Step | Hyp | Ref
| Expression |
1 | | trgcgrg.a |
. . . . . . 7
β’ (π β π΄ β π) |
2 | | trgcgrg.b |
. . . . . . 7
β’ (π β π΅ β π) |
3 | | trgcgrg.c |
. . . . . . 7
β’ (π β πΆ β π) |
4 | 1, 2, 3 | s3cld 14827 |
. . . . . 6
β’ (π β β¨βπ΄π΅πΆββ© β Word π) |
5 | | wrdf 14473 |
. . . . . 6
β’
(β¨βπ΄π΅πΆββ© β Word π β β¨βπ΄π΅πΆββ©:(0..^(β―ββ¨βπ΄π΅πΆββ©))βΆπ) |
6 | 4, 5 | syl 17 |
. . . . 5
β’ (π β β¨βπ΄π΅πΆββ©:(0..^(β―ββ¨βπ΄π΅πΆββ©))βΆπ) |
7 | | s3len 14849 |
. . . . . . . 8
β’
(β―ββ¨βπ΄π΅πΆββ©) = 3 |
8 | 7 | oveq2i 7422 |
. . . . . . 7
β’
(0..^(β―ββ¨βπ΄π΅πΆββ©)) = (0..^3) |
9 | | fzo0to3tp 13722 |
. . . . . . 7
β’ (0..^3) =
{0, 1, 2} |
10 | 8, 9 | eqtri 2760 |
. . . . . 6
β’
(0..^(β―ββ¨βπ΄π΅πΆββ©)) = {0, 1, 2} |
11 | 10 | feq2i 6709 |
. . . . 5
β’
(β¨βπ΄π΅πΆββ©:(0..^(β―ββ¨βπ΄π΅πΆββ©))βΆπ β β¨βπ΄π΅πΆββ©:{0, 1, 2}βΆπ) |
12 | 6, 11 | sylib 217 |
. . . 4
β’ (π β β¨βπ΄π΅πΆββ©:{0, 1, 2}βΆπ) |
13 | 12 | fdmd 6728 |
. . 3
β’ (π β dom β¨βπ΄π΅πΆββ© = {0, 1, 2}) |
14 | 13 | raleqdv 3325 |
. . 3
β’ (π β (βπ β dom β¨βπ΄π΅πΆββ©((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)))) |
15 | 13, 14 | raleqbidv 3342 |
. 2
β’ (π β (βπ β dom β¨βπ΄π΅πΆββ©βπ β dom β¨βπ΄π΅πΆββ©((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β βπ β {0, 1, 2}βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)))) |
16 | | trgcgrg.p |
. . 3
β’ π = (BaseβπΊ) |
17 | | trgcgrg.m |
. . 3
β’ β =
(distβπΊ) |
18 | | trgcgrg.r |
. . 3
β’ βΌ =
(cgrGβπΊ) |
19 | | trgcgrg.g |
. . 3
β’ (π β πΊ β TarskiG) |
20 | | 0re 11220 |
. . . . 5
β’ 0 β
β |
21 | | 1re 11218 |
. . . . 5
β’ 1 β
β |
22 | | 2re 12290 |
. . . . 5
β’ 2 β
β |
23 | | tpssi 4839 |
. . . . 5
β’ ((0
β β β§ 1 β β β§ 2 β β) β {0, 1, 2}
β β) |
24 | 20, 21, 22, 23 | mp3an 1461 |
. . . 4
β’ {0, 1, 2}
β β |
25 | 24 | a1i 11 |
. . 3
β’ (π β {0, 1, 2} β
β) |
26 | | trgcgrg.d |
. . . . . 6
β’ (π β π· β π) |
27 | | trgcgrg.e |
. . . . . 6
β’ (π β πΈ β π) |
28 | | trgcgrg.f |
. . . . . 6
β’ (π β πΉ β π) |
29 | 26, 27, 28 | s3cld 14827 |
. . . . 5
β’ (π β β¨βπ·πΈπΉββ© β Word π) |
30 | | wrdf 14473 |
. . . . 5
β’
(β¨βπ·πΈπΉββ© β Word π β β¨βπ·πΈπΉββ©:(0..^(β―ββ¨βπ·πΈπΉββ©))βΆπ) |
31 | 29, 30 | syl 17 |
. . . 4
β’ (π β β¨βπ·πΈπΉββ©:(0..^(β―ββ¨βπ·πΈπΉββ©))βΆπ) |
32 | | s3len 14849 |
. . . . . . 7
β’
(β―ββ¨βπ·πΈπΉββ©) = 3 |
33 | 32 | oveq2i 7422 |
. . . . . 6
β’
(0..^(β―ββ¨βπ·πΈπΉββ©)) = (0..^3) |
34 | 33, 9 | eqtri 2760 |
. . . . 5
β’
(0..^(β―ββ¨βπ·πΈπΉββ©)) = {0, 1, 2} |
35 | 34 | feq2i 6709 |
. . . 4
β’
(β¨βπ·πΈπΉββ©:(0..^(β―ββ¨βπ·πΈπΉββ©))βΆπ β β¨βπ·πΈπΉββ©:{0, 1, 2}βΆπ) |
36 | 31, 35 | sylib 217 |
. . 3
β’ (π β β¨βπ·πΈπΉββ©:{0, 1, 2}βΆπ) |
37 | 16, 17, 18, 19, 25, 12, 36 | iscgrgd 28019 |
. 2
β’ (π β (β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ© β βπ β dom β¨βπ΄π΅πΆββ©βπ β dom β¨βπ΄π΅πΆββ©((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)))) |
38 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 0 β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β0)) |
39 | | s3fv0 14846 |
. . . . . . . . . . 11
β’ (π΄ β π β (β¨βπ΄π΅πΆββ©β0) = π΄) |
40 | 1, 39 | syl 17 |
. . . . . . . . . 10
β’ (π β (β¨βπ΄π΅πΆββ©β0) = π΄) |
41 | 38, 40 | sylan9eqr 2794 |
. . . . . . . . 9
