MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfsummod Structured version   Visualization version   GIF version

Theorem modfsummod 15506
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Hypotheses
Ref Expression
modfsummod.n (𝜑𝑁 ∈ ℕ)
modfsummod.1 (𝜑𝐴 ∈ Fin)
modfsummod.2 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
Assertion
Ref Expression
modfsummod (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem modfsummod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modfsummod.2 . 2 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
2 modfsummod.n . 2 (𝜑𝑁 ∈ ℕ)
3 modfsummod.1 . . 3 (𝜑𝐴 ∈ Fin)
4 raleq 3342 . . . . . 6 (𝑥 = ∅ → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ ℤ))
54anbi1d 630 . . . . 5 (𝑥 = ∅ → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
6 sumeq1 15400 . . . . . . 7 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
76oveq1d 7290 . . . . . 6 (𝑥 = ∅ → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁))
8 sumeq1 15400 . . . . . . 7 (𝑥 = ∅ → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ ∅ (𝐵 mod 𝑁))
98oveq1d 7290 . . . . . 6 (𝑥 = ∅ → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
107, 9eqeq12d 2754 . . . . 5 (𝑥 = ∅ → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁)))
115, 10imbi12d 345 . . . 4 (𝑥 = ∅ → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))))
12 raleq 3342 . . . . . 6 (𝑥 = 𝑦 → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘𝑦 𝐵 ∈ ℤ))
1312anbi1d 630 . . . . 5 (𝑥 = 𝑦 → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
14 sumeq1 15400 . . . . . . 7 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1514oveq1d 7290 . . . . . 6 (𝑥 = 𝑦 → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑦 𝐵 mod 𝑁))
16 sumeq1 15400 . . . . . . 7 (𝑥 = 𝑦 → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘𝑦 (𝐵 mod 𝑁))
1716oveq1d 7290 . . . . . 6 (𝑥 = 𝑦 → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))
1815, 17eqeq12d 2754 . . . . 5 (𝑥 = 𝑦 → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)))
1913, 18imbi12d 345 . . . 4 (𝑥 = 𝑦 → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))))
20 raleq 3342 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ))
2120anbi1d 630 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
22 sumeq1 15400 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
2322oveq1d 7290 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁))
24 sumeq1 15400 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁))
2524oveq1d 7290 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
2623, 25eqeq12d 2754 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
2721, 26imbi12d 345 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
28 raleq 3342 . . . . . 6 (𝑥 = 𝐴 → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘𝐴 𝐵 ∈ ℤ))
2928anbi1d 630 . . . . 5 (𝑥 = 𝐴 → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
30 sumeq1 15400 . . . . . . 7 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
3130oveq1d 7290 . . . . . 6 (𝑥 = 𝐴 → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝐴 𝐵 mod 𝑁))
32 sumeq1 15400 . . . . . . 7 (𝑥 = 𝐴 → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘𝐴 (𝐵 mod 𝑁))
3332oveq1d 7290 . . . . . 6 (𝑥 = 𝐴 → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
3431, 33eqeq12d 2754 . . . . 5 (𝑥 = 𝐴 → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
3529, 34imbi12d 345 . . . 4 (𝑥 = 𝐴 → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))))
36 sum0 15433 . . . . . . 7 Σ𝑘 ∈ ∅ 𝐵 = 0
3736oveq1i 7285 . . . . . 6 𝑘 ∈ ∅ 𝐵 mod 𝑁) = (0 mod 𝑁)
38 sum0 15433 . . . . . . . 8 Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) = 0
3938a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) = 0)
4039oveq1d 7290 . . . . . 6 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁) = (0 mod 𝑁))
4137, 40eqtr4id 2797 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
4241adantl 482 . . . 4 ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
43 simpll 764 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → 𝑦 ∈ Fin)
44 simplrr 775 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → 𝑁 ∈ ℕ)
45 ralun 4126 . . . . . . . . . . . . 13 ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
4645ex 413 . . . . . . . . . . . 12 (∀𝑘𝑦 𝐵 ∈ ℤ → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ))
4746ad2antrl 725 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ))
4847imp 407 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
49 modfsummods 15505 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
5043, 44, 48, 49syl3anc 1370 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
5150ex 413 . . . . . . . 8 ((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
5251com23 86 . . . . . . 7 ((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
5352ex 413 . . . . . 6 (𝑦 ∈ Fin → ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))))
5453a2d 29 . . . . 5 (𝑦 ∈ Fin → (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))))
55 ralunb 4125 . . . . . . . 8 (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
5655anbi1i 624 . . . . . . 7 ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ))
5756imbi1i 350 . . . . . 6 (((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
58 an32 643 . . . . . . 7 (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
5958imbi1i 350 . . . . . 6 ((((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
60 impexp 451 . . . . . 6 ((((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6157, 59, 603bitri 297 . . . . 5 (((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6254, 61syl6ibr 251 . . . 4 (𝑦 ∈ Fin → (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6311, 19, 27, 35, 42, 62findcard2 8947 . . 3 (𝐴 ∈ Fin → ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
643, 63syl 17 . 2 (𝜑 → ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
651, 2, 64mp2and 696 1 (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cun 3885  c0 4256  {csn 4561  (class class class)co 7275  Fincfn 8733  0cc0 10871  cn 11973  cz 12319   mod cmo 13589  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  numclwwlk6  28754
  Copyright terms: Public domain W3C validator