MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcgrg Structured version   Visualization version   GIF version

Theorem trgcgrg 28021
Description: The property for two triangles to be congruent to each other. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
trgcgrg.p 𝑃 = (Baseβ€˜πΊ)
trgcgrg.m βˆ’ = (distβ€˜πΊ)
trgcgrg.r ∼ = (cgrGβ€˜πΊ)
trgcgrg.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
trgcgrg.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
trgcgrg.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
trgcgrg.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
trgcgrg.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
trgcgrg.e (πœ‘ β†’ 𝐸 ∈ 𝑃)
trgcgrg.f (πœ‘ β†’ 𝐹 ∈ 𝑃)
Assertion
Ref Expression
trgcgrg (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ© ∼ βŸ¨β€œπ·πΈπΉβ€βŸ© ↔ ((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))))

Proof of Theorem trgcgrg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcgrg.a . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ 𝑃)
2 trgcgrg.b . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ 𝑃)
3 trgcgrg.c . . . . . . 7 (πœ‘ β†’ 𝐢 ∈ 𝑃)
41, 2, 3s3cld 14827 . . . . . 6 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ Word 𝑃)
5 wrdf 14473 . . . . . 6 (βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ Word 𝑃 β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0..^(β™―β€˜βŸ¨β€œπ΄π΅πΆβ€βŸ©))βŸΆπ‘ƒ)
64, 5syl 17 . . . . 5 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0..^(β™―β€˜βŸ¨β€œπ΄π΅πΆβ€βŸ©))βŸΆπ‘ƒ)
7 s3len 14849 . . . . . . . 8 (β™―β€˜βŸ¨β€œπ΄π΅πΆβ€βŸ©) = 3
87oveq2i 7422 . . . . . . 7 (0..^(β™―β€˜βŸ¨β€œπ΄π΅πΆβ€βŸ©)) = (0..^3)
9 fzo0to3tp 13722 . . . . . . 7 (0..^3) = {0, 1, 2}
108, 9eqtri 2760 . . . . . 6 (0..^(β™―β€˜βŸ¨β€œπ΄π΅πΆβ€βŸ©)) = {0, 1, 2}
1110feq2i 6709 . . . . 5 (βŸ¨β€œπ΄π΅πΆβ€βŸ©:(0..^(β™―β€˜βŸ¨β€œπ΄π΅πΆβ€βŸ©))βŸΆπ‘ƒ ↔ βŸ¨β€œπ΄π΅πΆβ€βŸ©:{0, 1, 2}βŸΆπ‘ƒ)
126, 11sylib 217 . . . 4 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©:{0, 1, 2}βŸΆπ‘ƒ)
1312fdmd 6728 . . 3 (πœ‘ β†’ dom βŸ¨β€œπ΄π΅πΆβ€βŸ© = {0, 1, 2})
1413raleqdv 3325 . . 3 (πœ‘ β†’ (βˆ€π‘— ∈ dom βŸ¨β€œπ΄π΅πΆβ€βŸ©((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—))))
1513, 14raleqbidv 3342 . 2 (πœ‘ β†’ (βˆ€π‘– ∈ dom βŸ¨β€œπ΄π΅πΆβ€βŸ©βˆ€π‘— ∈ dom βŸ¨β€œπ΄π΅πΆβ€βŸ©((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ βˆ€π‘– ∈ {0, 1, 2}βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—))))
16 trgcgrg.p . . 3 𝑃 = (Baseβ€˜πΊ)
17 trgcgrg.m . . 3 βˆ’ = (distβ€˜πΊ)
18 trgcgrg.r . . 3 ∼ = (cgrGβ€˜πΊ)
19 trgcgrg.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
20 0re 11220 . . . . 5 0 ∈ ℝ
21 1re 11218 . . . . 5 1 ∈ ℝ
22 2re 12290 . . . . 5 2 ∈ ℝ
23 tpssi 4839 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ) β†’ {0, 1, 2} βŠ† ℝ)
2420, 21, 22, 23mp3an 1461 . . . 4 {0, 1, 2} βŠ† ℝ
2524a1i 11 . . 3 (πœ‘ β†’ {0, 1, 2} βŠ† ℝ)
26 trgcgrg.d . . . . . 6 (πœ‘ β†’ 𝐷 ∈ 𝑃)
27 trgcgrg.e . . . . . 6 (πœ‘ β†’ 𝐸 ∈ 𝑃)
28 trgcgrg.f . . . . . 6 (πœ‘ β†’ 𝐹 ∈ 𝑃)
2926, 27, 28s3cld 14827 . . . . 5 (πœ‘ β†’ βŸ¨β€œπ·πΈπΉβ€βŸ© ∈ Word 𝑃)
30 wrdf 14473 . . . . 5 (βŸ¨β€œπ·πΈπΉβ€βŸ© ∈ Word 𝑃 β†’ βŸ¨β€œπ·πΈπΉβ€βŸ©:(0..^(β™―β€˜βŸ¨β€œπ·πΈπΉβ€βŸ©))βŸΆπ‘ƒ)
3129, 30syl 17 . . . 4 (πœ‘ β†’ βŸ¨β€œπ·πΈπΉβ€βŸ©:(0..^(β™―β€˜βŸ¨β€œπ·πΈπΉβ€βŸ©))βŸΆπ‘ƒ)
32 s3len 14849 . . . . . . 7 (β™―β€˜βŸ¨β€œπ·πΈπΉβ€βŸ©) = 3
3332oveq2i 7422 . . . . . 6 (0..^(β™―β€˜βŸ¨β€œπ·πΈπΉβ€βŸ©)) = (0..^3)
3433, 9eqtri 2760 . . . . 5 (0..^(β™―β€˜βŸ¨β€œπ·πΈπΉβ€βŸ©)) = {0, 1, 2}
3534feq2i 6709 . . . 4 (βŸ¨β€œπ·πΈπΉβ€βŸ©:(0..^(β™―β€˜βŸ¨β€œπ·πΈπΉβ€βŸ©))βŸΆπ‘ƒ ↔ βŸ¨β€œπ·πΈπΉβ€βŸ©:{0, 1, 2}βŸΆπ‘ƒ)
3631, 35sylib 217 . . 3 (πœ‘ β†’ βŸ¨β€œπ·πΈπΉβ€βŸ©:{0, 1, 2}βŸΆπ‘ƒ)
3716, 17, 18, 19, 25, 12, 36iscgrgd 28019 . 2 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ© ∼ βŸ¨β€œπ·πΈπΉβ€βŸ© ↔ βˆ€π‘– ∈ dom βŸ¨β€œπ΄π΅πΆβ€βŸ©βˆ€π‘— ∈ dom βŸ¨β€œπ΄π΅πΆβ€βŸ©((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—))))
38 fveq2 6891 . . . . . . . . . 10 (𝑗 = 0 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0))
39 s3fv0 14846 . . . . . . . . . . 11 (𝐴 ∈ 𝑃 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0) = 𝐴)
401, 39syl 17 . . . . . . . . . 10 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0) = 𝐴)
4138, 40sylan9eqr 2794 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 = 0) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—) = 𝐴)
4241oveq2d 7427 . . . . . . . 8 ((πœ‘ ∧ 𝑗 = 0) β†’ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴))
43 fveq2 6891 . . . . . . . . . 10 (𝑗 = 0 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜0))
44 s3fv0 14846 . . . . . . . . . . 11 (𝐷 ∈ 𝑃 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜0) = 𝐷)
4526, 44syl 17 . . . . . . . . . 10 (πœ‘ β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜0) = 𝐷)