β’ ((π β§ π = 0) β (β¨βπ΄π΅πΆββ©βπ) = π΄) |
42 | 41 | oveq2d 7427 |
. . . . . . . 8
β’ ((π β§ π = 0) β ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ΄π΅πΆββ©βπ) β π΄)) |
43 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 0 β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β0)) |
44 | | s3fv0 14846 |
. . . . . . . . . . 11
β’ (π· β π β (β¨βπ·πΈπΉββ©β0) = π·) |
45 | 26, 44 | syl 17 |
. . . . . . . . . 10
β’ (π β (β¨βπ·πΈπΉββ©β0) = π·) |
46 | 43, 45 | sylan9eqr 2794 |
. . . . . . . . 9
β’ ((π β§ π = 0) β (β¨βπ·πΈπΉββ©βπ) = π·) |
47 | 46 | oveq2d 7427 |
. . . . . . . 8
β’ ((π β§ π = 0) β ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β π·)) |
48 | 42, 47 | eqeq12d 2748 |
. . . . . . 7
β’ ((π β§ π = 0) β (((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β ((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·))) |
49 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 1 β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β1)) |
50 | | s3fv1 14847 |
. . . . . . . . . . 11
β’ (π΅ β π β (β¨βπ΄π΅πΆββ©β1) = π΅) |
51 | 2, 50 | syl 17 |
. . . . . . . . . 10
β’ (π β (β¨βπ΄π΅πΆββ©β1) = π΅) |
52 | 49, 51 | sylan9eqr 2794 |
. . . . . . . . 9
β’ ((π β§ π = 1) β (β¨βπ΄π΅πΆββ©βπ) = π΅) |
53 | 52 | oveq2d 7427 |
. . . . . . . 8
β’ ((π β§ π = 1) β ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ΄π΅πΆββ©βπ) β π΅)) |
54 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 1 β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β1)) |
55 | | s3fv1 14847 |
. . . . . . . . . . 11
β’ (πΈ β π β (β¨βπ·πΈπΉββ©β1) = πΈ) |
56 | 27, 55 | syl 17 |
. . . . . . . . . 10
β’ (π β (β¨βπ·πΈπΉββ©β1) = πΈ) |
57 | 54, 56 | sylan9eqr 2794 |
. . . . . . . . 9
β’ ((π β§ π = 1) β (β¨βπ·πΈπΉββ©βπ) = πΈ) |
58 | 57 | oveq2d 7427 |
. . . . . . . 8
β’ ((π β§ π = 1) β ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β πΈ)) |
59 | 53, 58 | eqeq12d 2748 |
. . . . . . 7
β’ ((π β§ π = 1) β (((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ))) |
60 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 2 β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β2)) |
61 | | s3fv2 14848 |
. . . . . . . . . . 11
β’ (πΆ β π β (β¨βπ΄π΅πΆββ©β2) = πΆ) |
62 | 3, 61 | syl 17 |
. . . . . . . . . 10
β’ (π β (β¨βπ΄π΅πΆββ©β2) = πΆ) |
63 | 60, 62 | sylan9eqr 2794 |
. . . . . . . . 9
β’ ((π β§ π = 2) β (β¨βπ΄π΅πΆββ©βπ) = πΆ) |
64 | 63 | oveq2d 7427 |
. . . . . . . 8
β’ ((π β§ π = 2) β ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ΄π΅πΆββ©βπ) β πΆ)) |
65 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 2 β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β2)) |
66 | | s3fv2 14848 |
. . . . . . . . . . 11
β’ (πΉ β π β (β¨βπ·πΈπΉββ©β2) = πΉ) |
67 | 28, 66 | syl 17 |
. . . . . . . . . 10
β’ (π β (β¨βπ·πΈπΉββ©β2) = πΉ) |
68 | 65, 67 | sylan9eqr 2794 |
. . . . . . . . 9
β’ ((π β§ π = 2) β (β¨βπ·πΈπΉββ©βπ) = πΉ) |
69 | 68 | oveq2d 7427 |
. . . . . . . 8
β’ ((π β§ π = 2) β ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)) |
70 | 64, 69 | eqeq12d 2748 |
. . . . . . 7
β’ ((π β§ π = 2) β (((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ))) |
71 | | 0red 11221 |
. . . . . . 7
β’ (π β 0 β
β) |
