| Step | Hyp | Ref
| Expression |
| 1 | | trgcgrg.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 2 | | trgcgrg.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 3 | | trgcgrg.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 4 | 1, 2, 3 | s3cld 14911 |
. . . . . 6
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃) |
| 5 | | wrdf 14557 |
. . . . . 6
⊢
(〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 → 〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶𝑃) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶𝑃) |
| 7 | | s3len 14933 |
. . . . . . . 8
⊢
(♯‘〈“𝐴𝐵𝐶”〉) = 3 |
| 8 | 7 | oveq2i 7442 |
. . . . . . 7
⊢
(0..^(♯‘〈“𝐴𝐵𝐶”〉)) = (0..^3) |
| 9 | | fzo0to3tp 13791 |
. . . . . . 7
⊢ (0..^3) =
{0, 1, 2} |
| 10 | 8, 9 | eqtri 2765 |
. . . . . 6
⊢
(0..^(♯‘〈“𝐴𝐵𝐶”〉)) = {0, 1, 2} |
| 11 | 10 | feq2i 6728 |
. . . . 5
⊢
(〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶𝑃 ↔ 〈“𝐴𝐵𝐶”〉:{0, 1, 2}⟶𝑃) |
| 12 | 6, 11 | sylib 218 |
. . . 4
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉:{0, 1, 2}⟶𝑃) |
| 13 | 12 | fdmd 6746 |
. . 3
⊢ (𝜑 → dom 〈“𝐴𝐵𝐶”〉 = {0, 1, 2}) |
| 14 | 13 | raleqdv 3326 |
. . 3
⊢ (𝜑 → (∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)))) |
| 15 | 13, 14 | raleqbidv 3346 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ dom 〈“𝐴𝐵𝐶”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)))) |
| 16 | | trgcgrg.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
| 17 | | trgcgrg.m |
. . 3
⊢ − =
(dist‘𝐺) |
| 18 | | trgcgrg.r |
. . 3
⊢ ∼ =
(cgrG‘𝐺) |
| 19 | | trgcgrg.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 20 | | 0re 11263 |
. . . . 5
⊢ 0 ∈
ℝ |
| 21 | | 1re 11261 |
. . . . 5
⊢ 1 ∈
ℝ |
| 22 | | 2re 12340 |
. . . . 5
⊢ 2 ∈
ℝ |
| 23 | | tpssi 4838 |
. . . . 5
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ) → {0, 1, 2}
⊆ ℝ) |
| 24 | 20, 21, 22, 23 | mp3an 1463 |
. . . 4
⊢ {0, 1, 2}
⊆ ℝ |
| 25 | 24 | a1i 11 |
. . 3
⊢ (𝜑 → {0, 1, 2} ⊆
ℝ) |
| 26 | | trgcgrg.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 27 | | trgcgrg.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| 28 | | trgcgrg.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| 29 | 26, 27, 28 | s3cld 14911 |
. . . . 5
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ Word 𝑃) |
| 30 | | wrdf 14557 |
. . . . 5
⊢
(〈“𝐷𝐸𝐹”〉 ∈ Word 𝑃 → 〈“𝐷𝐸𝐹”〉:(0..^(♯‘〈“𝐷𝐸𝐹”〉))⟶𝑃) |
| 31 | 29, 30 | syl 17 |
. . . 4
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉:(0..^(♯‘〈“𝐷𝐸𝐹”〉))⟶𝑃) |
| 32 | | s3len 14933 |
. . . . . . 7
⊢
(♯‘〈“𝐷𝐸𝐹”〉) = 3 |
| 33 | 32 | oveq2i 7442 |
. . . . . 6
⊢
(0..^(♯‘〈“𝐷𝐸𝐹”〉)) = (0..^3) |
| 34 | 33, 9 | eqtri 2765 |
. . . . 5
⊢
(0..^(♯‘〈“𝐷𝐸𝐹”〉)) = {0, 1, 2} |
| 35 | 34 | feq2i 6728 |
. . . 4
⊢
(〈“𝐷𝐸𝐹”〉:(0..^(♯‘〈“𝐷𝐸𝐹”〉))⟶𝑃 ↔ 〈“𝐷𝐸𝐹”〉:{0, 1, 2}⟶𝑃) |
| 36 | 31, 35 | sylib 218 |
. . 3
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉:{0, 1, 2}⟶𝑃) |
| 37 | 16, 17, 18, 19, 25, 12, 36 | iscgrgd 28521 |
. 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉 ↔ ∀𝑖 ∈ dom 〈“𝐴𝐵𝐶”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)))) |
| 38 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (〈“𝐴𝐵𝐶”〉‘𝑗) = (〈“𝐴𝐵𝐶”〉‘0)) |
| 39 | | s3fv0 14930 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
| 40 | 1, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
| 41 | 38, 40 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 0) → (〈“𝐴𝐵𝐶”〉‘𝑗) = 𝐴) |
| 42 | 41 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 0) → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴)) |
| 43 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (〈“𝐷𝐸𝐹”〉‘𝑗) = (〈“𝐷𝐸𝐹”〉‘0)) |
| 44 | | s3fv0 14930 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘0) = 𝐷) |
| 45 | 26, 44 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘0) = 𝐷) |
| 46 | 43, 45 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 0) → (〈“𝐷𝐸𝐹”〉‘𝑗) = 𝐷) |
| 47 | 46 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 0) → ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷)) |
| 48 | 42, 47 | eqeq12d 2753 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 = 0) → (((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷))) |
| 49 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = 1 → (〈“𝐴𝐵𝐶”〉‘𝑗) = (〈“𝐴𝐵𝐶”〉‘1)) |
| 50 | | s3fv1 14931 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
| 51 | 2, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
| 52 | 49, 51 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 1) → (〈“𝐴𝐵𝐶”〉‘𝑗) = 𝐵) |
| 53 | 52 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 1) → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵)) |
