Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralun | Structured version Visualization version GIF version |
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ralun | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunb 4129 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
2 | 1 | biimpri 227 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wral 3065 ∪ cun 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3432 df-un 3896 |
This theorem is referenced by: ac6sfi 9019 frfi 9020 fpwwe2lem12 10382 modfsummod 15487 drsdirfi 18004 lbsextlem4 20404 fbun 22972 filconn 23015 cnmpopc 24072 chtub 26341 prsiga 32078 finixpnum 35741 poimirlem31 35787 poimirlem32 35788 kelac1 40868 |
Copyright terms: Public domain | W3C validator |