MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc3 Structured version   Visualization version   GIF version

Theorem ellimc3 24482
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ellimc3.f (𝜑𝐹:𝐴⟶ℂ)
ellimc3.a (𝜑𝐴 ⊆ ℂ)
ellimc3.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
ellimc3 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem ellimc3
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimc3.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 ellimc3.a . . 3 (𝜑𝐴 ⊆ ℂ)
3 ellimc3.b . . 3 (𝜑𝐵 ∈ ℂ)
4 eqid 2798 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
51, 2, 3, 4ellimc2 24480 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
6 cnxmet 23378 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
7 simplr 768 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
8 simpr 488 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9 blcntr 23020 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
106, 7, 8, 9mp3an2i 1463 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
11 rpxr 12386 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
1211adantl 485 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*)
134cnfldtopn 23387 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
1413blopn 23107 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld))
156, 7, 12, 14mp3an2i 1463 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld))
16 eleq2 2878 . . . . . . . . . . 11 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐶𝑢𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
17 sseq2 3941 . . . . . . . . . . . . 13 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
1817anbi2d 631 . . . . . . . . . . . 12 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
1918rexbidv 3256 . . . . . . . . . . 11 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2016, 19imbi12d 348 . . . . . . . . . 10 (𝑢 = (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2120rspcv 3566 . . . . . . . . 9 ((𝐶(ball‘(abs ∘ − ))𝑥) ∈ (TopOpen‘ℂfld) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2215, 21syl 17 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → (𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))))
2310, 22mpid 44 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
2413mopni2 23100 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣)
256, 24mp3an1 1445 . . . . . . . . . 10 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣)
26 ssrin 4160 . . . . . . . . . . . . 13 ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑣 ∩ (𝐴 ∖ {𝐵})))
27 imass2 5932 . . . . . . . . . . . . 13 (((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑣 ∩ (𝐴 ∖ {𝐵})) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))))
28 sstr2 3922 . . . . . . . . . . . . 13 ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
2926, 27, 283syl 18 . . . . . . . . . . . 12 ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3029com12 32 . . . . . . . . . . 11 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3130reximdv 3232 . . . . . . . . . 10 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (∃𝑦 ∈ ℝ+ (𝐵(ball‘(abs ∘ − ))𝑦) ⊆ 𝑣 → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3225, 31syl5com 31 . . . . . . . . 9 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ 𝐵𝑣) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3332impr 458 . . . . . . . 8 ((𝑣 ∈ (TopOpen‘ℂfld) ∧ (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))
3433rexlimiva 3240 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))
3523, 34syl6 35 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3635ralrimdva 3154 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
3713mopni2 23100 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → ∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢)
386, 37mp3an1 1445 . . . . . . . . 9 ((𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → ∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢)
39 r19.29r 3217 . . . . . . . . . . 11 ((∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑥 ∈ ℝ+ ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
403ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ ℂ)
41 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
4241rpxrd 12420 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ*)
4313blopn 23107 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ*) → (𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld))
446, 40, 42, 43mp3an2i 1463 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld))
45 blcntr 23020 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
466, 40, 41, 45mp3an2i 1463 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦))
47 eleq2 2878 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐵𝑣𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
48 ineq1 4131 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝑣 ∩ (𝐴 ∖ {𝐵})) = ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})))
4948imaeq2d 5896 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))))
5049sseq1d 3946 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
5147, 50anbi12d 633 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐵(ball‘(abs ∘ − ))𝑦) → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ (𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5251rspcev 3571 . . . . . . . . . . . . . . . . 17 (((𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld) ∧ (𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
5352expr 460 . . . . . . . . . . . . . . . 16 (((𝐵(ball‘(abs ∘ − ))𝑦) ∈ (TopOpen‘ℂfld) ∧ 𝐵 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5444, 46, 53syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
5554rexlimdva 3243 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥))))
56 sstr2 3922 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
5756com12 32 . . . . . . . . . . . . . . . 16 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → ((𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
5857anim2d 614 . . . . . . . . . . . . . . 15 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → (𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
5958reximdv 3232 . . . . . . . . . . . . . 14 ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6055, 59syl9 77 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6160impd 414 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6261rexlimdva 3243 . . . . . . . . . . 11 ((𝜑𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ+ ((𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6339, 62syl5 34 . . . . . . . . . 10 ((𝜑𝐶 ∈ ℂ) → ((∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
6463expd 419 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑥) ⊆ 𝑢 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6538, 64syl5 34 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → ((𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝐶𝑢) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6665expdimp 456 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (𝐶𝑢 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6766com23 86 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → (𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6867ralrimdva 3154 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
