MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elini Structured version   Visualization version   GIF version

Theorem elini 4199
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elini.1 𝐴𝐵
elini.2 𝐴𝐶
Assertion
Ref Expression
elini 𝐴 ∈ (𝐵𝐶)

Proof of Theorem elini
StepHypRef Expression
1 elini.1 . 2 𝐴𝐵
2 elini.2 . 2 𝐴𝐶
3 elin 3967 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
41, 2, 3mpbir2an 711 1 𝐴 ∈ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cin 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-in 3958
This theorem is referenced by:  isfin1-3  10426  setc2ohom  18140  isdrs2  18352  fpwipodrs  18585  0cmp  23402  comppfsc  23540  ptcmpfi  23821  alexsubALTlem2  24056  alexsubALTlem4  24058  ptcmp  24066  cnstrcvs  25174  cncvs  25178  recvs  25179  recvsOLD  25180  qcvs  25181  cnncvs  25193  ovolicc1  25551  ioorf  25608  zringpid  33580  corclrcl  43720  0pwfi  45064  sge0rnn0  46383  sge0reuz  46462  termc2  49148
  Copyright terms: Public domain W3C validator