72 | | 1red 11219 |
. . . . . . 7
β’ (π β 1 β
β) |
73 | 22 | a1i 11 |
. . . . . . 7
β’ (π β 2 β
β) |
74 | 48, 59, 70, 71, 72, 73 | raltpd 4785 |
. . . . . 6
β’ (π β (βπ β {0, 1, 2}
((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β (((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·) β§ ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ) β§ ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)))) |
75 | 74 | adantr 481 |
. . . . 5
β’ ((π β§ π = 0) β (βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β (((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·) β§ ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ) β§ ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)))) |
76 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 0 β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β0)) |
77 | 76 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π = 0) β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β0)) |
78 | 40 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = 0) β (β¨βπ΄π΅πΆββ©β0) = π΄) |
79 | 77, 78 | eqtr2d 2773 |
. . . . . . . 8
β’ ((π β§ π = 0) β π΄ = (β¨βπ΄π΅πΆββ©βπ)) |
80 | 79 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 0) β (π΄ β π΄) = ((β¨βπ΄π΅πΆββ©βπ) β π΄)) |
81 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 0 β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β0)) |
82 | 81 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π = 0) β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β0)) |
83 | 45 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = 0) β (β¨βπ·πΈπΉββ©β0) = π·) |
84 | 82, 83 | eqtr2d 2773 |
. . . . . . . 8
β’ ((π β§ π = 0) β π· = (β¨βπ·πΈπΉββ©βπ)) |
85 | 84 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 0) β (π· β π·) = ((β¨βπ·πΈπΉββ©βπ) β π·)) |
86 | 80, 85 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 0) β ((π΄ β π΄) = (π· β π·) β ((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·))) |
87 | 79 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 0) β (π΄ β π΅) = ((β¨βπ΄π΅πΆββ©βπ) β π΅)) |
88 | 84 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 0) β (π· β πΈ) = ((β¨βπ·πΈπΉββ©βπ) β πΈ)) |
89 | 87, 88 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 0) β ((π΄ β π΅) = (π· β πΈ) β ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ))) |
90 | 79 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 0) β (π΄ β πΆ) = ((β¨βπ΄π΅πΆββ©βπ) β πΆ)) |
91 | 84 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 0) β (π· β πΉ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)) |
92 | 90, 91 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 0) β ((π΄ β πΆ) = (π· β πΉ) β ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ))) |
93 | 86, 89, 92 | 3anbi123d 1436 |
. . . . 5
β’ ((π β§ π = 0) β (((π΄ β π΄) = (π· β π·) β§ (π΄ β π΅) = (π· β πΈ) β§ (π΄ β πΆ) = (π· β πΉ)) β (((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·) β§ ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ) β§ ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)))) |
94 | 75, 93 | bitr4d 281 |
. . . 4
β’ ((π β§ π = 0) β (βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β ((π΄ β π΄) = (π· β π·) β§ (π΄ β π΅) = (π· β πΈ) β§ (π΄ β πΆ) = (π· β πΉ)))) |
95 | 74 | adantr 481 |
. . . . 5
β’ ((π β§ π = 1) β (βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β (((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·) β§ ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ) β§ ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)))) |
96 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 1 β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β1)) |
97 | 96 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π = 1) β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β1)) |
98 | 51 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = 1) β (β¨βπ΄π΅πΆββ©β1) = π΅) |
99 | 97, 98 | eqtr2d 2773 |
. . . . . . . 8
β’ ((π β§ π = 1) β π΅ = (β¨βπ΄π΅πΆββ©βπ)) |
100 | 99 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 1) β (π΅ β π΄) = ((β¨βπ΄π΅πΆββ©βπ) β π΄)) |
101 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 1 β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β1)) |
102 | 101 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π = 1) β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β1)) |
103 | 56 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = 1) β (β¨βπ·πΈπΉββ©β1) = πΈ) |
104 | 102, 103 | eqtr2d 2773 |
. . . . . . . 8
β’ ((π β§ π = 1) β πΈ = (β¨βπ·πΈπΉββ©βπ)) |
105 | 104 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 1) β (πΈ β π·) = ((β¨βπ·πΈπΉββ©βπ) β π·)) |
106 | 100, 105 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 1) β ((π΅ β π΄) = (πΈ β π·) β ((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·))) |
107 | 99 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 1) β (π΅ β π΅) = ((β¨βπ΄π΅πΆββ©βπ) β π΅)) |
108 | 104 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 1) β (πΈ β πΈ) = ((β¨βπ·πΈπΉββ©βπ) β πΈ)) |
109 | 107, 108 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 1) β ((π΅ β π΅) = (πΈ β πΈ) β ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ))) |
110 | 99 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 1) β (π΅ β πΆ) = ((β¨βπ΄π΅πΆββ©βπ) β πΆ)) |
111 | 104 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 1) β (πΈ β πΉ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)) |
112 | 110, 111 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 1) β ((π΅ β πΆ) = (πΈ β πΉ) β ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ))) |
113 | 106, 109,
112 | 3anbi123d 1436 |
. . . . 5
β’ ((π β§ π = 1) β (((π΅ β π΄) = (πΈ β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ)) β (((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·) β§ ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ) β§ ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)))) |
114 | 95, 113 | bitr4d 281 |
. . . 4
β’ ((π β§ π = 1) β (βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β ((π΅ β π΄) = (πΈ β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ)))) |
115 | 74 | adantr 481 |
. . . . 5
β’ ((π β§ π = 2) β (βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β (((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·) β§ ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ) β§ ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)))) |
