MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcgrg Structured version   Visualization version   GIF version

Theorem trgcgrg 28460
Description: The property for two triangles to be congruent to each other. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
trgcgrg.p 𝑃 = (Base‘𝐺)
trgcgrg.m = (dist‘𝐺)
trgcgrg.r = (cgrG‘𝐺)
trgcgrg.g (𝜑𝐺 ∈ TarskiG)
trgcgrg.a (𝜑𝐴𝑃)
trgcgrg.b (𝜑𝐵𝑃)
trgcgrg.c (𝜑𝐶𝑃)
trgcgrg.d (𝜑𝐷𝑃)
trgcgrg.e (𝜑𝐸𝑃)
trgcgrg.f (𝜑𝐹𝑃)
Assertion
Ref Expression
trgcgrg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))

Proof of Theorem trgcgrg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcgrg.a . . . . . . 7 (𝜑𝐴𝑃)
2 trgcgrg.b . . . . . . 7 (𝜑𝐵𝑃)
3 trgcgrg.c . . . . . . 7 (𝜑𝐶𝑃)
41, 2, 3s3cld 14779 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 wrdf 14425 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
64, 5syl 17 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
7 s3len 14801 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
87oveq2i 7360 . . . . . . 7 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
9 fzo0to3tp 13655 . . . . . . 7 (0..^3) = {0, 1, 2}
108, 9eqtri 2752 . . . . . 6 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = {0, 1, 2}
1110feq2i 6644 . . . . 5 (⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃 ↔ ⟨“𝐴𝐵𝐶”⟩:{0, 1, 2}⟶𝑃)
126, 11sylib 218 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:{0, 1, 2}⟶𝑃)
1312fdmd 6662 . . 3 (𝜑 → dom ⟨“𝐴𝐵𝐶”⟩ = {0, 1, 2})
1413raleqdv 3289 . . 3 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
1513, 14raleqbidv 3309 . 2 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
16 trgcgrg.p . . 3 𝑃 = (Base‘𝐺)
17 trgcgrg.m . . 3 = (dist‘𝐺)
18 trgcgrg.r . . 3 = (cgrG‘𝐺)
19 trgcgrg.g . . 3 (𝜑𝐺 ∈ TarskiG)
20 0re 11117 . . . . 5 0 ∈ ℝ
21 1re 11115 . . . . 5 1 ∈ ℝ
22 2re 12202 . . . . 5 2 ∈ ℝ
23 tpssi 4789 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ) → {0, 1, 2} ⊆ ℝ)
2420, 21, 22, 23mp3an 1463 . . . 4 {0, 1, 2} ⊆ ℝ
2524a1i 11 . . 3 (𝜑 → {0, 1, 2} ⊆ ℝ)
26 trgcgrg.d . . . . . 6 (𝜑𝐷𝑃)
27 trgcgrg.e . . . . . 6 (𝜑𝐸𝑃)
28 trgcgrg.f . . . . . 6 (𝜑𝐹𝑃)
2926, 27, 28s3cld 14779 . . . . 5 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
30 wrdf 14425 . . . . 5 (⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 → ⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃)
3129, 30syl 17 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃)
32 s3len 14801 . . . . . . 7 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
3332oveq2i 7360 . . . . . 6 (0..^(♯‘⟨“𝐷𝐸𝐹”⟩)) = (0..^3)
3433, 9eqtri 2752 . . . . 5 (0..^(♯‘⟨“𝐷𝐸𝐹”⟩)) = {0, 1, 2}
3534feq2i 6644 . . . 4 (⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃 ↔ ⟨“𝐷𝐸𝐹”⟩:{0, 1, 2}⟶𝑃)
3631, 35sylib 218 . . 3 (𝜑 → ⟨“𝐷𝐸𝐹”⟩:{0, 1, 2}⟶𝑃)
3716, 17, 18, 19, 25, 12, 36iscgrgd 28458 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
38 fveq2 6822 . . . . . . . . . 10 (𝑗 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘0))
39 s3fv0 14798 . . . . . . . . . . 11 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
401, 39syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4138, 40sylan9eqr 2786 . . . . . . . . 9 ((𝜑𝑗 = 0) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐴)
4241oveq2d 7365 . . . . . . . 8 ((𝜑𝑗 = 0) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
43 fveq2 6822 . . . . . . . . . 10 (𝑗 = 0 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘0))
44 s3fv0 14798 . . . . . . . . . . 11 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
4526, 44syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
4643, 45sylan9eqr 2786 . . . . . . . . 9 ((𝜑𝑗 = 0) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐷)
4746oveq2d 7365 . . . . . . . 8 ((𝜑𝑗 = 0) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
4842, 47eqeq12d 2745 . . . . . . 7 ((𝜑𝑗 = 0) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
49 fveq2 6822 . . . . . . . . . 10 (𝑗 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘1))
50 s3fv1 14799 . . . . . . . . . . 11 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
512, 50syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
5249, 51sylan9eqr 2786 . . . . . . . . 9 ((𝜑𝑗 = 1) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐵)
5352oveq2d 7365 . . . . . . . 8 ((𝜑𝑗 = 1) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
54 fveq2 6822 . . . . . . . . . 10 (𝑗 = 1 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘1))
55 s3fv1 14799 . . . . . . . . . . 11 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
5627, 55syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
5754, 56sylan9eqr 2786 . . . . . . . . 9 ((𝜑𝑗 = 1) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐸)
5857oveq2d 7365 . . . . . . . 8 ((𝜑𝑗 = 1) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
5953, 58eqeq12d 2745 . . . . . . 7 ((𝜑𝑗 = 1) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
60 fveq2 6822 . . . . . . . . . 10 (𝑗 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘2))
61 s3fv2 14800 . . . . . . . . . . 11 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
623, 61syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
6360, 62sylan9eqr 2786 . . . . . . . . 9 ((𝜑𝑗 = 2) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐶)
