MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elini Structured version   Visualization version   GIF version

Theorem elini 4123
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elini.1 𝐴𝐵
elini.2 𝐴𝐶
Assertion
Ref Expression
elini 𝐴 ∈ (𝐵𝐶)

Proof of Theorem elini
StepHypRef Expression
1 elini.1 . 2 𝐴𝐵
2 elini.2 . 2 𝐴𝐶
3 elin 3899 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
41, 2, 3mpbir2an 707 1 𝐴 ∈ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890
This theorem is referenced by:  isfin1-3  10073  setc2ohom  17726  isdrs2  17939  fpwipodrs  18173  0cmp  22453  comppfsc  22591  ptcmpfi  22872  alexsubALTlem2  23107  alexsubALTlem4  23109  ptcmp  23117  cnstrcvs  24210  cncvs  24214  recvs  24215  qcvs  24216  cnncvs  24228  ovolicc1  24585  ioorf  24642  corclrcl  41204  0pwfi  42496  sge0rnn0  43796  sge0reuz  43875
  Copyright terms: Public domain W3C validator