4643, 45sylan9eqr 2794 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 = 0) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—) = 𝐷)
4746oveq2d 7427 . . . . . . . 8 ((πœ‘ ∧ 𝑗 = 0) β†’ ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷))
4842, 47eqeq12d 2748 . . . . . . 7 ((πœ‘ ∧ 𝑗 = 0) β†’ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷)))
49 fveq2 6891 . . . . . . . . . 10 (𝑗 = 1 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1))
50 s3fv1 14847 . . . . . . . . . . 11 (𝐡 ∈ 𝑃 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1) = 𝐡)
512, 50syl 17 . . . . . . . . . 10 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1) = 𝐡)
5249, 51sylan9eqr 2794 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 = 1) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—) = 𝐡)
5352oveq2d 7427 . . . . . . . 8 ((πœ‘ ∧ 𝑗 = 1) β†’ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡))
54 fveq2 6891 . . . . . . . . . 10 (𝑗 = 1 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜1))
55 s3fv1 14847 . . . . . . . . . . 11 (𝐸 ∈ 𝑃 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜1) = 𝐸)
5627, 55syl 17 . . . . . . . . . 10 (πœ‘ β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜1) = 𝐸)
5754, 56sylan9eqr 2794 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 = 1) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—) = 𝐸)
5857oveq2d 7427 . . . . . . . 8 ((πœ‘ ∧ 𝑗 = 1) β†’ ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸))
5953, 58eqeq12d 2748 . . . . . . 7 ((πœ‘ ∧ 𝑗 = 1) β†’ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸)))
60 fveq2 6891 . . . . . . . . . 10 (𝑗 = 2 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2))
61 s3fv2 14848 . . . . . . . . . . 11 (𝐢 ∈ 𝑃 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2) = 𝐢)
623, 61syl 17 . . . . . . . . . 10 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2) = 𝐢)
6360, 62sylan9eqr 2794 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 = 2) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—) = 𝐢)
6463oveq2d 7427 . . . . . . . 8 ((πœ‘ ∧ 𝑗 = 2) β†’ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢))
65 fveq2 6891 . . . . . . . . . 10 (𝑗 = 2 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜2))
66 s3fv2 14848 . . . . . . . . . . 11 (𝐹 ∈ 𝑃 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜2) = 𝐹)
6728, 66syl 17 . . . . . . . . . 10 (πœ‘ β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜2) = 𝐹)
6865, 67sylan9eqr 2794 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 = 2) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—) = 𝐹)
6968oveq2d 7427 . . . . . . . 8 ((πœ‘ ∧ 𝑗 = 2) β†’ ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))
7064, 69eqeq12d 2748 . . . . . . 7 ((πœ‘ ∧ 𝑗 = 2) β†’ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹)))
71 0red 11221 . . . . . . 7 (πœ‘ β†’ 0 ∈ ℝ)
72 1red 11219 . . . . . . 7 (πœ‘ β†’ 1 ∈ ℝ)
7322a1i 11 . . . . . . 7 (πœ‘ β†’ 2 ∈ ℝ)
7448, 59, 70, 71, 72, 73raltpd 4785 . . . . . 6 (πœ‘ β†’ (βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))))
7574adantr 481 . . . . 5 ((πœ‘ ∧ 𝑖 = 0) β†’ (βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))))
76 fveq2 6891 . . . . . . . . . 10 (𝑖 = 0 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0))
7776adantl 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 0) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0))
7840adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 0) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜0) = 𝐴)
7977, 78eqtr2d 2773 . . . . . . . 8 ((πœ‘ ∧ 𝑖 = 0) β†’ 𝐴 = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–))
8079oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 0) β†’ (𝐴 βˆ’ 𝐴) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴))
81 fveq2 6891 . . . . . . . . . 10 (𝑖 = 0 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜0))
8281adantl 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 0) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜0))
8345adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 0) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜0) = 𝐷)
8482, 83eqtr2d 2773 . . . . . . . 8 ((πœ‘ ∧ 𝑖 = 0) β†’ 𝐷 = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–))
8584oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 0) β†’ (𝐷 βˆ’ 𝐷) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷))
8680, 85eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 0) β†’ ((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷)))
8779oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 0) β†’ (𝐴 βˆ’ 𝐡) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡))
