MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcgrg Structured version   Visualization version   GIF version

Theorem trgcgrg 25624
Description: The property for two triangles to be congruent to each other. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
trgcgrg.p 𝑃 = (Base‘𝐺)
trgcgrg.m = (dist‘𝐺)
trgcgrg.r = (cgrG‘𝐺)
trgcgrg.g (𝜑𝐺 ∈ TarskiG)
trgcgrg.a (𝜑𝐴𝑃)
trgcgrg.b (𝜑𝐵𝑃)
trgcgrg.c (𝜑𝐶𝑃)
trgcgrg.d (𝜑𝐷𝑃)
trgcgrg.e (𝜑𝐸𝑃)
trgcgrg.f (𝜑𝐹𝑃)
Assertion
Ref Expression
trgcgrg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))

Proof of Theorem trgcgrg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcgrg.a . . . . . . 7 (𝜑𝐴𝑃)
2 trgcgrg.b . . . . . . 7 (𝜑𝐵𝑃)
3 trgcgrg.c . . . . . . 7 (𝜑𝐶𝑃)
41, 2, 3s3cld 13841 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 wrdf 13521 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
64, 5syl 17 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
7 s3len 13863 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
87oveq2i 6885 . . . . . . 7 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
9 fzo0to3tp 12778 . . . . . . 7 (0..^3) = {0, 1, 2}
108, 9eqtri 2828 . . . . . 6 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = {0, 1, 2}
1110feq2i 6248 . . . . 5 (⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃 ↔ ⟨“𝐴𝐵𝐶”⟩:{0, 1, 2}⟶𝑃)
126, 11sylib 209 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:{0, 1, 2}⟶𝑃)
1312fdmd 6265 . . 3 (𝜑 → dom ⟨“𝐴𝐵𝐶”⟩ = {0, 1, 2})
1413raleqdv 3333 . . 3 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
1513, 14raleqbidv 3341 . 2 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
16 trgcgrg.p . . 3 𝑃 = (Base‘𝐺)
17 trgcgrg.m . . 3 = (dist‘𝐺)
18 trgcgrg.r . . 3 = (cgrG‘𝐺)
19 trgcgrg.g . . 3 (𝜑𝐺 ∈ TarskiG)
20 0re 10327 . . . . 5 0 ∈ ℝ
21 1re 10325 . . . . 5 1 ∈ ℝ
22 2re 11374 . . . . 5 2 ∈ ℝ
23 tpssi 4557 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ) → {0, 1, 2} ⊆ ℝ)
2420, 21, 22, 23mp3an 1578 . . . 4 {0, 1, 2} ⊆ ℝ
2524a1i 11 . . 3 (𝜑 → {0, 1, 2} ⊆ ℝ)
26 trgcgrg.d . . . . . 6 (𝜑𝐷𝑃)
27 trgcgrg.e . . . . . 6 (𝜑𝐸𝑃)
28 trgcgrg.f . . . . . 6 (𝜑𝐹𝑃)
2926, 27, 28s3cld 13841 . . . . 5 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
30 wrdf 13521 . . . . 5 (⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 → ⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃)
3129, 30syl 17 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃)
32 s3len 13863 . . . . . . 7 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
3332oveq2i 6885 . . . . . 6 (0..^(♯‘⟨“𝐷𝐸𝐹”⟩)) = (0..^3)
3433, 9eqtri 2828 . . . . 5 (0..^(♯‘⟨“𝐷𝐸𝐹”⟩)) = {0, 1, 2}
3534feq2i 6248 . . . 4 (⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃 ↔ ⟨“𝐷𝐸𝐹”⟩:{0, 1, 2}⟶𝑃)
3631, 35sylib 209 . . 3 (𝜑 → ⟨“𝐷𝐸𝐹”⟩:{0, 1, 2}⟶𝑃)
3716, 17, 18, 19, 25, 12, 36iscgrgd 25622 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
38 fveq2 6408 . . . . . . . . . 10 (𝑗 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘0))
39 s3fv0 13860 . . . . . . . . . . 11 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
401, 39syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4138, 40sylan9eqr 2862 . . . . . . . . 9 ((𝜑𝑗 = 0) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐴)
4241oveq2d 6890 . . . . . . . 8 ((𝜑𝑗 = 0) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
43 fveq2 6408 . . . . . . . . . 10 (𝑗 = 0 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘0))
44 s3fv0 13860 . . . . . . . . . . 11 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
4526, 44syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
4643, 45sylan9eqr 2862 . . . . . . . . 9 ((𝜑𝑗 = 0) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐷)
4746oveq2d 6890 . . . . . . . 8 ((𝜑𝑗 = 0) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
4842, 47eqeq12d 2821 . . . . . . 7 ((𝜑𝑗 = 0) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
49 fveq2 6408 . . . . . . . . . 10 (𝑗 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘1))
50 s3fv1 13861 . . . . . . . . . . 11 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
512, 50syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
5249, 51sylan9eqr 2862 . . . . . . . . 9 ((𝜑𝑗 = 1) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐵)
5352oveq2d 6890 . . . . . . . 8 ((𝜑𝑗 = 1) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
54 fveq2 6408 . . . . . . . . . 10 (𝑗 = 1 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘1))
55 s3fv1 13861 . . . . . . . . . . 11 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
5627, 55syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
5754, 56sylan9eqr 2862 . . . . . . . . 9 ((𝜑𝑗 = 1) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐸)
5857oveq2d 6890 . . . . . . . 8 ((𝜑𝑗 = 1) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
5953, 58eqeq12d 2821 . . . . . . 7 ((𝜑𝑗 = 1) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
60 fveq2 6408 . . . . . . . . . 10 (𝑗 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘2))
61 s3fv2 13862 . . . . . . . . . . 11 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
623, 61syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
6360, 62sylan9eqr 2862 . . . . . . . . 9 ((𝜑𝑗 = 2) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐶)
6463oveq2d 6890 . . . . . . . 8 ((𝜑𝑗 = 2) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
