MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralun Structured version   Visualization version   GIF version

Theorem ralun 4164
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ralun ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem ralun
StepHypRef Expression
1 ralunb 4163 . 2 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
21biimpri 228 1 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3045  cun 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-un 3922
This theorem is referenced by:  f1ounsn  7250  ac6sfi  9238  frfi  9239  fpwwe2lem12  10602  modfsummod  15767  drsdirfi  18273  lbsextlem4  21078  fbun  23734  filconn  23777  cnmpopc  24829  chtub  27130  prsiga  34128  finixpnum  37606  poimirlem31  37652  poimirlem32  37653  kelac1  43059  cantnfresb  43320
  Copyright terms: Public domain W3C validator