8884oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 0) β†’ (𝐷 βˆ’ 𝐸) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸))
8987, 88eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 0) β†’ ((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸)))
9079oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 0) β†’ (𝐴 βˆ’ 𝐢) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢))
9184oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 0) β†’ (𝐷 βˆ’ 𝐹) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))
9290, 91eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 0) β†’ ((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹)))
9386, 89, 923anbi123d 1436 . . . . 5 ((πœ‘ ∧ 𝑖 = 0) β†’ (((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹)) ↔ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))))
9475, 93bitr4d 281 . . . 4 ((πœ‘ ∧ 𝑖 = 0) β†’ (βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ ((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹))))
9574adantr 481 . . . . 5 ((πœ‘ ∧ 𝑖 = 1) β†’ (βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))))
96 fveq2 6891 . . . . . . . . . 10 (𝑖 = 1 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1))
9796adantl 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 1) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1))
9851adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 1) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜1) = 𝐡)
9997, 98eqtr2d 2773 . . . . . . . 8 ((πœ‘ ∧ 𝑖 = 1) β†’ 𝐡 = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–))
10099oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 1) β†’ (𝐡 βˆ’ 𝐴) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴))
101 fveq2 6891 . . . . . . . . . 10 (𝑖 = 1 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜1))
102101adantl 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 1) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜1))
10356adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 1) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜1) = 𝐸)
104102, 103eqtr2d 2773 . . . . . . . 8 ((πœ‘ ∧ 𝑖 = 1) β†’ 𝐸 = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–))
105104oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 1) β†’ (𝐸 βˆ’ 𝐷) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷))
106100, 105eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 1) β†’ ((𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷)))
10799oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 1) β†’ (𝐡 βˆ’ 𝐡) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡))
108104oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 1) β†’ (𝐸 βˆ’ 𝐸) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸))
109107, 108eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 1) β†’ ((𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸)))
11099oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 1) β†’ (𝐡 βˆ’ 𝐢) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢))
111104oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 1) β†’ (𝐸 βˆ’ 𝐹) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))
112110, 111eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 1) β†’ ((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹)))
113106, 109, 1123anbi123d 1436 . . . . 5 ((πœ‘ ∧ 𝑖 = 1) β†’ (((𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) ↔ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))))
11495, 113bitr4d 281 . . . 4 ((πœ‘ ∧ 𝑖 = 1) β†’ (βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ ((𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹))))
11574adantr 481 . . . . 5 ((πœ‘ ∧ 𝑖 = 2) β†’ (βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))))
116 fveq2 6891 . . . . . . . . . 10 (𝑖 = 2 β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2))
117116adantl 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 2) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2))
11862adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 2) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜2) = 𝐢)
119117, 118eqtr2d 2773 . . . . . . . 8 ((πœ‘ ∧ 𝑖 = 2) β†’ 𝐢 = (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–))
120119oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 2) β†’ (𝐢 βˆ’ 𝐴) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴))
121 fveq2 6891 . . . . . . . . . 10 (𝑖 = 2 β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜2))
122121adantl 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 2) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜2))
12367adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 = 2) β†’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜2) = 𝐹)
124122, 123eqtr2d 2773 . . . . . . . 8 ((πœ‘ ∧ 𝑖 = 2) β†’ 𝐹 = (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–))
