MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcgrg Structured version   Visualization version   GIF version

Theorem trgcgrg 26295
Description: The property for two triangles to be congruent to each other. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
trgcgrg.p 𝑃 = (Base‘𝐺)
trgcgrg.m = (dist‘𝐺)
trgcgrg.r = (cgrG‘𝐺)
trgcgrg.g (𝜑𝐺 ∈ TarskiG)
trgcgrg.a (𝜑𝐴𝑃)
trgcgrg.b (𝜑𝐵𝑃)
trgcgrg.c (𝜑𝐶𝑃)
trgcgrg.d (𝜑𝐷𝑃)
trgcgrg.e (𝜑𝐸𝑃)
trgcgrg.f (𝜑𝐹𝑃)
Assertion
Ref Expression
trgcgrg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))

Proof of Theorem trgcgrg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcgrg.a . . . . . . 7 (𝜑𝐴𝑃)
2 trgcgrg.b . . . . . . 7 (𝜑𝐵𝑃)
3 trgcgrg.c . . . . . . 7 (𝜑𝐶𝑃)
41, 2, 3s3cld 14228 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 wrdf 13860 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
64, 5syl 17 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃)
7 s3len 14250 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
87oveq2i 7161 . . . . . . 7 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
9 fzo0to3tp 13117 . . . . . . 7 (0..^3) = {0, 1, 2}
108, 9eqtri 2844 . . . . . 6 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = {0, 1, 2}
1110feq2i 6501 . . . . 5 (⟨“𝐴𝐵𝐶”⟩:(0..^(♯‘⟨“𝐴𝐵𝐶”⟩))⟶𝑃 ↔ ⟨“𝐴𝐵𝐶”⟩:{0, 1, 2}⟶𝑃)
126, 11sylib 220 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩:{0, 1, 2}⟶𝑃)
1312fdmd 6518 . . 3 (𝜑 → dom ⟨“𝐴𝐵𝐶”⟩ = {0, 1, 2})
1413raleqdv 3416 . . 3 (𝜑 → (∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
1513, 14raleqbidv 3402 . 2 (𝜑 → (∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
16 trgcgrg.p . . 3 𝑃 = (Base‘𝐺)
17 trgcgrg.m . . 3 = (dist‘𝐺)
18 trgcgrg.r . . 3 = (cgrG‘𝐺)
19 trgcgrg.g . . 3 (𝜑𝐺 ∈ TarskiG)
20 0re 10637 . . . . 5 0 ∈ ℝ
21 1re 10635 . . . . 5 1 ∈ ℝ
22 2re 11705 . . . . 5 2 ∈ ℝ
23 tpssi 4763 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ) → {0, 1, 2} ⊆ ℝ)
2420, 21, 22, 23mp3an 1457 . . . 4 {0, 1, 2} ⊆ ℝ
2524a1i 11 . . 3 (𝜑 → {0, 1, 2} ⊆ ℝ)
26 trgcgrg.d . . . . . 6 (𝜑𝐷𝑃)
27 trgcgrg.e . . . . . 6 (𝜑𝐸𝑃)
28 trgcgrg.f . . . . . 6 (𝜑𝐹𝑃)
2926, 27, 28s3cld 14228 . . . . 5 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
30 wrdf 13860 . . . . 5 (⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 → ⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃)
3129, 30syl 17 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃)
32 s3len 14250 . . . . . . 7 (♯‘⟨“𝐷𝐸𝐹”⟩) = 3
3332oveq2i 7161 . . . . . 6 (0..^(♯‘⟨“𝐷𝐸𝐹”⟩)) = (0..^3)
3433, 9eqtri 2844 . . . . 5 (0..^(♯‘⟨“𝐷𝐸𝐹”⟩)) = {0, 1, 2}
3534feq2i 6501 . . . 4 (⟨“𝐷𝐸𝐹”⟩:(0..^(♯‘⟨“𝐷𝐸𝐹”⟩))⟶𝑃 ↔ ⟨“𝐷𝐸𝐹”⟩:{0, 1, 2}⟶𝑃)
3631, 35sylib 220 . . 3 (𝜑 → ⟨“𝐷𝐸𝐹”⟩:{0, 1, 2}⟶𝑃)
3716, 17, 18, 19, 25, 12, 36iscgrgd 26293 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ∀𝑖 ∈ dom ⟨“𝐴𝐵𝐶”⟩∀𝑗 ∈ dom ⟨“𝐴𝐵𝐶”⟩((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
38 fveq2 6665 . . . . . . . . . 10 (𝑗 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘0))
39 s3fv0 14247 . . . . . . . . . . 11 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
401, 39syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4138, 40sylan9eqr 2878 . . . . . . . . 9 ((𝜑𝑗 = 0) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐴)
4241oveq2d 7166 . . . . . . . 8 ((𝜑𝑗 = 0) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
43 fveq2 6665 . . . . . . . . . 10 (𝑗 = 0 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘0))
44 s3fv0 14247 . . . . . . . . . . 11 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
4526, 44syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
4643, 45sylan9eqr 2878 . . . . . . . . 9 ((𝜑𝑗 = 0) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐷)
4746oveq2d 7166 . . . . . . . 8 ((𝜑𝑗 = 0) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
4842, 47eqeq12d 2837 . . . . . . 7 ((𝜑𝑗 = 0) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
49 fveq2 6665 . . . . . . . . . 10 (𝑗 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘1))
50 s3fv1 14248 . . . . . . . . . . 11 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
512, 50syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
5249, 51sylan9eqr 2878 . . . . . . . . 9 ((𝜑𝑗 = 1) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐵)
5352oveq2d 7166 . . . . . . . 8 ((𝜑𝑗 = 1) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
