| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralun | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ralun | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralunb 4160 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 2 | 1 | biimpri 228 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3044 ∪ cun 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-un 3919 |
| This theorem is referenced by: f1ounsn 7247 ac6sfi 9231 frfi 9232 fpwwe2lem12 10595 modfsummod 15760 drsdirfi 18266 lbsextlem4 21071 fbun 23727 filconn 23770 cnmpopc 24822 chtub 27123 prsiga 34121 finixpnum 37599 poimirlem31 37645 poimirlem32 37646 kelac1 43052 cantnfresb 43313 |
| Copyright terms: Public domain | W3C validator |