| 54 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = 1 → (〈“𝐷𝐸𝐹”〉‘𝑗) = (〈“𝐷𝐸𝐹”〉‘1)) |
| 55 | | s3fv1 14931 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘1) = 𝐸) |
| 56 | 27, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘1) = 𝐸) |
| 57 | 54, 56 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 1) → (〈“𝐷𝐸𝐹”〉‘𝑗) = 𝐸) |
| 58 | 57 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 1) → ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸)) |
| 59 | 53, 58 | eqeq12d 2753 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 = 1) → (((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸))) |
| 60 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = 2 → (〈“𝐴𝐵𝐶”〉‘𝑗) = (〈“𝐴𝐵𝐶”〉‘2)) |
| 61 | | s3fv2 14932 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
| 62 | 3, 61 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
| 63 | 60, 62 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 2) → (〈“𝐴𝐵𝐶”〉‘𝑗) = 𝐶) |
| 64 | 63 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 2) → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶)) |
| 65 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = 2 → (〈“𝐷𝐸𝐹”〉‘𝑗) = (〈“𝐷𝐸𝐹”〉‘2)) |
| 66 | | s3fv2 14932 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘2) = 𝐹) |
| 67 | 28, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘2) = 𝐹) |
| 68 | 65, 67 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 2) → (〈“𝐷𝐸𝐹”〉‘𝑗) = 𝐹) |
| 69 | 68 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 2) → ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)) |
| 70 | 64, 69 | eqeq12d 2753 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 = 2) → (((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹))) |
| 71 | | 0red 11264 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
| 72 | | 1red 11262 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) |
| 73 | 22 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) |
| 74 | 48, 59, 70, 71, 72, 73 | raltpd 4781 |
. . . . . 6
⊢ (𝜑 → (∀𝑗 ∈ {0, 1, 2}
((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
| 75 | 74 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
| 76 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘0)) |
| 77 | 76 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘0)) |
| 78 | 40 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
| 79 | 77, 78 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝐴 = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
| 80 | 79 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐴 − 𝐴) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴)) |
| 81 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘0)) |
| 82 | 81 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘0)) |
| 83 | 45 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐷𝐸𝐹”〉‘0) = 𝐷) |
| 84 | 82, 83 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝐷 = (〈“𝐷𝐸𝐹”〉‘𝑖)) |
| 85 | 84 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐷 − 𝐷) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷)) |
| 86 | 80, 85 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝐴 − 𝐴) = (𝐷 − 𝐷) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷))) |
| 87 | 79 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐴 − 𝐵) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵)) |
| 88 | 84 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐷 − 𝐸) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸)) |
| 89 | 87, 88 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝐴 − 𝐵) = (𝐷 − 𝐸) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸))) |
| 90 | 79 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐴 − 𝐶) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶)) |
| 91 | 84 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐷 − 𝐹) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)) |
| 92 | 90, 91 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝐴 − 𝐶) = (𝐷 − 𝐹) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹))) |
| 93 | 86, 89, 92 | 3anbi123d 1438 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 0) → (((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
| 94 | 75, 93 | bitr4d 282 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)))) |
| 95 | 74 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
| 96 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘1)) |
| 97 | 96 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘1)) |