54 fveq2 6665 . . . . . . . . . 10 (𝑗 = 1 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘1))
55 s3fv1 14248 . . . . . . . . . . 11 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
5627, 55syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
5754, 56sylan9eqr 2878 . . . . . . . . 9 ((𝜑𝑗 = 1) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐸)
5857oveq2d 7166 . . . . . . . 8 ((𝜑𝑗 = 1) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
5953, 58eqeq12d 2837 . . . . . . 7 ((𝜑𝑗 = 1) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
60 fveq2 6665 . . . . . . . . . 10 (𝑗 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = (⟨“𝐴𝐵𝐶”⟩‘2))
61 s3fv2 14249 . . . . . . . . . . 11 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
623, 61syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
6360, 62sylan9eqr 2878 . . . . . . . . 9 ((𝜑𝑗 = 2) → (⟨“𝐴𝐵𝐶”⟩‘𝑗) = 𝐶)
6463oveq2d 7166 . . . . . . . 8 ((𝜑𝑗 = 2) → ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
65 fveq2 6665 . . . . . . . . . 10 (𝑗 = 2 → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = (⟨“𝐷𝐸𝐹”⟩‘2))
66 s3fv2 14249 . . . . . . . . . . 11 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
6728, 66syl 17 . . . . . . . . . 10 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
6865, 67sylan9eqr 2878 . . . . . . . . 9 ((𝜑𝑗 = 2) → (⟨“𝐷𝐸𝐹”⟩‘𝑗) = 𝐹)
6968oveq2d 7166 . . . . . . . 8 ((𝜑𝑗 = 2) → ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
7064, 69eqeq12d 2837 . . . . . . 7 ((𝜑𝑗 = 2) → (((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
71 0red 10638 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
72 1red 10636 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
7322a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
7448, 59, 70, 71, 72, 73raltpd 4710 . . . . . 6 (𝜑 → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
7574adantr 483 . . . . 5 ((𝜑𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
76 fveq2 6665 . . . . . . . . . 10 (𝑖 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
7776adantl 484 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
7840adantr 483 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
7977, 78eqtr2d 2857 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
8079oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
81 fveq2 6665 . . . . . . . . . 10 (𝑖 = 0 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘0))
8281adantl 484 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘0))
8345adantr 483 . . . . . . . . 9 ((𝜑𝑖 = 0) → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
8482, 83eqtr2d 2857 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝐷 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
8584oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
8680, 85eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐴) = (𝐷 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
8779oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
8884oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
8987, 88eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐵) = (𝐷 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
9079oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐴 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
9184oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 0) → (𝐷 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
9290, 91eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 0) → ((𝐴 𝐶) = (𝐷 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
9386, 89, 923anbi123d 1432 . . . . 5 ((𝜑𝑖 = 0) → (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
9475, 93bitr4d 284 . . . 4 ((𝜑𝑖 = 0) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹))))
9574adantr 483 . . . . 5 ((𝜑𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
96 fveq2 6665 . . . . . . . . . 10 (𝑖 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
9796adantl 484 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
9851adantr 483 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
9997, 98eqtr2d 2857 . . . . . . . 8 ((𝜑𝑖 = 1) → 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
10099oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
101 fveq2 6665 . . . . . . . . . 10 (𝑖 = 1 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘1))
102101adantl 484 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘1))