6463oveq2d 7365 . . . . . . . 8 ((𝜑𝑗 = 2) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
65 fveq2 6822 . . . . . . . . . 10 (𝑗 = 2 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘2))
66 s3fv2 14800 . . . . . . . . . . 11 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
6728, 66syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
6865, 67sylan9eqr 2786 . . . . . . . . 9 ((𝜑𝑗 = 2) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐹)
6968oveq2d 7365 . . . . . . . 8 ((𝜑𝑗 = 2) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
7064, 69eqeq12d 2745 . . . . . . 7 ((𝜑𝑗 = 2) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
71 0red 11118 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
72 1red 11116 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
7322a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
7448, 59, 70, 71, 72, 73raltpd 4733 . . . . . 6 (𝜑 → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
7574adantr 480 . . . . 5 ((𝜑𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
76 fveq2 6822 . . . . . . . . . 10 (𝑖 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
7776adantl 481 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
7840adantr 480 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
7977, 78eqtr2d 2765 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
8079oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
81 fveq2 6822 . . . . . . . . . 10 (𝑖 = 0 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘0))
8281adantl 481 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘0))
8345adantr 480 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
8482, 83eqtr2d 2765 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝐷 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
8584oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
8680, 85eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐴) = (𝐷 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
8779oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
8884oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
8987, 88eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐵) = (𝐷 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
9079oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
9184oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
9290, 91eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐶) = (𝐷 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
9386, 89, 923anbi123d 1438 . . . . 5 ((𝜑𝑖 = 0) → (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
9475, 93bitr4d 282 . . . 4 ((𝜑𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹))))
9574adantr 480 . . . . 5 ((𝜑𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
96 fveq2 6822 . . . . . . . . . 10 (𝑖 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
9796adantl 481 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
9851adantr 480 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
9997, 98eqtr2d 2765 . . . . . . . 8 ((𝜑𝑖 = 1) → 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
10099oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
101 fveq2 6822 . . . . . . . . . 10 (𝑖 = 1 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘1))
102101adantl 481 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘1))
10356adantr 480 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
104102, 103eqtr2d 2765 . . . . . . . 8 ((𝜑𝑖 = 1) → 𝐸 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
105104oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
106100, 105eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐴) = (𝐸 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
10799oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
108104oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
109107, 108eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐵) = (𝐸 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
11099oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
111104oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
112110, 111eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐶) = (𝐸 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
113106, 109, 1123anbi123d 1438 . . . . 5 ((𝜑𝑖 = 1) → (((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
11495, 113bitr4d 282 . . . 4 ((𝜑𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹))))
11574adantr 480 . . . . 5 ((𝜑𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
116 fveq2 6822 . . . . . . . . . 10 (𝑖 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
117116adantl 481 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
11862adantr 480 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
119117, 118eqtr2d 2765 . . . . . . . 8 ((𝜑𝑖 = 2) → 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
120119oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
121 fveq2 6822 . . . . . . . . . 10 (𝑖 = 2 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘2))
122121adantl 481 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘2))
12367adantr 480 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
124122, 123eqtr2d 2765 . . . . . . . 8 ((𝜑𝑖 = 2) → 𝐹 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