6936, 68impbid 215 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥)))
701ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝐹:𝐴⟶ℂ)
7170ffund 6491 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → Fun 𝐹)
72 inss2 4156 . . . . . . . . . 10 ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
73 difss 4059 . . . . . . . . . . 11 (𝐴 ∖ {𝐵}) ⊆ 𝐴
7470fdmd 6497 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → dom 𝐹 = 𝐴)
7573, 74sseqtrrid 3968 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝐴 ∖ {𝐵}) ⊆ dom 𝐹)
7672, 75sstrid 3926 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹)
77 funimass4 6705 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
7871, 76, 77syl2anc 587 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
796a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (abs ∘ − ) ∈ (∞Met‘ℂ))
80 simplrr 777 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℝ+)
8180rpxrd 12420 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℝ*)
823ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
8373, 2sstrid 3926 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
8483ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
8584sselda 3915 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
86 elbl3 22999 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℝ*) ∧ (𝐵 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧(abs ∘ − )𝐵) < 𝑦))
8779, 81, 82, 85, 86syl22anc 837 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (𝑧(abs ∘ − )𝐵) < 𝑦))
88 eqid 2798 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
8988cnmetdval 23376 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
9085, 82, 89syl2anc 587 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
9190breq1d 5040 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝑧(abs ∘ − )𝐵) < 𝑦 ↔ (abs‘(𝑧𝐵)) < 𝑦))
9287, 91bitrd 282 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ↔ (abs‘(𝑧𝐵)) < 𝑦))
93 simplrl 776 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ+)
9493rpxrd 12420 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ*)
95 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐶 ∈ ℂ)
96 eldifi 4054 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐴)
97 ffvelrn 6826 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℂ ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
9870, 96, 97syl2an 598 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
99 elbl3 22999 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ)) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥))
10079, 94, 95, 98, 99syl22anc 837 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥))
10188cnmetdval 23376 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹𝑧)(abs ∘ − )𝐶) = (abs‘((𝐹𝑧) − 𝐶)))
10298, 95, 101syl2anc 587 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧)(abs ∘ − )𝐶) = (abs‘((𝐹𝑧) − 𝐶)))
103102breq1d 5040 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧)(abs ∘ − )𝐶) < 𝑥 ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
104100, 103bitrd 282 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
10592, 104imbi12d 348 . . . . . . . . . 10 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
106105ralbidva 3161 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (∀𝑧 ∈ (𝐴 ∖ {𝐵})(𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ∀𝑧 ∈ (𝐴 ∖ {𝐵})((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
107 elin 3897 . . . . . . . . . . . . 13 (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})))
108107biancomi 466 . . . . . . . . . . . 12 (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)))
109108imbi1i 353 . . . . . . . . . . 11 ((𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
110 impexp 454 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦)) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))))
111109, 110bitr2i 279 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → (𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))) ↔ (𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)))
112111ralbii2 3131 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 ∖ {𝐵})(𝑧 ∈ (𝐵(ball‘(abs ∘ − ))𝑦) → (𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥)) ↔ ∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥))
113 impexp 454 . . . . . . . . . . 11 (((𝑧𝐴𝑧𝐵) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
114 eldifsn 4680 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴𝑧𝐵))
115114imbi1i 353 . . . . . . . . . . 11 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ ((𝑧𝐴𝑧𝐵) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
116 impexp 454 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
117116imbi2i 339 . . . . . . . . . . 11 ((𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → (𝑧𝐵 → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
118113, 115, 1173bitr4i 306 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) → ((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)) ↔ (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
119118ralbii2 3131 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 ∖ {𝐵})((abs‘(𝑧𝐵)) < 𝑦 → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))
120106, 112, 1193bitr3g 316 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (∀𝑧 ∈ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
12178, 120bitrd 282 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
122121anassrs 471 . . . . . 6 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ((𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
123122rexbidva 3255 . . . . 5 (((𝜑𝐶 ∈ ℂ) ∧ 𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
124123ralbidva 3161 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+ (𝐹 “ ((𝐵(ball‘(abs ∘ − ))𝑦) ∩ (𝐴 ∖ {𝐵}))) ⊆ (𝐶(ball‘(abs ∘ − ))𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
12569, 124bitrd 282 . . 3 ((𝜑𝐶 ∈ ℂ) → (∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥)))
126125pm5.32da 582 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝐶𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
1275, 126bitrd 282 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  cin 3880  wss 3881  {csn 4525   class class class wbr 5030  dom cdm 5519  cima 5522  ccom 5523  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  *cxr 10663   < clt 10664  cmin 10859  +crp 12377  abscabs 14585  TopOpenctopn 16687  ∞Metcxmet 20076  ballcbl 20078  fldccnfld 20091   lim climc 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cnp 21833  df-xms 22927  df-ms 22928  df-limc 24469
This theorem is referenced by:  dveflem  24582  dvferm1  24588  dvferm2  24590  lhop1  24617  ftc1lem6  24644  ulmdvlem3  24997  unblimceq0  33959  ftc1cnnc  35129  mullimc  42258  ellimcabssub0  42259  limcdm0  42260  mullimcf  42265  constlimc  42266  idlimc  42268  limcperiod  42270  limcrecl  42271  limcleqr  42286  neglimc  42289  addlimc  42290  0ellimcdiv  42291  limclner  42293  fperdvper  42561  ioodvbdlimc1lem2  42574  ioodvbdlimc2lem  42576
  Copyright terms: Public domain W3C validator