10356adantr 483 . . . . . . . . 9 ((𝜑𝑖 = 1) → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
104102, 103eqtr2d 2857 . . . . . . . 8 ((𝜑𝑖 = 1) → 𝐸 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
105104oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
106100, 105eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐴) = (𝐸 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
10799oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
108104oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
109107, 108eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐵) = (𝐸 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
11099oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐵 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
111104oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 1) → (𝐸 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
112110, 111eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 1) → ((𝐵 𝐶) = (𝐸 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
113106, 109, 1123anbi123d 1432 . . . . 5 ((𝜑𝑖 = 1) → (((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
11495, 113bitr4d 284 . . . 4 ((𝜑𝑖 = 1) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹))))
11574adantr 483 . . . . 5 ((𝜑𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
116 fveq2 6665 . . . . . . . . . 10 (𝑖 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
117116adantl 484 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
11862adantr 483 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
119117, 118eqtr2d 2857 . . . . . . . 8 ((𝜑𝑖 = 2) → 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘𝑖))
120119oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐴) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴))
121 fveq2 6665 . . . . . . . . . 10 (𝑖 = 2 → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘2))
122121adantl 484 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐷𝐸𝐹”⟩‘𝑖) = (⟨“𝐷𝐸𝐹”⟩‘2))
12367adantr 483 . . . . . . . . 9 ((𝜑𝑖 = 2) → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
124122, 123eqtr2d 2857 . . . . . . . 8 ((𝜑𝑖 = 2) → 𝐹 = (⟨“𝐷𝐸𝐹”⟩‘𝑖))
125124oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐷) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷))
126120, 125eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐴) = (𝐹 𝐷) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷)))
127119oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐵) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵))
128124oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐸) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸))
129127, 128eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐵) = (𝐹 𝐸) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸)))
130119oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐶 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶))
131124oveq1d 7165 . . . . . . 7 ((𝜑𝑖 = 2) → (𝐹 𝐹) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))
132130, 131eqeq12d 2837 . . . . . 6 ((𝜑𝑖 = 2) → ((𝐶 𝐶) = (𝐹 𝐹) ↔ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹)))
133126, 129, 1323anbi123d 1432 . . . . 5 ((𝜑𝑖 = 2) → (((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ↔ (((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐴) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐷) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐵) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐸) ∧ ((⟨“𝐴𝐵𝐶”⟩‘𝑖) 𝐶) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) 𝐹))))
134115, 133bitr4d 284 . . . 4 ((𝜑𝑖 = 2) → (∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))))
13594, 114, 134, 71, 72, 73raltpd 4710 . . 3 (𝜑 → (∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗)) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)))))
136 an33rean 1479 . . . 4 ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))))
137 eqid 2821 . . . . . . . 8 (Itv‘𝐺) = (Itv‘𝐺)
13816, 17, 137, 19, 1, 26tgcgrtriv 26264 . . . . . . 7 (𝜑 → (𝐴 𝐴) = (𝐷 𝐷))
13916, 17, 137, 19, 2, 27tgcgrtriv 26264 . . . . . . 7 (𝜑 → (𝐵 𝐵) = (𝐸 𝐸))
14016, 17, 137, 19, 3, 28tgcgrtriv 26264 . . . . . . 7 (𝜑 → (𝐶 𝐶) = (𝐹 𝐹))
141138, 139, 1403jca 1124 . . . . . 6 (𝜑 → ((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)))
142141biantrurd 535 . . . . 5 (𝜑 → ((((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) ↔ (((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))))