116 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 2 β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β2)) |
117 | 116 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π = 2) β (β¨βπ΄π΅πΆββ©βπ) = (β¨βπ΄π΅πΆββ©β2)) |
118 | 62 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = 2) β (β¨βπ΄π΅πΆββ©β2) = πΆ) |
119 | 117, 118 | eqtr2d 2773 |
. . . . . . . 8
β’ ((π β§ π = 2) β πΆ = (β¨βπ΄π΅πΆββ©βπ)) |
120 | 119 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 2) β (πΆ β π΄) = ((β¨βπ΄π΅πΆββ©βπ) β π΄)) |
121 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π = 2 β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β2)) |
122 | 121 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π = 2) β (β¨βπ·πΈπΉββ©βπ) = (β¨βπ·πΈπΉββ©β2)) |
123 | 67 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = 2) β (β¨βπ·πΈπΉββ©β2) = πΉ) |
124 | 122, 123 | eqtr2d 2773 |
. . . . . . . 8
β’ ((π β§ π = 2) β πΉ = (β¨βπ·πΈπΉββ©βπ)) |
125 | 124 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 2) β (πΉ β π·) = ((β¨βπ·πΈπΉββ©βπ) β π·)) |
126 | 120, 125 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 2) β ((πΆ β π΄) = (πΉ β π·) β ((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·))) |
127 | 119 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 2) β (πΆ β π΅) = ((β¨βπ΄π΅πΆββ©βπ) β π΅)) |
128 | 124 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 2) β (πΉ β πΈ) = ((β¨βπ·πΈπΉββ©βπ) β πΈ)) |
129 | 127, 128 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 2) β ((πΆ β π΅) = (πΉ β πΈ) β ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ))) |
130 | 119 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 2) β (πΆ β πΆ) = ((β¨βπ΄π΅πΆββ©βπ) β πΆ)) |
131 | 124 | oveq1d 7426 |
. . . . . . 7
β’ ((π β§ π = 2) β (πΉ β πΉ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)) |
132 | 130, 131 | eqeq12d 2748 |
. . . . . 6
β’ ((π β§ π = 2) β ((πΆ β πΆ) = (πΉ β πΉ) β ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ))) |
133 | 126, 129,
132 | 3anbi123d 1436 |
. . . . 5
β’ ((π β§ π = 2) β (((πΆ β π΄) = (πΉ β π·) β§ (πΆ β π΅) = (πΉ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ)) β (((β¨βπ΄π΅πΆββ©βπ) β π΄) = ((β¨βπ·πΈπΉββ©βπ) β π·) β§ ((β¨βπ΄π΅πΆββ©βπ) β π΅) = ((β¨βπ·πΈπΉββ©βπ) β πΈ) β§ ((β¨βπ΄π΅πΆββ©βπ) β πΆ) = ((β¨βπ·πΈπΉββ©βπ) β πΉ)))) |
134 | 115, 133 | bitr4d 281 |
. . . 4
β’ ((π β§ π = 2) β (βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β ((πΆ β π΄) = (πΉ β π·) β§ (πΆ β π΅) = (πΉ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ)))) |
135 | 94, 114, 134, 71, 72, 73 | raltpd 4785 |
. . 3
β’ (π β (βπ β {0, 1, 2}βπ β {0, 1, 2}
((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)) β (((π΄ β π΄) = (π· β π·) β§ (π΄ β π΅) = (π· β πΈ) β§ (π΄ β πΆ) = (π· β πΉ)) β§ ((π΅ β π΄) = (πΈ β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ)) β§ ((πΆ β π΄) = (πΉ β π·) β§ (πΆ β π΅) = (πΉ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ))))) |
136 | | an33rean 1483 |
. . . 4
