MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralun Structured version   Visualization version   GIF version

Theorem ralun 4161
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ralun ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem ralun
StepHypRef Expression
1 ralunb 4160 . 2 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
21biimpri 228 1 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3044  cun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-un 3919
This theorem is referenced by:  f1ounsn  7247  ac6sfi  9231  frfi  9232  fpwwe2lem12  10595  modfsummod  15760  drsdirfi  18266  lbsextlem4  21071  fbun  23727  filconn  23770  cnmpopc  24822  chtub  27123  prsiga  34121  finixpnum  37599  poimirlem31  37645  poimirlem32  37646  kelac1  43052  cantnfresb  43313
  Copyright terms: Public domain W3C validator