| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elini | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elini.1 | ⊢ 𝐴 ∈ 𝐵 |
| elini.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 3 | elin 3933 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 |
| This theorem is referenced by: isfin1-3 10346 setc2ohom 18064 isdrs2 18274 fpwipodrs 18506 0cmp 23288 comppfsc 23426 ptcmpfi 23707 alexsubALTlem2 23942 alexsubALTlem4 23944 ptcmp 23952 cnstrcvs 25048 cncvs 25052 recvs 25053 qcvs 25054 cnncvs 25066 ovolicc1 25424 ioorf 25481 zringpid 33530 corclrcl 43703 0pwfi 45060 sge0rnn0 46373 sge0reuz 46452 termc2 49511 |
| Copyright terms: Public domain | W3C validator |