MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elini Structured version   Visualization version   GIF version

Theorem elini 4194
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elini.1 𝐴𝐵
elini.2 𝐴𝐶
Assertion
Ref Expression
elini 𝐴 ∈ (𝐵𝐶)

Proof of Theorem elini
StepHypRef Expression
1 elini.1 . 2 𝐴𝐵
2 elini.2 . 2 𝐴𝐶
3 elin 3965 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
41, 2, 3mpbir2an 710 1 𝐴 ∈ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  cin 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956
This theorem is referenced by:  isfin1-3  10381  setc2ohom  18045  isdrs2  18259  fpwipodrs  18493  0cmp  22898  comppfsc  23036  ptcmpfi  23317  alexsubALTlem2  23552  alexsubALTlem4  23554  ptcmp  23562  cnstrcvs  24657  cncvs  24661  recvs  24662  recvsOLD  24663  qcvs  24664  cnncvs  24676  ovolicc1  25033  ioorf  25090  corclrcl  42458  0pwfi  43746  sge0rnn0  45084  sge0reuz  45163
  Copyright terms: Public domain W3C validator