MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elini Structured version   Visualization version   GIF version

Theorem elini 4149
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elini.1 𝐴𝐵
elini.2 𝐴𝐶
Assertion
Ref Expression
elini 𝐴 ∈ (𝐵𝐶)

Proof of Theorem elini
StepHypRef Expression
1 elini.1 . 2 𝐴𝐵
2 elini.2 . 2 𝐴𝐶
3 elin 3918 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
41, 2, 3mpbir2an 711 1 𝐴 ∈ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  cin 3901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3909
This theorem is referenced by:  isfin1-3  10274  setc2ohom  17999  isdrs2  18209  fpwipodrs  18443  0cmp  23307  comppfsc  23445  ptcmpfi  23726  alexsubALTlem2  23961  alexsubALTlem4  23963  ptcmp  23971  cnstrcvs  25066  cncvs  25070  recvs  25071  qcvs  25072  cnncvs  25084  ovolicc1  25442  ioorf  25499  zringpid  33512  corclrcl  43739  0pwfi  45095  sge0rnn0  46405  sge0reuz  46484  termc2  49549
  Copyright terms: Public domain W3C validator