125124oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
126120, 125eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐴) = (𝐹 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
127119oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
128124oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
129127, 128eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐵) = (𝐹 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
130119oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
131124oveq1d 7364 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
132130, 131eqeq12d 2745 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐶) = (𝐹 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
133126, 129, 1323anbi123d 1438 . . . . 5 ((𝜑𝑖 = 2) → (((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
134115, 133bitr4d 282 . . . 4 ((𝜑𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))))
13594, 114, 134, 71, 72, 73raltpd 4733 . . 3 (𝜑 → (∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)))))
136 an33rean 1485 . . . 4 ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))))
137 eqid 2729 . . . . . . . 8 (Itv‘𝐺) = (Itv‘𝐺)
13816, 17, 137, 19, 1, 26tgcgrtriv 28429 . . . . . . 7 (𝜑 → (𝐴 𝐴) = (𝐷 𝐷))
13916, 17, 137, 19, 2, 27tgcgrtriv 28429 . . . . . . 7 (𝜑 → (𝐵 𝐵) = (𝐸 𝐸))
14016, 17, 137, 19, 3, 28tgcgrtriv 28429 . . . . . . 7 (𝜑 → (𝐶 𝐶) = (𝐹 𝐹))
141138, 139, 1403jca 1128 . . . . . 6 (𝜑 → ((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)))
142141biantrurd 532 . . . . 5 (𝜑 → ((((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))))
143 simprl 770 . . . . . . 7 ((𝜑 ∧ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷))) → (𝐴 𝐵) = (𝐷 𝐸))
144 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → (𝐴 𝐵) = (𝐷 𝐸))
14519adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐺 ∈ TarskiG)
1461adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐴𝑃)
1472adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐵𝑃)
14826adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐷𝑃)
14927adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐸𝑃)
15016, 17, 137, 145, 146, 147, 148, 149, 144tgcgrcomlr 28425 . . . . . . . 8 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → (𝐵 𝐴) = (𝐸 𝐷))
151144, 150jca 511 . . . . . . 7 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)))
152143, 151impbida 800 . . . . . 6 (𝜑 → (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ↔ (𝐴 𝐵) = (𝐷 𝐸)))
153 simprl 770 . . . . . . 7 ((𝜑 ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸))) → (𝐵 𝐶) = (𝐸 𝐹))
154 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → (𝐵 𝐶) = (𝐸 𝐹))
15519adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐺 ∈ TarskiG)
1562adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐵𝑃)
1573adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐶𝑃)
15827adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐸𝑃)
15928adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐹𝑃)
16016, 17, 137, 155, 156, 157, 158, 159, 154tgcgrcomlr 28425 . . . . . . . 8 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → (𝐶 𝐵) = (𝐹 𝐸))
161154, 160jca 511 . . . . . . 7 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)))
162153, 161impbida 800 . . . . . 6 (𝜑 → (((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ↔ (𝐵 𝐶) = (𝐸 𝐹)))
163 simprr 772 . . . . . . 7 ((𝜑 ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) → (𝐶 𝐴) = (𝐹 𝐷))
16419adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐺 ∈ TarskiG)
1653adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐶𝑃)
1661adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐴𝑃)
16728adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐹𝑃)
16826adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐷𝑃)
169 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → (𝐶 𝐴) = (𝐹 𝐷))
17016, 17, 137, 164, 165, 166, 167, 168, 169tgcgrcomlr 28425 . . . . . . . 8 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → (𝐴 𝐶) = (𝐷 𝐹))
171170, 169jca 511 . . . . . . 7 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))
172163, 171impbida 800 . . . . . 6 (𝜑 → (((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ↔ (𝐶 𝐴) = (𝐹 𝐷)))
173152, 162, 1723anbi123d 1438 . . . . 5 (𝜑 → ((((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
174142, 173bitr3d 281 . . . 4 (𝜑 → ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
175136, 174bitrid 283 . . 3 (𝜑 → ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
176135, 175bitr2d 280 . 2 (𝜑 → (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
17715, 37, 1763bitr4d 311 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3903  {ctp 4581   class class class wbr 5092  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010  2c2 12183  3c3 12184  ..^cfzo 13557  chash 14237  Word cword 14420  ⟨“cs3 14749  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378  cgrGccgrg 28455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28393  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456
This theorem is referenced by:  trgcgr  28461  cgr3simp1  28465  cgr3simp2  28466  cgr3simp3  28467  dfcgrg2  28808
  Copyright terms: Public domain W3C validator