Step | Hyp | Ref
| Expression |
1 | | trgcgrg.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
2 | | trgcgrg.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
3 | | trgcgrg.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
4 | 1, 2, 3 | s3cld 14585 |
. . . . . 6
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃) |
5 | | wrdf 14222 |
. . . . . 6
⊢
(〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 → 〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶𝑃) |
6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶𝑃) |
7 | | s3len 14607 |
. . . . . . . 8
⊢
(♯‘〈“𝐴𝐵𝐶”〉) = 3 |
8 | 7 | oveq2i 7286 |
. . . . . . 7
⊢
(0..^(♯‘〈“𝐴𝐵𝐶”〉)) = (0..^3) |
9 | | fzo0to3tp 13473 |
. . . . . . 7
⊢ (0..^3) =
{0, 1, 2} |
10 | 8, 9 | eqtri 2766 |
. . . . . 6
⊢
(0..^(♯‘〈“𝐴𝐵𝐶”〉)) = {0, 1, 2} |
11 | 10 | feq2i 6592 |
. . . . 5
⊢
(〈“𝐴𝐵𝐶”〉:(0..^(♯‘〈“𝐴𝐵𝐶”〉))⟶𝑃 ↔ 〈“𝐴𝐵𝐶”〉:{0, 1, 2}⟶𝑃) |
12 | 6, 11 | sylib 217 |
. . . 4
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉:{0, 1, 2}⟶𝑃) |
13 | 12 | fdmd 6611 |
. . 3
⊢ (𝜑 → dom 〈“𝐴𝐵𝐶”〉 = {0, 1, 2}) |
14 | 13 | raleqdv 3348 |
. . 3
⊢ (𝜑 → (∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)))) |
15 | 13, 14 | raleqbidv 3336 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ dom 〈“𝐴𝐵𝐶”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)))) |
16 | | trgcgrg.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
17 | | trgcgrg.m |
. . 3
⊢ − =
(dist‘𝐺) |
18 | | trgcgrg.r |
. . 3
⊢ ∼ =
(cgrG‘𝐺) |
19 | | trgcgrg.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
20 | | 0re 10977 |
. . . . 5
⊢ 0 ∈
ℝ |
21 | | 1re 10975 |
. . . . 5
⊢ 1 ∈
ℝ |
22 | | 2re 12047 |
. . . . 5
⊢ 2 ∈
ℝ |
23 | | tpssi 4769 |
. . . . 5
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ) → {0, 1, 2}
⊆ ℝ) |
24 | 20, 21, 22, 23 | mp3an 1460 |
. . . 4
⊢ {0, 1, 2}
⊆ ℝ |
25 | 24 | a1i 11 |
. . 3
⊢ (𝜑 → {0, 1, 2} ⊆
ℝ) |
26 | | trgcgrg.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
27 | | trgcgrg.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
28 | | trgcgrg.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
29 | 26, 27, 28 | s3cld 14585 |
. . . . 5
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ Word 𝑃) |
30 | | wrdf 14222 |
. . . . 5
⊢
(〈“𝐷𝐸𝐹”〉 ∈ Word 𝑃 → 〈“𝐷𝐸𝐹”〉:(0..^(♯‘〈“𝐷𝐸𝐹”〉))⟶𝑃) |
31 | 29, 30 | syl 17 |
. . . 4
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉:(0..^(♯‘〈“𝐷𝐸𝐹”〉))⟶𝑃) |
32 | | s3len 14607 |
. . . . . . 7
⊢
(♯‘〈“𝐷𝐸𝐹”〉) = 3 |
33 | 32 | oveq2i 7286 |
. . . . . 6
⊢
(0..^(♯‘〈“𝐷𝐸𝐹”〉)) = (0..^3) |
34 | 33, 9 | eqtri 2766 |
. . . . 5
⊢
(0..^(♯‘〈“𝐷𝐸𝐹”〉)) = {0, 1, 2} |
35 | 34 | feq2i 6592 |
. . . 4
⊢
(〈“𝐷𝐸𝐹”〉:(0..^(♯‘〈“𝐷𝐸𝐹”〉))⟶𝑃 ↔ 〈“𝐷𝐸𝐹”〉:{0, 1, 2}⟶𝑃) |
36 | 31, 35 | sylib 217 |
. . 3
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉:{0, 1, 2}⟶𝑃) |
37 | 16, 17, 18, 19, 25, 12, 36 | iscgrgd 26874 |
. 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉 ↔ ∀𝑖 ∈ dom 〈“𝐴𝐵𝐶”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)))) |
38 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (〈“𝐴𝐵𝐶”〉‘𝑗) = (〈“𝐴𝐵𝐶”〉‘0)) |
39 | | s3fv0 14604 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
40 | 1, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
41 | 38, 40 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 0) → (〈“𝐴𝐵𝐶”〉‘𝑗) = 𝐴) |
42 | 41 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 0) → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴)) |
43 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (〈“𝐷𝐸𝐹”〉‘𝑗) = (〈“𝐷𝐸𝐹”〉‘0)) |
44 | | s3fv0 14604 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘0) = 𝐷) |
45 | 26, 44 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘0) = 𝐷) |
46 | 43, 45 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 0) → (〈“𝐷𝐸𝐹”〉‘𝑗) = 𝐷) |
47 | 46 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 0) → ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷)) |
48 | 42, 47 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 = 0) → (((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷))) |
49 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 1 → (〈“𝐴𝐵𝐶”〉‘𝑗) = (〈“𝐴𝐵𝐶”〉‘1)) |
50 | | s3fv1 14605 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
51 | 2, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
52 | 49, 51 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 1) → (〈“𝐴𝐵𝐶”〉‘𝑗) = 𝐵) |
53 | 52 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 1) → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵)) |
54 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 1 → (〈“𝐷𝐸𝐹”〉‘𝑗) = (〈“𝐷𝐸𝐹”〉‘1)) |
55 | | s3fv1 14605 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘1) = 𝐸) |
56 | 27, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘1) = 𝐸) |
