Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elini | Structured version Visualization version GIF version |
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elini.1 | ⊢ 𝐴 ∈ 𝐵 |
elini.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
3 | elin 3903 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 |
This theorem is referenced by: isfin1-3 10142 setc2ohom 17810 isdrs2 18024 fpwipodrs 18258 0cmp 22545 comppfsc 22683 ptcmpfi 22964 alexsubALTlem2 23199 alexsubALTlem4 23201 ptcmp 23209 cnstrcvs 24304 cncvs 24308 recvs 24309 recvsOLD 24310 qcvs 24311 cnncvs 24323 ovolicc1 24680 ioorf 24737 corclrcl 41315 0pwfi 42607 sge0rnn0 43906 sge0reuz 43985 |
Copyright terms: Public domain | W3C validator |