MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqwrds3 Structured version   Visualization version   GIF version

Theorem eqwrds3 14604
Description: A word is equal with a length 3 string iff it has length 3 and the same symbol at each position. (Contributed by AV, 12-May-2021.)
Assertion
Ref Expression
eqwrds3 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))

Proof of Theorem eqwrds3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s3cl 14520 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
2 eqwrd 14188 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
31, 2sylan2 592 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑊) = (♯‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
4 s3len 14535 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
54eqeq2i 2751 . . . 4 ((♯‘𝑊) = (♯‘⟨“𝐴𝐵𝐶”⟩) ↔ (♯‘𝑊) = 3)
65a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((♯‘𝑊) = (♯‘⟨“𝐴𝐵𝐶”⟩) ↔ (♯‘𝑊) = 3))
76anbi1d 629 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((♯‘𝑊) = (♯‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)) ↔ ((♯‘𝑊) = 3 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
8 oveq2 7263 . . . . . 6 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
9 fzo0to3tp 13401 . . . . . 6 (0..^3) = {0, 1, 2}
108, 9eqtrdi 2795 . . . . 5 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = {0, 1, 2})
1110raleqdv 3339 . . . 4 ((♯‘𝑊) = 3 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)))
12 fveq2 6756 . . . . . . . 8 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
13 fveq2 6756 . . . . . . . 8 (𝑖 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
1412, 13eqeq12d 2754 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘0) = (⟨“𝐴𝐵𝐶”⟩‘0)))
15 s3fv0 14532 . . . . . . . . 9 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
16153ad2ant1 1131 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
1716eqeq2d 2749 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘0) = (⟨“𝐴𝐵𝐶”⟩‘0) ↔ (𝑊‘0) = 𝐴))
1814, 17sylan9bbr 510 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 0) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘0) = 𝐴))
19 fveq2 6756 . . . . . . . 8 (𝑖 = 1 → (𝑊𝑖) = (𝑊‘1))
20 fveq2 6756 . . . . . . . 8 (𝑖 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
2119, 20eqeq12d 2754 . . . . . . 7 (𝑖 = 1 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1)))
22 s3fv1 14533 . . . . . . . . 9 (𝐵𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
23223ad2ant2 1132 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2423eqeq2d 2749 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (𝑊‘1) = 𝐵))
2521, 24sylan9bbr 510 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 1) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘1) = 𝐵))
26 fveq2 6756 . . . . . . . 8 (𝑖 = 2 → (𝑊𝑖) = (𝑊‘2))
27 fveq2 6756 . . . . . . . 8 (𝑖 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
2826, 27eqeq12d 2754 . . . . . . 7 (𝑖 = 2 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2)))
29 s3fv2 14534 . . . . . . . . 9 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
30293ad2ant3 1133 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3130eqeq2d 2749 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (𝑊‘2) = 𝐶))
3228, 31sylan9bbr 510 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 2) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘2) = 𝐶))
33 0zd 12261 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 0 ∈ ℤ)
34 1zzd 12281 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 1 ∈ ℤ)
35 2z 12282 . . . . . . 7 2 ∈ ℤ
3635a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 2 ∈ ℤ)
3718, 25, 32, 33, 34, 36raltpd 4714 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
3837adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
3911, 38sylan9bbr 510 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (♯‘𝑊) = 3) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
4039pm5.32da 578 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((♯‘𝑊) = 3 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
413, 7, 403bitrd 304 1 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {ctp 4562  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  2c2 11958  3c3 11959  cz 12249  ..^cfzo 13311  chash 13972  Word cword 14145  ⟨“cs3 14483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490
This theorem is referenced by:  wrdl3s3  14605  s3sndisj  14606  s3iunsndisj  14607  elwwlks2ons3im  28220  umgrwwlks2on  28223  elwwlks2  28232  elwspths2spth  28233  cyc3evpm  31319
  Copyright terms: Public domain W3C validator