| 98 | 51 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
| 99 | 97, 98 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 1) → 𝐵 = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
| 100 | 99 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐵 − 𝐴) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴)) |
| 101 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘1)) |
| 102 | 101 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘1)) |
| 103 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐷𝐸𝐹”〉‘1) = 𝐸) |
| 104 | 102, 103 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 1) → 𝐸 = (〈“𝐷𝐸𝐹”〉‘𝑖)) |
| 105 | 104 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐸 − 𝐷) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷)) |
| 106 | 100, 105 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 1) → ((𝐵 − 𝐴) = (𝐸 − 𝐷) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷))) |
| 107 | 99 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐵 − 𝐵) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵)) |
| 108 | 104 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐸 − 𝐸) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸)) |
| 109 | 107, 108 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 1) → ((𝐵 − 𝐵) = (𝐸 − 𝐸) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸))) |
| 110 | 99 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐵 − 𝐶) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶)) |
| 111 | 104 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐸 − 𝐹) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)) |
| 112 | 110, 111 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 1) → ((𝐵 − 𝐶) = (𝐸 − 𝐹) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹))) |
| 113 | 106, 109,
112 | 3anbi123d 1438 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 1) → (((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
| 114 | 95, 113 | bitr4d 282 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)))) |
| 115 | 74 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
| 116 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 2 → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘2)) |
| 117 | 116 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘2)) |
| 118 | 62 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
| 119 | 117, 118 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 2) → 𝐶 = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
| 120 | 119 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐶 − 𝐴) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴)) |
| 121 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 2 → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘2)) |
| 122 | 121 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘2)) |
| 123 | 67 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐷𝐸𝐹”〉‘2) = 𝐹) |
| 124 | 122, 123 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 2) → 𝐹 = (〈“𝐷𝐸𝐹”〉‘𝑖)) |
| 125 | 124 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐹 − 𝐷) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷)) |
| 126 | 120, 125 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 2) → ((𝐶 − 𝐴) = (𝐹 − 𝐷) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷))) |
| 127 | 119 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐶 − 𝐵) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵)) |
| 128 | 124 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐹 − 𝐸) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸)) |
| 129 | 127, 128 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 2) → ((𝐶 − 𝐵) = (𝐹 − 𝐸) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸))) |
| 130 | 119 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐶 − 𝐶) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶)) |
| 131 | 124 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐹 − 𝐹) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)) |
| 132 | 130, 131 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 2) → ((𝐶 − 𝐶) = (𝐹 − 𝐹) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹))) |
| 133 | 126, 129,
132 | 3anbi123d 1438 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 2) → (((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
| 134 | 115, 133 | bitr4d 282 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)))) |
| 135 | 94, 114, 134, 71, 72, 73 | raltpd 4781 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2}
((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)) ∧ ((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) ∧ ((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹))))) |