143 simprl 769 . . . . . . 7 ((𝜑 ∧ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷))) → (𝐴 𝐵) = (𝐷 𝐸))
144 simpr 487 . . . . . . . 8 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → (𝐴 𝐵) = (𝐷 𝐸))
14519adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐺 ∈ TarskiG)
1461adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐴𝑃)
1472adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐵𝑃)
14826adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐷𝑃)
14927adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → 𝐸𝑃)
15016, 17, 137, 145, 146, 147, 148, 149, 144tgcgrcomlr 26260 . . . . . . . 8 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → (𝐵 𝐴) = (𝐸 𝐷))
151144, 150jca 514 . . . . . . 7 ((𝜑 ∧ (𝐴 𝐵) = (𝐷 𝐸)) → ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)))
152143, 151impbida 799 . . . . . 6 (𝜑 → (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ↔ (𝐴 𝐵) = (𝐷 𝐸)))
153 simprl 769 . . . . . . 7 ((𝜑 ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸))) → (𝐵 𝐶) = (𝐸 𝐹))
154 simpr 487 . . . . . . . 8 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → (𝐵 𝐶) = (𝐸 𝐹))
15519adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐺 ∈ TarskiG)
1562adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐵𝑃)
1573adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐶𝑃)
15827adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐸𝑃)
15928adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → 𝐹𝑃)
16016, 17, 137, 155, 156, 157, 158, 159, 154tgcgrcomlr 26260 . . . . . . . 8 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → (𝐶 𝐵) = (𝐹 𝐸))
161154, 160jca 514 . . . . . . 7 ((𝜑 ∧ (𝐵 𝐶) = (𝐸 𝐹)) → ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)))
162153, 161impbida 799 . . . . . 6 (𝜑 → (((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ↔ (𝐵 𝐶) = (𝐸 𝐹)))
163 simprr 771 . . . . . . 7 ((𝜑 ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) → (𝐶 𝐴) = (𝐹 𝐷))
16419adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐺 ∈ TarskiG)
1653adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐶𝑃)
1661adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐴𝑃)
16728adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐹𝑃)
16826adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → 𝐷𝑃)
169 simpr 487 . . . . . . . . 9 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → (𝐶 𝐴) = (𝐹 𝐷))
17016, 17, 137, 164, 165, 166, 167, 168, 169tgcgrcomlr 26260 . . . . . . . 8 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → (𝐴 𝐶) = (𝐷 𝐹))
171170, 169jca 514 . . . . . . 7 ((𝜑 ∧ (𝐶 𝐴) = (𝐹 𝐷)) → ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))
172163, 171impbida 799 . . . . . 6 (𝜑 → (((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ↔ (𝐶 𝐴) = (𝐹 𝐷)))
173152, 162, 1723anbi123d 1432 . . . . 5 (𝜑 → ((((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
174142, 173bitr3d 283 . . . 4 (𝜑 → ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹)) ∧ (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐴) = (𝐸 𝐷)) ∧ ((𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐵) = (𝐹 𝐸)) ∧ ((𝐴 𝐶) = (𝐷 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
175136, 174syl5bb 285 . . 3 (𝜑 → ((((𝐴 𝐴) = (𝐷 𝐷) ∧ (𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐴 𝐶) = (𝐷 𝐹)) ∧ ((𝐵 𝐴) = (𝐸 𝐷) ∧ (𝐵 𝐵) = (𝐸 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹)) ∧ ((𝐶 𝐴) = (𝐹 𝐷) ∧ (𝐶 𝐵) = (𝐹 𝐸) ∧ (𝐶 𝐶) = (𝐹 𝐹))) ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
176135, 175bitr2d 282 . 2 (𝜑 → (((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷)) ↔ ∀𝑖 ∈ {0, 1, 2}∀𝑗 ∈ {0, 1, 2} ((⟨“𝐴𝐵𝐶”⟩‘𝑖) (⟨“𝐴𝐵𝐶”⟩‘𝑗)) = ((⟨“𝐷𝐸𝐹”⟩‘𝑖) (⟨“𝐷𝐸𝐹”⟩‘𝑗))))
17715, 37, 1763bitr4d 313 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3936  {ctp 4565   class class class wbr 5059  dom cdm 5550  wf 6346  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532  2c2 11686  3c3 11687  ..^cfzo 13027  chash 13684  Word cword 13855  ⟨“cs3 14198  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216  cgrGccgrg 26290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205  df-trkgc 26228  df-trkgcb 26230  df-trkg 26233  df-cgrg 26291
This theorem is referenced by:  trgcgr  26296  cgr3simp1  26300  cgr3simp2  26301  cgr3simp3  26302  dfcgrg2  26643
  Copyright terms: Public domain W3C validator