57 | 54, 56 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 1) → (〈“𝐷𝐸𝐹”〉‘𝑗) = 𝐸) |
58 | 57 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 1) → ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸)) |
59 | 53, 58 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 = 1) → (((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸))) |
60 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 2 → (〈“𝐴𝐵𝐶”〉‘𝑗) = (〈“𝐴𝐵𝐶”〉‘2)) |
61 | | s3fv2 14606 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
62 | 3, 61 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
63 | 60, 62 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 2) → (〈“𝐴𝐵𝐶”〉‘𝑗) = 𝐶) |
64 | 63 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 2) → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶)) |
65 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑗 = 2 → (〈“𝐷𝐸𝐹”〉‘𝑗) = (〈“𝐷𝐸𝐹”〉‘2)) |
66 | | s3fv2 14606 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝑃 → (〈“𝐷𝐸𝐹”〉‘2) = 𝐹) |
67 | 28, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉‘2) = 𝐹) |
68 | 65, 67 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 2) → (〈“𝐷𝐸𝐹”〉‘𝑗) = 𝐹) |
69 | 68 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 2) → ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)) |
70 | 64, 69 | eqeq12d 2754 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 = 2) → (((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹))) |
71 | | 0red 10978 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
72 | | 1red 10976 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) |
73 | 22 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) |
74 | 48, 59, 70, 71, 72, 73 | raltpd 4717 |
. . . . . 6
⊢ (𝜑 → (∀𝑗 ∈ {0, 1, 2}
((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
75 | 74 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
76 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘0)) |
77 | 76 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘0)) |
78 | 40 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
79 | 77, 78 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝐴 = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
80 | 79 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐴 − 𝐴) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴)) |
81 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘0)) |
82 | 81 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘0)) |
83 | 45 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐷𝐸𝐹”〉‘0) = 𝐷) |
84 | 82, 83 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝐷 = (〈“𝐷𝐸𝐹”〉‘𝑖)) |
85 | 84 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐷 − 𝐷) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷)) |
86 | 80, 85 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝐴 − 𝐴) = (𝐷 − 𝐷) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷))) |
87 | 79 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐴 − 𝐵) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵)) |
88 | 84 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐷 − 𝐸) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸)) |
89 | 87, 88 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝐴 − 𝐵) = (𝐷 − 𝐸) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸))) |
90 | 79 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐴 − 𝐶) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶)) |
91 | 84 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝐷 − 𝐹) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)) |
92 | 90, 91 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝐴 − 𝐶) = (𝐷 − 𝐹) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹))) |
93 | 86, 89, 92 | 3anbi123d 1435 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 0) → (((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
94 | 75, 93 | bitr4d 281 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)))) |
95 | 74 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
96 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘1)) |
97 | 96 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘1)) |
98 | 51 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
99 | 97, 98 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 1) → 𝐵 = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
100 | 99 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐵 − 𝐴) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴)) |
101 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘1)) |
102 | 101 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘1)) |
103 | 56 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐷𝐸𝐹”〉‘1) = 𝐸) |
104 | 102, 103 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 1) → 𝐸 = (〈“𝐷𝐸𝐹”〉‘𝑖)) |
