MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralun Structured version   Visualization version   GIF version

Theorem ralun 4145
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ralun ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem ralun
StepHypRef Expression
1 ralunb 4144 . 2 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
21biimpri 228 1 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3047  cun 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-un 3902
This theorem is referenced by:  f1ounsn  7206  ac6sfi  9168  frfi  9169  fpwwe2lem12  10533  modfsummod  15701  drsdirfi  18211  lbsextlem4  21098  fbun  23755  filconn  23798  cnmpopc  24849  chtub  27150  prsiga  34144  finixpnum  37653  poimirlem31  37699  poimirlem32  37700  kelac1  43104  cantnfresb  43365
  Copyright terms: Public domain W3C validator