β’ ((((π΄ β π΄) = (π· β π·) β§ (π΄ β π΅) = (π· β πΈ) β§ (π΄ β πΆ) = (π· β πΉ)) β§ ((π΅ β π΄) = (πΈ β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ)) β§ ((πΆ β π΄) = (πΉ β π·) β§ (πΆ β π΅) = (πΉ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ))) β (((π΄ β π΄) = (π· β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ)) β§ (((π΄ β π΅) = (π· β πΈ) β§ (π΅ β π΄) = (πΈ β π·)) β§ ((π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΅) = (πΉ β πΈ)) β§ ((π΄ β πΆ) = (π· β πΉ) β§ (πΆ β π΄) = (πΉ β π·))))) |
137 | | eqid 2732 |
. . . . . . . 8
β’
(ItvβπΊ) =
(ItvβπΊ) |
138 | 16, 17, 137, 19, 1, 26 | tgcgrtriv 27990 |
. . . . . . 7
β’ (π β (π΄ β π΄) = (π· β π·)) |
139 | 16, 17, 137, 19, 2, 27 | tgcgrtriv 27990 |
. . . . . . 7
β’ (π β (π΅ β π΅) = (πΈ β πΈ)) |
140 | 16, 17, 137, 19, 3, 28 | tgcgrtriv 27990 |
. . . . . . 7
β’ (π β (πΆ β πΆ) = (πΉ β πΉ)) |
141 | 138, 139,
140 | 3jca 1128 |
. . . . . 6
β’ (π β ((π΄ β π΄) = (π· β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ))) |
142 | 141 | biantrurd 533 |
. . . . 5
β’ (π β ((((π΄ β π΅) = (π· β πΈ) β§ (π΅ β π΄) = (πΈ β π·)) β§ ((π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΅) = (πΉ β πΈ)) β§ ((π΄ β πΆ) = (π· β πΉ) β§ (πΆ β π΄) = (πΉ β π·))) β (((π΄ β π΄) = (π· β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ)) β§ (((π΄ β π΅) = (π· β πΈ) β§ (π΅ β π΄) = (πΈ β π·)) β§ ((π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΅) = (πΉ β πΈ)) β§ ((π΄ β πΆ) = (π· β πΉ) β§ (πΆ β π΄) = (πΉ β π·)))))) |
143 | | simprl 769 |
. . . . . . 7
β’ ((π β§ ((π΄ β π΅) = (π· β πΈ) β§ (π΅ β π΄) = (πΈ β π·))) β (π΄ β π΅) = (π· β πΈ)) |
144 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ (π΄ β π΅) = (π· β πΈ)) β (π΄ β π΅) = (π· β πΈ)) |
145 | 19 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΄ β π΅) = (π· β πΈ)) β πΊ β TarskiG) |
146 | 1 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΄ β π΅) = (π· β πΈ)) β π΄ β π) |
147 | 2 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΄ β π΅) = (π· β πΈ)) β π΅ β π) |
148 | 26 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΄ β π΅) = (π· β πΈ)) β π· β π) |
149 | 27 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΄ β π΅) = (π· β πΈ)) β πΈ β π) |
150 | 16, 17, 137, 145, 146, 147, 148, 149, 144 | tgcgrcomlr 27986 |
. . . . . . . 8
β’ ((π β§ (π΄ β π΅) = (π· β πΈ)) β (π΅ β π΄) = (πΈ β π·)) |
151 | 144, 150 | jca 512 |
. . . . . . 7
β’ ((π β§ (π΄ β π΅) = (π· β πΈ)) β ((π΄ β π΅) = (π· β πΈ) β§ (π΅ β π΄) = (πΈ β π·))) |
152 | 143, 151 | impbida 799 |
. . . . . 6
β’ (π β (((π΄ β π΅) = (π· β πΈ) β§ (π΅ β π΄) = (πΈ β π·)) β (π΄ β π΅) = (π· β πΈ))) |
153 | | simprl 769 |
. . . . . . 7
β’ ((π β§ ((π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΅) = (πΉ β πΈ))) β (π΅ β πΆ) = (πΈ β πΉ)) |
154 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ (π΅ β πΆ) = (πΈ β πΉ)) β (π΅ β πΆ) = (πΈ β πΉ)) |
155 | 19 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΅ β πΆ) = (πΈ β πΉ)) β πΊ β TarskiG) |
156 | 2 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΅ β πΆ) = (πΈ β πΉ)) β π΅ β π) |
157 | 3 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΅ β πΆ) = (πΈ β πΉ)) β πΆ β π) |
158 | 27 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΅ β πΆ) = (πΈ β πΉ)) β πΈ β π) |
159 | 28 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π΅ β πΆ) = (πΈ β πΉ)) β πΉ β π) |