105 | 104 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐸 − 𝐷) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷)) |
106 | 100, 105 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 1) → ((𝐵 − 𝐴) = (𝐸 − 𝐷) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷))) |
107 | 99 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐵 − 𝐵) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵)) |
108 | 104 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐸 − 𝐸) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸)) |
109 | 107, 108 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 1) → ((𝐵 − 𝐵) = (𝐸 − 𝐸) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸))) |
110 | 99 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐵 − 𝐶) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶)) |
111 | 104 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (𝐸 − 𝐹) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)) |
112 | 110, 111 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 1) → ((𝐵 − 𝐶) = (𝐸 − 𝐹) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹))) |
113 | 106, 109,
112 | 3anbi123d 1435 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 1) → (((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
114 | 95, 113 | bitr4d 281 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)))) |
115 | 74 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
116 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 2 → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘2)) |
117 | 116 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐴𝐵𝐶”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘2)) |
118 | 62 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
119 | 117, 118 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 2) → 𝐶 = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
120 | 119 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐶 − 𝐴) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴)) |
121 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 2 → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘2)) |
122 | 121 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐷𝐸𝐹”〉‘𝑖) = (〈“𝐷𝐸𝐹”〉‘2)) |
123 | 67 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐷𝐸𝐹”〉‘2) = 𝐹) |
124 | 122, 123 | eqtr2d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 2) → 𝐹 = (〈“𝐷𝐸𝐹”〉‘𝑖)) |
125 | 124 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐹 − 𝐷) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷)) |
126 | 120, 125 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 2) → ((𝐶 − 𝐴) = (𝐹 − 𝐷) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷))) |
127 | 119 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐶 − 𝐵) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵)) |
128 | 124 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐹 − 𝐸) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸)) |
129 | 127, 128 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 2) → ((𝐶 − 𝐵) = (𝐹 − 𝐸) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸))) |
130 | 119 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐶 − 𝐶) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶)) |
131 | 124 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (𝐹 − 𝐹) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)) |
132 | 130, 131 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 2) → ((𝐶 − 𝐶) = (𝐹 − 𝐹) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹))) |
133 | 126, 129,
132 | 3anbi123d 1435 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = 2) → (((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)) ↔ (((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐴) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐷) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐵) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐸) ∧ ((〈“𝐴𝐵𝐶”〉‘𝑖) − 𝐶) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − 𝐹)))) |
134 | 115, 133 | bitr4d 281 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ ((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)))) |
135 | 94, 114, 134, 71, 72, 73 | raltpd 4717 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2}
((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)) ↔ (((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)) ∧ ((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) ∧ ((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹))))) |
136 | | an33rean 1482 |
. . . 4
