MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elini Structured version   Visualization version   GIF version

Theorem elini 4148
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elini.1 𝐴𝐵
elini.2 𝐴𝐶
Assertion
Ref Expression
elini 𝐴 ∈ (𝐵𝐶)

Proof of Theorem elini
StepHypRef Expression
1 elini.1 . 2 𝐴𝐵
2 elini.2 . 2 𝐴𝐶
3 elin 3914 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
41, 2, 3mpbir2an 711 1 𝐴 ∈ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  cin 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-in 3905
This theorem is referenced by:  isfin1-3  10284  setc2ohom  18004  isdrs2  18214  fpwipodrs  18448  0cmp  23310  comppfsc  23448  ptcmpfi  23729  alexsubALTlem2  23964  alexsubALTlem4  23966  ptcmp  23974  cnstrcvs  25069  cncvs  25073  recvs  25074  qcvs  25075  cnncvs  25087  ovolicc1  25445  ioorf  25502  zringpid  33524  corclrcl  43824  0pwfi  45180  sge0rnn0  46490  sge0reuz  46569  nthrucw  47008  termc2  49643
  Copyright terms: Public domain W3C validator