160 | 16, 17, 137, 155, 156, 157, 158, 159, 154 | tgcgrcomlr 27986 |
. . . . . . . 8
β’ ((π β§ (π΅ β πΆ) = (πΈ β πΉ)) β (πΆ β π΅) = (πΉ β πΈ)) |
161 | 154, 160 | jca 512 |
. . . . . . 7
β’ ((π β§ (π΅ β πΆ) = (πΈ β πΉ)) β ((π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΅) = (πΉ β πΈ))) |
162 | 153, 161 | impbida 799 |
. . . . . 6
β’ (π β (((π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΅) = (πΉ β πΈ)) β (π΅ β πΆ) = (πΈ β πΉ))) |
163 | | simprr 771 |
. . . . . . 7
β’ ((π β§ ((π΄ β πΆ) = (π· β πΉ) β§ (πΆ β π΄) = (πΉ β π·))) β (πΆ β π΄) = (πΉ β π·)) |
164 | 19 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (πΆ β π΄) = (πΉ β π·)) β πΊ β TarskiG) |
165 | 3 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (πΆ β π΄) = (πΉ β π·)) β πΆ β π) |
166 | 1 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (πΆ β π΄) = (πΉ β π·)) β π΄ β π) |
167 | 28 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (πΆ β π΄) = (πΉ β π·)) β πΉ β π) |
168 | 26 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (πΆ β π΄) = (πΉ β π·)) β π· β π) |
169 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ (πΆ β π΄) = (πΉ β π·)) β (πΆ β π΄) = (πΉ β π·)) |
170 | 16, 17, 137, 164, 165, 166, 167, 168, 169 | tgcgrcomlr 27986 |
. . . . . . . 8
β’ ((π β§ (πΆ β π΄) = (πΉ β π·)) β (π΄ β πΆ) = (π· β πΉ)) |
171 | 170, 169 | jca 512 |
. . . . . . 7
β’ ((π β§ (πΆ β π΄) = (πΉ β π·)) β ((π΄ β πΆ) = (π· β πΉ) β§ (πΆ β π΄) = (πΉ β π·))) |
172 | 163, 171 | impbida 799 |
. . . . . 6
β’ (π β (((π΄ β πΆ) = (π· β πΉ) β§ (πΆ β π΄) = (πΉ β π·)) β (πΆ β π΄) = (πΉ β π·))) |
173 | 152, 162,
172 | 3anbi123d 1436 |
. . . . 5
β’ (π β ((((π΄ β π΅) = (π· β πΈ) β§ (π΅ β π΄) = (πΈ β π·)) β§ ((π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΅) = (πΉ β πΈ)) β§ ((π΄ β πΆ) = (π· β πΉ) β§ (πΆ β π΄) = (πΉ β π·))) β ((π΄ β π΅) = (π· β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΄) = (πΉ β π·)))) |
174 | 142, 173 | bitr3d 280 |
. . . 4
β’ (π β ((((π΄ β π΄) = (π· β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ)) β§ (((π΄ β π΅) = (π· β πΈ) β§ (π΅ β π΄) = (πΈ β π·)) β§ ((π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΅) = (πΉ β πΈ)) β§ ((π΄ β πΆ) = (π· β πΉ) β§ (πΆ β π΄) = (πΉ β π·)))) β ((π΄ β π΅) = (π· β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΄) = (πΉ β π·)))) |
175 | 136, 174 | bitrid 282 |
. . 3
β’ (π β ((((π΄ β π΄) = (π· β π·) β§ (π΄ β π΅) = (π· β πΈ) β§ (π΄ β πΆ) = (π· β πΉ)) β§ ((π΅ β π΄) = (πΈ β π·) β§ (π΅ β π΅) = (πΈ β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ)) β§ ((πΆ β π΄) = (πΉ β π·) β§ (πΆ β π΅) = (πΉ β πΈ) β§ (πΆ β πΆ) = (πΉ β πΉ))) β ((π΄ β π΅) = (π· β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΄) = (πΉ β π·)))) |
176 | 135, 175 | bitr2d 279 |
. 2
β’ (π β (((π΄ β π΅) = (π· β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΄) = (πΉ β π·)) β βπ β {0, 1, 2}βπ β {0, 1, 2} ((β¨βπ΄π΅πΆββ©βπ) β (β¨βπ΄π΅πΆββ©βπ)) = ((β¨βπ·πΈπΉββ©βπ) β (β¨βπ·πΈπΉββ©βπ)))) |
177 | 15, 37, 176 | 3bitr4d 310 |
1
β’ (π β (β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ© β ((π΄ β π΅) = (π· β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΄) = (πΉ β π·)))) |