Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elini | Structured version Visualization version GIF version |
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elini.1 | ⊢ 𝐴 ∈ 𝐵 |
elini.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
3 | elin 3899 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 |
This theorem is referenced by: isfin1-3 10073 setc2ohom 17726 isdrs2 17939 fpwipodrs 18173 0cmp 22453 comppfsc 22591 ptcmpfi 22872 alexsubALTlem2 23107 alexsubALTlem4 23109 ptcmp 23117 cnstrcvs 24210 cncvs 24214 recvs 24215 qcvs 24216 cnncvs 24228 ovolicc1 24585 ioorf 24642 corclrcl 41204 0pwfi 42496 sge0rnn0 43796 sge0reuz 43875 |
Copyright terms: Public domain | W3C validator |