| 136 | | an33rean 1485 |
. . . 4
⊢ ((((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)) ∧ ((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) ∧ ((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹))) ↔ (((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)) ∧ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))))) |
| 137 | | eqid 2737 |
. . . . . . . 8
⊢
(Itv‘𝐺) =
(Itv‘𝐺) |
| 138 | 16, 17, 137, 19, 1, 26 | tgcgrtriv 28492 |
. . . . . . 7
⊢ (𝜑 → (𝐴 − 𝐴) = (𝐷 − 𝐷)) |
| 139 | 16, 17, 137, 19, 2, 27 | tgcgrtriv 28492 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐵) = (𝐸 − 𝐸)) |
| 140 | 16, 17, 137, 19, 3, 28 | tgcgrtriv 28492 |
. . . . . . 7
⊢ (𝜑 → (𝐶 − 𝐶) = (𝐹 − 𝐹)) |
| 141 | 138, 139,
140 | 3jca 1129 |
. . . . . 6
⊢ (𝜑 → ((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹))) |
| 142 | 141 | biantrurd 532 |
. . . . 5
⊢ (𝜑 → ((((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) ↔ (((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)) ∧ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))))) |
| 143 | | simprl 771 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷))) → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| 144 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| 145 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐺 ∈ TarskiG) |
| 146 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐴 ∈ 𝑃) |
| 147 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐵 ∈ 𝑃) |
| 148 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐷 ∈ 𝑃) |
| 149 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐸 ∈ 𝑃) |
| 150 | 16, 17, 137, 145, 146, 147, 148, 149, 144 | tgcgrcomlr 28488 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → (𝐵 − 𝐴) = (𝐸 − 𝐷)) |
| 151 | 144, 150 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷))) |
| 152 | 143, 151 | impbida 801 |
. . . . . 6
⊢ (𝜑 → (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ↔ (𝐴 − 𝐵) = (𝐷 − 𝐸))) |
| 153 | | simprl 771 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸))) → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| 154 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| 155 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐺 ∈ TarskiG) |
| 156 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐵 ∈ 𝑃) |
| 157 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐶 ∈ 𝑃) |
| 158 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐸 ∈ 𝑃) |
| 159 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐹 ∈ 𝑃) |
| 160 | 16, 17, 137, 155, 156, 157, 158, 159, 154 | tgcgrcomlr 28488 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → (𝐶 − 𝐵) = (𝐹 − 𝐸)) |
| 161 | 154, 160 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸))) |
| 162 | 153, 161 | impbida 801 |
. . . . . 6
⊢ (𝜑 → (((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ↔ (𝐵 − 𝐶) = (𝐸 − 𝐹))) |
| 163 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 164 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐺 ∈ TarskiG) |
| 165 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐶 ∈ 𝑃) |
| 166 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐴 ∈ 𝑃) |
| 167 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐹 ∈ 𝑃) |
| 168 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐷 ∈ 𝑃) |
| 169 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 170 | 16, 17, 137, 164, 165, 166, 167, 168, 169 | tgcgrcomlr 28488 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| 171 | 170, 169 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) |
| 172 | 163, 171 | impbida 801 |
. . . . . 6
⊢ (𝜑 → (((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ↔ (𝐶 − 𝐴) = (𝐹 − 𝐷))) |
| 173 | 152, 162,
172 | 3anbi123d 1438 |
. . . . 5
⊢ (𝜑 → ((((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
| 174 | 142, 173 | bitr3d 281 |
. . . 4
⊢ (𝜑 → ((((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)) ∧ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
| 175 | 136, 174 | bitrid 283 |
. . 3
⊢ (𝜑 → ((((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)) ∧ ((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) ∧ ((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹))) ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
| 176 | 135, 175 | bitr2d 280 |
. 2
⊢ (𝜑 → (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)))) |
| 177 | 15, 37, 176 | 3bitr4d 311 |
1
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |