Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralun | Structured version Visualization version GIF version |
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ralun | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunb 4096 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
2 | 1 | biimpri 231 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wral 3070 ∪ cun 3856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-un 3863 |
This theorem is referenced by: ac6sfi 8795 frfi 8796 fpwwe2lem12 10102 modfsummod 15197 drsdirfi 17614 lbsextlem4 20001 fbun 22540 filconn 22583 cnmpopc 23629 chtub 25895 prsiga 31618 finixpnum 35344 poimirlem31 35390 poimirlem32 35391 kelac1 40402 |
Copyright terms: Public domain | W3C validator |