| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elini | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elini.1 | ⊢ 𝐴 ∈ 𝐵 |
| elini.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 3 | elin 3918 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∩ cin 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 |
| This theorem is referenced by: isfin1-3 10274 setc2ohom 17999 isdrs2 18209 fpwipodrs 18443 0cmp 23307 comppfsc 23445 ptcmpfi 23726 alexsubALTlem2 23961 alexsubALTlem4 23963 ptcmp 23971 cnstrcvs 25066 cncvs 25070 recvs 25071 qcvs 25072 cnncvs 25084 ovolicc1 25442 ioorf 25499 zringpid 33512 corclrcl 43739 0pwfi 45095 sge0rnn0 46405 sge0reuz 46484 termc2 49549 |
| Copyright terms: Public domain | W3C validator |