65 fveq2 6408 . . . . . . . . . 10 (𝑗 = 2 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘2))
66 s3fv2 13862 . . . . . . . . . . 11 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
6728, 66syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
6865, 67sylan9eqr 2862 . . . . . . . . 9 ((𝜑𝑗 = 2) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐹)
6968oveq2d 6890 . . . . . . . 8 ((𝜑𝑗 = 2) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
7064, 69eqeq12d 2821 . . . . . . 7 ((𝜑𝑗 = 2) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
71 0red 10328 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
72 1red 10326 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
7322a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
7448, 59, 70, 71, 72, 73raltpd 4504 . . . . . 6 (𝜑 → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
7574adantr 468 . . . . 5 ((𝜑𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
76 fveq2 6408 . . . . . . . . . 10 (𝑖 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
7776adantl 469 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
7840adantr 468 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
7977, 78eqtr2d 2841 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
8079oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
81 fveq2 6408 . . . . . . . . . 10 (𝑖 = 0 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘0))
8281adantl 469 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘0))
8345adantr 468 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
8482, 83eqtr2d 2841 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝐷 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
8584oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
8680, 85eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐴) = (𝐷 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
8779oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
8884oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
8987, 88eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐵) = (𝐷 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
9079oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
9184oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
9290, 91eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐶) = (𝐷 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
9386, 89, 923anbi123d 1553 . . . . 5 ((𝜑𝑖 = 0) → (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
9475, 93bitr4d 273 . . . 4 ((𝜑𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹))))
9574adantr 468 . . . . 5 ((𝜑𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
96 fveq2 6408 . . . . . . . . . 10 (𝑖 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
9796adantl 469 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
9851adantr 468 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
9997, 98eqtr2d 2841 . . . . . . . 8 ((𝜑𝑖 = 1) → 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
10099oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
101 fveq2 6408 . . . . . . . . . 10 (𝑖 = 1 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘1))
102101adantl 469 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘1))
10356adantr 468 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
104102, 103eqtr2d 2841 . . . . . . . 8 ((𝜑𝑖 = 1) → 𝐸 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
105104oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
106100, 105eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐴) = (𝐸 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
10799oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
108104oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
109107, 108eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐵) = (𝐸 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
11099oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
111104oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
112110, 111eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐶) = (𝐸 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
113106, 109, 1123anbi123d 1553 . . . . 5 ((𝜑𝑖 = 1) → (((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
11495, 113bitr4d 273 . . . 4 ((𝜑𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹))))
11574adantr 468 . . . . 5 ((𝜑𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
116 fveq2 6408 . . . . . . . . . 10 (𝑖 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
117116adantl 469 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
11862adantr 468 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
119117, 118eqtr2d 2841 . . . . . . . 8 ((𝜑𝑖 = 2) → 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
120119oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
121 fveq2 6408 . . . . . . . . . 10 (𝑖 = 2 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘2))
122121adantl 469 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘2))
12367adantr 468 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
124122, 123eqtr2d 2841 . . . . . . . 8 ((𝜑𝑖 = 2) → 𝐹 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
125124oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
126120, 125eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐴) = (𝐹 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
