MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc3 Structured version   Visualization version   GIF version

Theorem ellimc3 25915
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ellimc3.f (𝜑𝐹:𝐴⟶ℂ)
ellimc3.a (𝜑𝐴 ⊆ ℂ)
ellimc3.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
ellimc3 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem ellimc3
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimc3.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 ellimc3.a . . 3 (𝜑𝐴 ⊆ ℂ)
3 ellimc3.b . . 3 (𝜑𝐵 ∈ ℂ)
4 eqid 2736 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
51, 2, 3, 4ellimc2 25913 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
6 cnxmet 24794 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
7 simplr 768 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
8 simpr 484 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9 blcntr 24424 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
106, 7, 8, 9mp3an2i 1467 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
11 rpxr 13045 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
1211adantl 481 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*)
134cnfldtopn 24803 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1413blopn 24514 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld))
156, 7, 12, 14mp3an2i 1467 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld))
16 eleq2 2829 . . . . . . . . . . 11 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐶𝑢𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
17 sseq2 4009 . . . . . . . . . . . . 13 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
1817anbi2d 630 . . . . . . . . . . . 12 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
1918rexbidv 3178 . . . . . . . . . . 11 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2016, 19imbi12d 344 . . . . . . . . . 10 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2120rspcv 3617 . . . . . . . . 9 ((𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2215, 21syl 17 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2310, 22mpid 44 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2413mopni2 24507 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣)
256, 24mp3an1 1449 . . . . . . . . . 10 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣)
26 ssrin 4241 . . . . . . . . . . . . 13 ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑣 ∩ (𝐴 ∖ {𝐵})))
27 imass2 6119 . . . . . . . . . . . . 13 (((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑣 ∩ (𝐴 ∖ {𝐵})) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))))
28 sstr2 3989 . . . . . . . . . . . . 13 ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
2926, 27, 283syl 18 . . . . . . . . . . . 12 ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3029com12 32 . . . . . . . . . . 11 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3130reximdv 3169 . . . . . . . . . 10 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3225, 31syl5com 31 . . . . . . . . 9 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3332impr 454 . . . . . . . 8 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))
3433rexlimiva 3146 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))
3523, 34syl6 35 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3635ralrimdva 3153 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3713mopni2 24507 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → ∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢)
386, 37mp3an1 1449 . . . . . . . . 9 ((𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → ∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢)
39 r19.29r 3115 . . . . . . . . . . 11 ((∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑥 ∈ ℝ+ ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
403ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ℂ)
41 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
4241rpxrd 13079 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ*)
4313blopn 24514 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld))
446, 40, 42, 43mp3an2i 1467 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld))
45 blcntr 24424 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
466, 40, 41, 45mp3an2i 1467 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
47 eleq2 2829 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐵𝑣𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
48 ineq1 4212 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})))
4948imaeq2d 6077 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))))
5049sseq1d 4014 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
5147, 50anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ (𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5251rspcev 3621 . . . . . . . . . . . . . . . . 17 (((𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld) ∧ (𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
5352expr 456 . . . . . . . . . . . . . . . 16 (((𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld) ∧ 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5444, 46, 53syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5554rexlimdva 3154 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
56 sstr2 3989 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
5756com12 32 . . . . . . . . . . . . . . . 16 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
5857anim2d 612 . . . . . . . . . . . . . . 15 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
5958reximdv 3169 . . . . . . . . . . . . . 14 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6055, 59syl9 77 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6160impd 410 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6261rexlimdva 3154 . . . . . . . . . . 11 ((𝜑𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ+ ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6339, 62syl5 34 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → ((∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6463expd 415 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6538, 64syl5 34 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → ((𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6665expdimp 452 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (𝐶𝑢 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6766com23 86 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6867ralrimdva 3153 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6936, 68impbid 212 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
701ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝐹:𝐴⟶ℂ)
7170ffund 6739 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → Fun 𝐹)
72 inss2 4237 . . . . . . . . . 10 ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
73 difss 4135 . . . . . . . . . . 11 (𝐴 ∖ {𝐵}) ⊆ 𝐴
7470fdmd 6745 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → dom 𝐹 = 𝐴)
7573, 74sseqtrrid 4026 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝐴 ∖ {𝐵}) ⊆ dom 𝐹)
7672, 75sstrid 3994 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹)
77 funimass4 6972 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
7871, 76, 77syl2anc 584 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
796a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (abs ∘ − ) ∈ (∞Met‘ℂ))
80 simplrr 777 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℝ+)
8180rpxrd 13079 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℝ*)
823ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
8373, 2sstrid 3994 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
8483ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
8584sselda 3982 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
86 elbl3 24403 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℝ*) ∧ (𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧(abs ∘ − )𝐵) < 𝑦))
8779, 81, 82, 85, 86syl22anc 838 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧(abs ∘ − )𝐵) < 𝑦))
88 eqid 2736 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
8988cnmetdval 24792 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
9085, 82, 89syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
9190breq1d 5152 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝑧(abs ∘ − )𝐵) < 𝑦 ↔ (abs‘(𝑧𝐵)) < 𝑦))
9287, 91bitrd 279 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (abs‘(𝑧𝐵)) < 𝑦))
93 simplrl 776 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ+)
9493rpxrd 13079 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ*)
95 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐶 ∈ ℂ)
96 eldifi 4130 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐴)
97 ffvelcdm 7100 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℂ ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
9870, 96, 97syl2an 596 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
99 elbl3 24403 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ)) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥))
10079, 94, 95, 98, 99syl22anc 838 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥))
10188cnmetdval 24792 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹𝑧)(abs ∘ − )𝐶) = (abs‘((𝐹𝑧) − 𝐶)))
10298, 95, 101syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧)(abs ∘ − )𝐶) = (abs‘((𝐹𝑧) − 𝐶)))
103102breq1d 5152 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
104100, 103bitrd 279 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
10592, 104imbi12d 344 . . . . . . . . . 10 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
106105ralbidva 3175 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (∀𝑧 ∈ (𝐴 ∖ {𝐵})(𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ∀𝑧 ∈ (𝐴 ∖ {𝐵})((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
107 elin 3966 . . . . . . . . . . . . 13 (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})))
108107biancomi 462 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
109108imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
110 impexp 450 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))))
111109, 110bitr2i 276 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))) ↔ (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
112111ralbii2 3088 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 ∖ {𝐵})(𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
113 impexp 450 . . . . . . . . . . 11 (((𝑧𝐴𝑧𝐵) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
114 eldifsn 4785 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴𝑧𝐵))
115114imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ ((𝑧𝐴𝑧𝐵) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
116 impexp 450 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
117116imbi2i 336 . . . . . . . . . . 11 ((𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
118113, 115, 1173bitr4i 303 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
119118ralbii2 3088 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 ∖ {𝐵})((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
120106, 112, 1193bitr3g 313 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
12178, 120bitrd 279 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
122121anassrs 467 . . . . . 6 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
123122rexbidva 3176 . . . . 5 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
124123ralbidva 3175 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
12569, 124bitrd 279 . . 3 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
126125pm5.32da 579 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
1275, 126bitrd 279 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  cdif 3947  cin 3949  wss 3950  {csn 4625   class class class wbr 5142  dom cdm 5684  cima 5687  ccom 5688  Fun wfun 6554  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  *cxr 11295   < clt 11296  cmin 11493  +crp 13035  abscabs 15274  TopOpenctopn 17467  ∞Metcxmet 21350  ballcbl 21352  fldccnfld 21365   lim climc 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-fz 13549  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cnp 23237  df-xms 24331  df-ms 24332  df-limc 25902
This theorem is referenced by:  dveflem  26018  dvferm1  26024  dvferm2  26026  lhop1  26054  ftc1lem6  26083  ulmdvlem3  26446  unblimceq0  36509  ftc1cnnc  37700  mullimc  45636  ellimcabssub0  45637  limcdm0  45638  mullimcf  45643  constlimc  45644  idlimc  45646  limcperiod  45648  limcrecl  45649  limcleqr  45664  neglimc  45667  addlimc  45668  0ellimcdiv  45669  limclner  45671  fperdvper  45939  ioodvbdlimc1lem2  45952  ioodvbdlimc2lem  45954
  Copyright terms: Public domain W3C validator