| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralun | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ralun | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralunb 4150 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 2 | 1 | biimpri 228 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3044 ∪ cun 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-un 3910 |
| This theorem is referenced by: f1ounsn 7213 ac6sfi 9189 frfi 9190 fpwwe2lem12 10555 modfsummod 15719 drsdirfi 18229 lbsextlem4 21086 fbun 23743 filconn 23786 cnmpopc 24838 chtub 27139 prsiga 34100 finixpnum 37587 poimirlem31 37633 poimirlem32 37634 kelac1 43039 cantnfresb 43300 |
| Copyright terms: Public domain | W3C validator |