125124oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 2) β†’ (𝐹 βˆ’ 𝐷) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷))
126120, 125eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 2) β†’ ((𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷)))
127119oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 2) β†’ (𝐢 βˆ’ 𝐡) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡))
128124oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 2) β†’ (𝐹 βˆ’ 𝐸) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸))
129127, 128eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 2) β†’ ((𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸)))
130119oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 2) β†’ (𝐢 βˆ’ 𝐢) = ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢))
131124oveq1d 7426 . . . . . . 7 ((πœ‘ ∧ 𝑖 = 2) β†’ (𝐹 βˆ’ 𝐹) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))
132130, 131eqeq12d 2748 . . . . . 6 ((πœ‘ ∧ 𝑖 = 2) β†’ ((𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹) ↔ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹)))
133126, 129, 1323anbi123d 1436 . . . . 5 ((πœ‘ ∧ 𝑖 = 2) β†’ (((𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹)) ↔ (((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐴) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐷) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐡) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐸) ∧ ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ 𝐢) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ 𝐹))))
134115, 133bitr4d 281 . . . 4 ((πœ‘ ∧ 𝑖 = 2) β†’ (βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ ((𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹))))
13594, 114, 134, 71, 72, 73raltpd 4785 . . 3 (πœ‘ β†’ (βˆ€π‘– ∈ {0, 1, 2}βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—)) ↔ (((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹)) ∧ ((𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) ∧ ((𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹)))))
136 an33rean 1483 . . . 4 ((((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹)) ∧ ((𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) ∧ ((𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹))) ↔ (((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹)) ∧ (((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷)) ∧ ((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸)) ∧ ((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)))))
137 eqid 2732 . . . . . . . 8 (Itvβ€˜πΊ) = (Itvβ€˜πΊ)
13816, 17, 137, 19, 1, 26tgcgrtriv 27990 . . . . . . 7 (πœ‘ β†’ (𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷))
13916, 17, 137, 19, 2, 27tgcgrtriv 27990 . . . . . . 7 (πœ‘ β†’ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸))
14016, 17, 137, 19, 3, 28tgcgrtriv 27990 . . . . . . 7 (πœ‘ β†’ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹))
141138, 139, 1403jca 1128 . . . . . 6 (πœ‘ β†’ ((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹)))
142141biantrurd 533 . . . . 5 (πœ‘ β†’ ((((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷)) ∧ ((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸)) ∧ ((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))) ↔ (((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹)) ∧ (((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷)) ∧ ((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸)) ∧ ((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))))))
143 simprl 769 . . . . . . 7 ((πœ‘ ∧ ((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷))) β†’ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸))
144 simpr 485 . . . . . . . 8 ((πœ‘ ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)) β†’ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸))
14519adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)) β†’ 𝐺 ∈ TarskiG)
1461adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)) β†’ 𝐴 ∈ 𝑃)
1472adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)) β†’ 𝐡 ∈ 𝑃)
14826adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)) β†’ 𝐷 ∈ 𝑃)
14927adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)) β†’ 𝐸 ∈ 𝑃)
15016, 17, 137, 145, 146, 147, 148, 149, 144tgcgrcomlr 27986 . . . . . . . 8 ((πœ‘ ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)) β†’ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷))
151144, 150jca 512 . . . . . . 7 ((πœ‘ ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)) β†’ ((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷)))
152143, 151impbida 799 . . . . . 6 (πœ‘ β†’ (((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷)) ↔ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸)))
