![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elini | Structured version Visualization version GIF version |
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elini.1 | ⊢ 𝐴 ∈ 𝐵 |
elini.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
3 | elin 3992 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 |
This theorem is referenced by: isfin1-3 10455 setc2ohom 18162 isdrs2 18376 fpwipodrs 18610 0cmp 23423 comppfsc 23561 ptcmpfi 23842 alexsubALTlem2 24077 alexsubALTlem4 24079 ptcmp 24087 cnstrcvs 25193 cncvs 25197 recvs 25198 recvsOLD 25199 qcvs 25200 cnncvs 25212 ovolicc1 25570 ioorf 25627 zringpid 33545 corclrcl 43669 0pwfi 44961 sge0rnn0 46289 sge0reuz 46368 |
Copyright terms: Public domain | W3C validator |