![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elini | Structured version Visualization version GIF version |
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elini.1 | ⊢ 𝐴 ∈ 𝐵 |
elini.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
3 | elin 3963 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 |
This theorem is referenced by: isfin1-3 10410 setc2ohom 18084 isdrs2 18298 fpwipodrs 18532 0cmp 23311 comppfsc 23449 ptcmpfi 23730 alexsubALTlem2 23965 alexsubALTlem4 23967 ptcmp 23975 cnstrcvs 25081 cncvs 25085 recvs 25086 recvsOLD 25087 qcvs 25088 cnncvs 25100 ovolicc1 25458 ioorf 25515 corclrcl 43137 0pwfi 44423 sge0rnn0 45756 sge0reuz 45835 |
Copyright terms: Public domain | W3C validator |