi12d 344 . . . . . . . . . 10 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
106105ralbidva 3173 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (∀𝑧 ∈ (𝐴 ∖ {𝐵})(𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ∀𝑧 ∈ (𝐴 ∖ {𝐵})((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
107 elin 3978 . . . . . . . . . . . . 13 (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})))
108107biancomi 462 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
109108imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
110 impexp 450 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))))
111109, 110bitr2i 276 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))) ↔ (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
112111ralbii2 3086 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 ∖ {𝐵})(𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
113 impexp 450 . . . . . . . . . . 11 (((𝑧𝐴𝑧𝐵) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
114 eldifsn 4790 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴𝑧𝐵))
115114imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ ((𝑧𝐴𝑧𝐵) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
116 impexp 450 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
117116imbi2i 336 . . . . . . . . . . 11 ((𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
118113, 115, 1173bitr4i 303 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
119118ralbii2 3086 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 ∖ {𝐵})((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
120106, 112, 1193bitr3g 313 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
12178, 120bitrd 279 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
122121anassrs 467 . . . . . 6 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
123122rexbidva 3174 . . . . 5 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
124123ralbidva 3173 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
12569, 124bitrd 279 . . 3 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
126125pm5.32da 579 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
1275, 126bitrd 279 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  cdif 3959  cin 3961  wss 3962  {csn 4630   class class class wbr 5147  dom cdm 5688  cima 5691  ccom 5692  Fun wfun 6556  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  *cxr 11291   < clt 11292  cmin 11489  +crp 13031  abscabs 15269  TopOpenctopn 17467  ∞Metcxmet 21366  ballcbl 21368  fldccnfld 21381   lim climc 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cnp 23251  df-xms 24345  df-ms 24346  df-limc 25915
This theorem is referenced by:  dveflem  26031  dvferm1  26037  dvferm2  26039  lhop1  26067  ftc1lem6  26096  ulmdvlem3  26459  unblimceq0  36489  ftc1cnnc  37678  mullimc  45571  ellimcabssub0  45572  limcdm0  45573  mullimcf  45578  constlimc  45579  idlimc  45581  limcperiod  45583  limcrecl  45584  limcleqr  45599  neglimc  45602  addlimc  45603  0ellimcdiv  45604  limclner  45606  fperdvper  45874  ioodvbdlimc1lem2  45887  ioodvbdlimc2lem  45889
  Copyright terms: Public domain W3C validator