⊢ ((((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)) ∧ ((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) ∧ ((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹))) ↔ (((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)) ∧ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))))) |
137 | | eqid 2738 |
. . . . . . . 8
⊢
(Itv‘𝐺) =
(Itv‘𝐺) |
138 | 16, 17, 137, 19, 1, 26 | tgcgrtriv 26845 |
. . . . . . 7
⊢ (𝜑 → (𝐴 − 𝐴) = (𝐷 − 𝐷)) |
139 | 16, 17, 137, 19, 2, 27 | tgcgrtriv 26845 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐵) = (𝐸 − 𝐸)) |
140 | 16, 17, 137, 19, 3, 28 | tgcgrtriv 26845 |
. . . . . . 7
⊢ (𝜑 → (𝐶 − 𝐶) = (𝐹 − 𝐹)) |
141 | 138, 139,
140 | 3jca 1127 |
. . . . . 6
⊢ (𝜑 → ((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹))) |
142 | 141 | biantrurd 533 |
. . . . 5
⊢ (𝜑 → ((((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) ↔ (((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)) ∧ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))))) |
143 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷))) → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
144 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
145 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐺 ∈ TarskiG) |
146 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐴 ∈ 𝑃) |
147 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐵 ∈ 𝑃) |
148 | 26 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐷 ∈ 𝑃) |
149 | 27 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → 𝐸 ∈ 𝑃) |
150 | 16, 17, 137, 145, 146, 147, 148, 149, 144 | tgcgrcomlr 26841 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → (𝐵 − 𝐴) = (𝐸 − 𝐷)) |
151 | 144, 150 | jca 512 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸)) → ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷))) |
152 | 143, 151 | impbida 798 |
. . . . . 6
⊢ (𝜑 → (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ↔ (𝐴 − 𝐵) = (𝐷 − 𝐸))) |
153 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸))) → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
154 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
155 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐺 ∈ TarskiG) |
156 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐵 ∈ 𝑃) |
157 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐶 ∈ 𝑃) |
158 | 27 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐸 ∈ 𝑃) |
159 | 28 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → 𝐹 ∈ 𝑃) |
160 | 16, 17, 137, 155, 156, 157, 158, 159, 154 | tgcgrcomlr 26841 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → (𝐶 − 𝐵) = (𝐹 − 𝐸)) |
161 | 154, 160 | jca 512 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) → ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸))) |
162 | 153, 161 | impbida 798 |
. . . . . 6
⊢ (𝜑 → (((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ↔ (𝐵 − 𝐶) = (𝐸 − 𝐹))) |
163 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
164 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐺 ∈ TarskiG) |
165 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐶 ∈ 𝑃) |
166 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐴 ∈ 𝑃) |
167 | 28 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐹 ∈ 𝑃) |
168 | 26 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → 𝐷 ∈ 𝑃) |
169 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
170 | 16, 17, 137, 164, 165, 166, 167, 168, 169 | tgcgrcomlr 26841 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
171 | 170, 169 | jca 512 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) → ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) |
172 | 163, 171 | impbida 798 |
. . . . . 6
⊢ (𝜑 → (((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ↔ (𝐶 − 𝐴) = (𝐹 − 𝐷))) |
173 | 152, 162,
172 | 3anbi123d 1435 |
. . . . 5
⊢ (𝜑 → ((((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷))) ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
174 | 142, 173 | bitr3d 280 |
. . . 4
⊢ (𝜑 → ((((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹)) ∧ (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐴) = (𝐸 − 𝐷)) ∧ ((𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸)) ∧ ((𝐴 − 𝐶) = (𝐷 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
175 | 136, 174 | bitrid 282 |
. . 3
⊢ (𝜑 → ((((𝐴 − 𝐴) = (𝐷 − 𝐷) ∧ (𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐴 − 𝐶) = (𝐷 − 𝐹)) ∧ ((𝐵 − 𝐴) = (𝐸 − 𝐷) ∧ (𝐵 − 𝐵) = (𝐸 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹)) ∧ ((𝐶 − 𝐴) = (𝐹 − 𝐷) ∧ (𝐶 − 𝐵) = (𝐹 − 𝐸) ∧ (𝐶 − 𝐶) = (𝐹 − 𝐹))) ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
176 | 135, 175 | bitr2d 279 |
. 2
⊢ (𝜑 → (((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝐷𝐸𝐹”〉‘𝑖) − (〈“𝐷𝐸𝐹”〉‘𝑗)))) |
177 | 15, 37, 176 | 3bitr4d 311 |
1
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |