Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem4 Structured version   Visualization version   GIF version

Theorem lbsextlem4 19377
 Description: Lemma for lbsext 19379. lbsextlem3 19376 satisfies the conditions for the application of Zorn's lemma zorn 9532 (thus invoking AC), and so there is a maximal linearly independent set extending 𝐶. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.k (𝜑 → 𝒫 𝑉 ∈ dom card)
Assertion
Ref Expression
lbsextlem4 (𝜑 → ∃𝑠𝐽 𝐶𝑠)
Distinct variable groups:   𝑥,𝐽   𝜑,𝑥,𝑠   𝑆,𝑠,𝑥   𝑥,𝑧,𝐶   𝑥,𝑁,𝑧   𝑥,𝑉,𝑧   𝑥,𝑊   𝑧,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑠)   𝑆(𝑧)   𝐽(𝑧,𝑠)   𝑁(𝑠)   𝑉(𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem lbsextlem4
Dummy variables 𝑢 𝑤 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsext.k . . . 4 (𝜑 → 𝒫 𝑉 ∈ dom card)
2 lbsext.s . . . . 5 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
3 ssrab2 3837 . . . . 5 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ 𝒫 𝑉
42, 3eqsstri 3785 . . . 4 𝑆 ⊆ 𝒫 𝑉
5 ssnum 9063 . . . 4 ((𝒫 𝑉 ∈ dom card ∧ 𝑆 ⊆ 𝒫 𝑉) → 𝑆 ∈ dom card)
61, 4, 5sylancl 568 . . 3 (𝜑𝑆 ∈ dom card)
7 lbsext.v . . . 4 𝑉 = (Base‘𝑊)
8 lbsext.j . . . 4 𝐽 = (LBasis‘𝑊)
9 lbsext.n . . . 4 𝑁 = (LSpan‘𝑊)
10 lbsext.w . . . 4 (𝜑𝑊 ∈ LVec)
11 lbsext.c . . . 4 (𝜑𝐶𝑉)
12 lbsext.x . . . 4 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
137, 8, 9, 10, 11, 12, 2lbsextlem1 19374 . . 3 (𝜑𝑆 ≠ ∅)
1410adantr 466 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑊 ∈ LVec)
1511adantr 466 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝐶𝑉)
1612adantr 466 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
17 eqid 2771 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
18 simpr1 1233 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑆)
19 simpr2 1235 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦 ≠ ∅)
20 simpr3 1237 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → [] Or 𝑦)
21 eqid 2771 . . . . . 6 𝑢𝑦 (𝑁‘(𝑢 ∖ {𝑥})) = 𝑢𝑦 (𝑁‘(𝑢 ∖ {𝑥}))
227, 8, 9, 14, 15, 16, 2, 17, 18, 19, 20, 21lbsextlem3 19376 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑆)
2322ex 397 . . . 4 (𝜑 → ((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆))
2423alrimiv 2007 . . 3 (𝜑 → ∀𝑦((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆))
25 zornn0g 9530 . . 3 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅ ∧ ∀𝑦((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆)) → ∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡)
266, 13, 24, 25syl3anc 1476 . 2 (𝜑 → ∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡)
27 simprl 748 . . . . . . . . 9 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝑆)
28 sseq2 3777 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝐶𝑧𝐶𝑠))
29 difeq1 3873 . . . . . . . . . . . . . . 15 (𝑧 = 𝑠 → (𝑧 ∖ {𝑥}) = (𝑠 ∖ {𝑥}))
3029fveq2d 6337 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑥})))
3130eleq2d 2836 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3231notbid 307 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3332raleqbi1dv 3295 . . . . . . . . . . 11 (𝑧 = 𝑠 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3428, 33anbi12d 610 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3534, 2elrab2 3519 . . . . . . . . 9 (𝑠𝑆 ↔ (𝑠 ∈ 𝒫 𝑉 ∧ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3627, 35sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠 ∈ 𝒫 𝑉 ∧ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3736simpld 478 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠 ∈ 𝒫 𝑉)
3837elpwid 4310 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝑉)
39 lveclmod 19320 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
4010, 39syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4140adantr 466 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑊 ∈ LMod)
427, 9lspssv 19197 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → (𝑁𝑠) ⊆ 𝑉)
4341, 38, 42syl2anc 567 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁𝑠) ⊆ 𝑉)
44 ssun1 3928 . . . . . . . . . . . 12 𝑠 ⊆ (𝑠 ∪ {𝑤})
4544a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊆ (𝑠 ∪ {𝑤}))
46 ssun2 3929 . . . . . . . . . . . . . 14 {𝑤} ⊆ (𝑠 ∪ {𝑤})
47 vsnid 4349 . . . . . . . . . . . . . 14 𝑤 ∈ {𝑤}
4846, 47sselii 3750 . . . . . . . . . . . . 13 𝑤 ∈ (𝑠 ∪ {𝑤})
497, 9lspssid 19199 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → 𝑠 ⊆ (𝑁𝑠))
5041, 38, 49syl2anc 567 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠 ⊆ (𝑁𝑠))
5150adantr 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊆ (𝑁𝑠))
52 eldifn 3885 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) → ¬ 𝑤 ∈ (𝑁𝑠))
5352adantl 467 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤 ∈ (𝑁𝑠))
5451, 53ssneldd 3756 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤𝑠)
55 nelne1 3039 . . . . . . . . . . . . 13 ((𝑤 ∈ (𝑠 ∪ {𝑤}) ∧ ¬ 𝑤𝑠) → (𝑠 ∪ {𝑤}) ≠ 𝑠)
5648, 54, 55sylancr 569 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ≠ 𝑠)
5756necomd 2998 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ≠ (𝑠 ∪ {𝑤}))
58 df-pss 3740 . . . . . . . . . . 11 (𝑠 ⊊ (𝑠 ∪ {𝑤}) ↔ (𝑠 ⊆ (𝑠 ∪ {𝑤}) ∧ 𝑠 ≠ (𝑠 ∪ {𝑤})))
5945, 57, 58sylanbrc 566 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊊ (𝑠 ∪ {𝑤}))
60 psseq2 3846 . . . . . . . . . . . 12 (𝑡 = (𝑠 ∪ {𝑤}) → (𝑠𝑡𝑠 ⊊ (𝑠 ∪ {𝑤})))
6160notbid 307 . . . . . . . . . . 11 (𝑡 = (𝑠 ∪ {𝑤}) → (¬ 𝑠𝑡 ↔ ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤})))
62 simplrr 757 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑡𝑆 ¬ 𝑠𝑡)
6338adantr 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠𝑉)
64 eldifi 3884 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) → 𝑤𝑉)
6564adantl 467 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑤𝑉)
6665snssd 4476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → {𝑤} ⊆ 𝑉)
6763, 66unssd 3941 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ⊆ 𝑉)
68 fvex 6343 . . . . . . . . . . . . . . 15 (Base‘𝑊) ∈ V
697, 68eqeltri 2846 . . . . . . . . . . . . . 14 𝑉 ∈ V
7069elpw2 4960 . . . . . . . . . . . . 13 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑉)
7167, 70sylibr 224 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉)
7236simprd 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
7372simpld 478 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝐶𝑠)
7473adantr 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝐶𝑠)
7574, 44syl6ss 3765 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝐶 ⊆ (𝑠 ∪ {𝑤}))
7610ad2antrr 699 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑊 ∈ LVec)
7738adantr 466 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑠𝑉)
7877ssdifssd 3900 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑠 ∖ {𝑥}) ⊆ 𝑉)
7965adantrr 690 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤𝑉)
80 simprrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
81 simprrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥𝑠)
8254adantrr 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑤𝑠)
83 nelne2 3040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥𝑠 ∧ ¬ 𝑤𝑠) → 𝑥𝑤)
8481, 82, 83syl2anc 567 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥𝑤)
85 nelsn 4352 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝑤 → ¬ 𝑥 ∈ {𝑤})
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑥 ∈ {𝑤})
87 disjsn 4384 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({𝑤} ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ {𝑤})
8886, 87sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ({𝑤} ∩ {𝑥}) = ∅)
89 disj3 4165 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({𝑤} ∩ {𝑥}) = ∅ ↔ {𝑤} = ({𝑤} ∖ {𝑥}))
9088, 89sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → {𝑤} = ({𝑤} ∖ {𝑥}))
9190uneq2d 3919 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∖ {𝑥}) ∪ {𝑤}) = ((𝑠 ∖ {𝑥}) ∪ ({𝑤} ∖ {𝑥})))
92 difundir 4030 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∖ {𝑥}) ∪ ({𝑤} ∖ {𝑥}))
9391, 92syl6reqr 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∖ {𝑥}) ∪ {𝑤}))
9493fveq2d 6337 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) = (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})))
9580, 94eleqtrd 2852 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})))
9672simprd 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
9796adantr 466 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
98 rsp 3078 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) → (𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
9997, 81, 98sylc 65 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
10095, 99eldifd 3735 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ ((𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})) ∖ (𝑁‘(𝑠 ∖ {𝑥}))))
1017, 17, 9lspsolv 19358 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LVec ∧ ((𝑠 ∖ {𝑥}) ⊆ 𝑉𝑤𝑉𝑥 ∈ ((𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})) ∖ (𝑁‘(𝑠 ∖ {𝑥}))))) → 𝑤 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})))
10276, 78, 79, 100, 101syl13anc 1478 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})))
103 undif1 4186 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∖ {𝑥}) ∪ {𝑥}) = (𝑠 ∪ {𝑥})
10481snssd 4476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → {𝑥} ⊆ 𝑠)
105 ssequn2 3938 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑥} ⊆ 𝑠 ↔ (𝑠 ∪ {𝑥}) = 𝑠)
106104, 105sylib 208 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑠 ∪ {𝑥}) = 𝑠)
107103, 106syl5eq 2817 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∖ {𝑥}) ∪ {𝑥}) = 𝑠)
108107fveq2d 6337 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})) = (𝑁𝑠))
109102, 108eleqtrd 2852 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤 ∈ (𝑁𝑠))
110109expr 444 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ((𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) → 𝑤 ∈ (𝑁𝑠)))
11153, 110mtod 189 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
112 imnan 386 . . . . . . . . . . . . . . . 16 ((𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) ↔ ¬ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
113111, 112sylibr 224 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
114113ralrimiv 3114 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
115 difssd 3890 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠 ∖ {𝑤}) ⊆ 𝑠)
1167, 9lspss 19198 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑠𝑉 ∧ (𝑠 ∖ {𝑤}) ⊆ 𝑠) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
11741, 38, 115, 116syl3anc 1476 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
118117adantr 466 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
119118, 53ssneldd 3756 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤})))
120 vex 3354 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
121 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤𝑥 = 𝑤)
122 sneq 4327 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → {𝑥} = {𝑤})
123122difeq2d 3880 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∪ {𝑤}) ∖ {𝑤}))
124 difun2 4191 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∪ {𝑤}) ∖ {𝑤}) = (𝑠 ∖ {𝑤})
125123, 124syl6eq 2821 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = (𝑠 ∖ {𝑤}))
126125fveq2d 6337 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑤})))
127121, 126eleq12d 2844 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤}))))
128127notbid 307 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤}))))
129120, 128ralsn 4361 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤})))
130119, 129sylibr 224 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
131 ralun 3947 . . . . . . . . . . . . . 14 ((∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ∧ ∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) → ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
132114, 130, 131syl2anc 567 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
13375, 132jca 497 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
134 sseq2 3777 . . . . . . . . . . . . . 14 (𝑧 = (𝑠 ∪ {𝑤}) → (𝐶𝑧𝐶 ⊆ (𝑠 ∪ {𝑤})))
135 difeq1 3873 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑧 ∖ {𝑥}) = ((𝑠 ∪ {𝑤}) ∖ {𝑥}))
136135fveq2d 6337 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
137136eleq2d 2836 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
138137notbid 307 . . . . . . . . . . . . . . 15 (𝑧 = (𝑠 ∪ {𝑤}) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
139138raleqbi1dv 3295 . . . . . . . . . . . . . 14 (𝑧 = (𝑠 ∪ {𝑤}) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
140134, 139anbi12d 610 . . . . . . . . . . . . 13 (𝑧 = (𝑠 ∪ {𝑤}) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))))
141140, 2elrab2 3519 . . . . . . . . . . . 12 ((𝑠 ∪ {𝑤}) ∈ 𝑆 ↔ ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))))
14271, 133, 141sylanbrc 566 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ∈ 𝑆)
14361, 62, 142rspcdva 3467 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤}))
14459, 143pm2.65da 811 . . . . . . . . 9 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → ¬ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠)))
145144eq0rdv 4124 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑉 ∖ (𝑁𝑠)) = ∅)
146 ssdif0 4090 . . . . . . . 8 (𝑉 ⊆ (𝑁𝑠) ↔ (𝑉 ∖ (𝑁𝑠)) = ∅)
147145, 146sylibr 224 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑉 ⊆ (𝑁𝑠))
14843, 147eqssd 3770 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁𝑠) = 𝑉)
14910adantr 466 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑊 ∈ LVec)
1507, 8, 9islbs2 19370 . . . . . . 7 (𝑊 ∈ LVec → (𝑠𝐽 ↔ (𝑠𝑉 ∧ (𝑁𝑠) = 𝑉 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
151149, 150syl 17 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠𝐽 ↔ (𝑠𝑉 ∧ (𝑁𝑠) = 𝑉 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
15238, 148, 96, 151mpbir3and 1427 . . . . 5 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝐽)
153152, 73jca 497 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠𝐽𝐶𝑠))
154153ex 397 . . 3 (𝜑 → ((𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡) → (𝑠𝐽𝐶𝑠)))
155154reximdv2 3162 . 2 (𝜑 → (∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡 → ∃𝑠𝐽 𝐶𝑠))
15626, 155mpd 15 1 (𝜑 → ∃𝑠𝐽 𝐶𝑠)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071  ∀wal 1629   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061  ∃wrex 3062  {crab 3065  Vcvv 3351   ∖ cdif 3721   ∪ cun 3722   ∩ cin 3723   ⊆ wss 3724   ⊊ wpss 3725  ∅c0 4064  𝒫 cpw 4298  {csn 4317  ∪ cuni 4575  ∪ ciun 4655   Or wor 5170  dom cdm 5250  ‘cfv 6032   [⊊] crpss 7084  cardccrd 8962  Basecbs 16065  LModclmod 19074  LSubSpclss 19143  LSpanclspn 19185  LBasisclbs 19288  LVecclvec 19316 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-isom 6041  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-rpss 7085  df-om 7214  df-1st 7316  df-2nd 7317  df-tpos 7505  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-card 8966  df-cda 9193  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-nn 11224  df-2 11282  df-3 11283  df-ndx 16068  df-slot 16069  df-base 16071  df-sets 16072  df-ress 16073  df-plusg 16163  df-mulr 16164  df-0g 16311  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-grp 17634  df-minusg 17635  df-sbg 17636  df-cmn 18403  df-abl 18404  df-mgp 18699  df-ur 18711  df-ring 18758  df-oppr 18832  df-dvdsr 18850  df-unit 18851  df-invr 18881  df-drng 18960  df-lmod 19076  df-lss 19144  df-lsp 19186  df-lbs 19289  df-lvec 19317 This theorem is referenced by:  lbsextg  19378
 Copyright terms: Public domain W3C validator