127119oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
128124oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
129127, 128eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐵) = (𝐹 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
130119oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
131124oveq1d 6889 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
132130, 131eqeq12d 2821 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐶) = (𝐹 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
133126, 129, 1323anbi123d 1553 . . . . 5 ((𝜑𝑖 = 2) → (((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
134115, 133bitr4d 273 . . . 4 ((𝜑𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))))
13594, 114, 134, 71, 72, 73raltpd 4504 . . 3 (𝜑 → (∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)))))
136 an33rean 1600 . . . 4 ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))))
137 eqid 2806 . . . . . . . 8 (Itv‘𝐺) = (Itv‘𝐺)
13816, 17, 137, 19, 1, 26tgcgrtriv 25593 . . . . . . 7 (𝜑 → (𝐴 𝐴) = (𝐷 𝐷))
13916, 17, 137, 19, 2, 27tgcgrtriv 25593 . . . . . . 7 (𝜑 → (𝐵 𝐵) = (𝐸 𝐸))
14016, 17, 137, 19, 3, 28tgcgrtriv 25593 . . . . . . 7 (𝜑 → (𝐶 𝐶) = (𝐹 𝐹))
141138, 139, 1403jca 1151 . . . . . 6 (𝜑 → ((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)))
142141biantrurd 524 . . . . 5 (𝜑 → ((((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))))
143 simprl 778 . . . . . . 7 ((𝜑 ∧ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷))) → (𝐴 𝐵) = (𝐷 𝐸))
144 simpr 473 . . . . . . . 8 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → (𝐴 𝐵) = (𝐷 𝐸))
14519adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐺 ∈ TarskiG)
1461adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐴𝑃)
1472adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐵𝑃)
14826adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐷𝑃)
14927adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐸𝑃)
15016, 17, 137, 145, 146, 147, 148, 149, 144tgcgrcomlr 25589 . . . . . . . 8 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → (𝐵 𝐴) = (𝐸 𝐷))
151144, 150jca 503 . . . . . . 7 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)))
152143, 151impbida 826 . . . . . 6 (𝜑 → (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ↔ (𝐴 𝐵) = (𝐷 𝐸)))
153 simprl 778 . . . . . . 7 ((𝜑 ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸))) → (𝐵 𝐶) = (𝐸 𝐹))
154 simpr 473 . . . . . . . 8 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → (𝐵 𝐶) = (𝐸 𝐹))
15519adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐺 ∈ TarskiG)
1562adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐵𝑃)
1573adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐶𝑃)
15827adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐸𝑃)
15928adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐹𝑃)
16016, 17, 137, 155, 156, 157, 158, 159, 154tgcgrcomlr 25589 . . . . . . . 8 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → (𝐶 𝐵) = (𝐹 𝐸))
161154, 160jca 503 . . . . . . 7 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)))
162153, 161impbida 826 . . . . . 6 (𝜑 → (((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ↔ (𝐵 𝐶) = (𝐸 𝐹)))
163 simprr 780 . . . . . . 7 ((𝜑 ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) → (𝐶 𝐴) = (𝐹 𝐷))
16419adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐺 ∈ TarskiG)
1653adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐶𝑃)
1661adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐴𝑃)
16728adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐹𝑃)
16826adantr 468 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐷𝑃)
169 simpr 473 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → (𝐶 𝐴) = (𝐹 𝐷))
17016, 17, 137, 164, 165, 166, 167, 168, 169tgcgrcomlr 25589 . . . . . . . 8 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → (𝐴 𝐶) = (𝐷 𝐹))
171170, 169jca 503 . . . . . . 7 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))
172163, 171impbida 826 . . . . . 6 (𝜑 → (((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ↔ (𝐶 𝐴) = (𝐹 𝐷)))
173152, 162, 1723anbi123d 1553 . . . . 5 (𝜑 → ((((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
174142, 173bitr3d 272 . . . 4 (𝜑 → ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
175136, 174syl5bb 274 . . 3 (𝜑 → ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
176135, 175bitr2d 271 . 2 (𝜑 → (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
17715, 37, 1763bitr4d 302 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wral 3096  wss 3769  {ctp 4374   class class class wbr 4844  dom cdm 5311  wf 6097  cfv 6101  (class class class)co 6874  cr 10220  0cc0 10221  1c1 10222  2c2 11356  3c3 11357  ..^cfzo 12689  chash 13337  Word cword 13502  ⟨“cs3 13811  Basecbs 16068  distcds 16162  TarskiGcstrkg 25543  Itvcitv 25549  cgrGccgrg 25619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-card 9048  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-3 11365  df-n0 11560  df-z 11644  df-uz 11905  df-fz 12550  df-fzo 12690  df-hash 13338  df-word 13510  df-concat 13512  df-s1 13513  df-s2 13817  df-s3 13818  df-trkgc 25561  df-trkgcb 25563  df-trkg 25566  df-cgrg 25620
This theorem is referenced by:  trgcgr  25625  cgr3simp1  25629  cgr3simp2  25630  cgr3simp3  25631  cgraswap  25926
  Copyright terms: Public domain W3C validator