| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elini | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elini.1 | ⊢ 𝐴 ∈ 𝐵 |
| elini.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 3 | elin 3921 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∩ cin 3904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 |
| This theorem is referenced by: isfin1-3 10299 setc2ohom 18020 isdrs2 18230 fpwipodrs 18464 0cmp 23297 comppfsc 23435 ptcmpfi 23716 alexsubALTlem2 23951 alexsubALTlem4 23953 ptcmp 23961 cnstrcvs 25057 cncvs 25061 recvs 25062 qcvs 25063 cnncvs 25075 ovolicc1 25433 ioorf 25490 zringpid 33499 corclrcl 43680 0pwfi 45037 sge0rnn0 46350 sge0reuz 46429 termc2 49504 |
| Copyright terms: Public domain | W3C validator |