153 simprl 769 . . . . . . 7 ((πœ‘ ∧ ((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸))) β†’ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹))
154 simpr 485 . . . . . . . 8 ((πœ‘ ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) β†’ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹))
15519adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) β†’ 𝐺 ∈ TarskiG)
1562adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) β†’ 𝐡 ∈ 𝑃)
1573adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) β†’ 𝐢 ∈ 𝑃)
15827adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) β†’ 𝐸 ∈ 𝑃)
15928adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) β†’ 𝐹 ∈ 𝑃)
16016, 17, 137, 155, 156, 157, 158, 159, 154tgcgrcomlr 27986 . . . . . . . 8 ((πœ‘ ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) β†’ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸))
161154, 160jca 512 . . . . . . 7 ((πœ‘ ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) β†’ ((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸)))
162153, 161impbida 799 . . . . . 6 (πœ‘ β†’ (((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸)) ↔ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)))
163 simprr 771 . . . . . . 7 ((πœ‘ ∧ ((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))) β†’ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))
16419adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) β†’ 𝐺 ∈ TarskiG)
1653adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) β†’ 𝐢 ∈ 𝑃)
1661adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) β†’ 𝐴 ∈ 𝑃)
16728adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) β†’ 𝐹 ∈ 𝑃)
16826adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) β†’ 𝐷 ∈ 𝑃)
169 simpr 485 . . . . . . . . 9 ((πœ‘ ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) β†’ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))
17016, 17, 137, 164, 165, 166, 167, 168, 169tgcgrcomlr 27986 . . . . . . . 8 ((πœ‘ ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) β†’ (𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹))
171170, 169jca 512 . . . . . . 7 ((πœ‘ ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) β†’ ((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)))
172163, 171impbida 799 . . . . . 6 (πœ‘ β†’ (((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) ↔ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)))
173152, 162, 1723anbi123d 1436 . . . . 5 (πœ‘ β†’ ((((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷)) ∧ ((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸)) ∧ ((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))) ↔ ((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))))
174142, 173bitr3d 280 . . . 4 (πœ‘ β†’ ((((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹)) ∧ (((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷)) ∧ ((𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸)) ∧ ((𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)))) ↔ ((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))))
175136, 174bitrid 282 . . 3 (πœ‘ β†’ ((((𝐴 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐷) ∧ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹)) ∧ ((𝐡 βˆ’ 𝐴) = (𝐸 βˆ’ 𝐷) ∧ (𝐡 βˆ’ 𝐡) = (𝐸 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹)) ∧ ((𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷) ∧ (𝐢 βˆ’ 𝐡) = (𝐹 βˆ’ 𝐸) ∧ (𝐢 βˆ’ 𝐢) = (𝐹 βˆ’ 𝐹))) ↔ ((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))))
176135, 175bitr2d 279 . 2 (πœ‘ β†’ (((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷)) ↔ βˆ€π‘– ∈ {0, 1, 2}βˆ€π‘— ∈ {0, 1, 2} ((βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©β€˜π‘—)) = ((βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘–) βˆ’ (βŸ¨β€œπ·πΈπΉβ€βŸ©β€˜π‘—))))
17715, 37, 1763bitr4d 310 1 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ© ∼ βŸ¨β€œπ·πΈπΉβ€βŸ© ↔ ((𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸) ∧ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹) ∧ (𝐢 βˆ’ 𝐴) = (𝐹 βˆ’ 𝐷))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948  {ctp 4632   class class class wbr 5148  dom cdm 5676  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  β„cr 11111  0cc0 11112  1c1 11113  2c2 12271  3c3 12272  ..^cfzo 13631  β™―chash 14294  Word cword 14468  βŸ¨β€œcs3 14797  Basecbs 17148  distcds 17210  TarskiGcstrkg 27933  Itvcitv 27939  cgrGccgrg 28016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-s1 14550  df-s2 14803  df-s3 14804  df-trkgc 27954  df-trkgcb 27956  df-trkg 27959  df-cgrg 28017
This theorem is referenced by:  trgcgr  28022  cgr3simp1  28026  cgr3simp2  28027  cgr3simp3  28028  dfcgrg2  28369
  Copyright terms: Public domain W3C validator