MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem4 Structured version   Visualization version   GIF version

Theorem lbsextlem4 19377
Description: Lemma for lbsext 19379. lbsextlem3 19376 satisfies the conditions for the application of Zorn's lemma zorn 9621 (thus invoking AC), and so there is a maximal linearly independent set extending 𝐶. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.k (𝜑 → 𝒫 𝑉 ∈ dom card)
Assertion
Ref Expression
lbsextlem4 (𝜑 → ∃𝑠𝐽 𝐶𝑠)
Distinct variable groups:   𝑥,𝐽   𝜑,𝑥,𝑠   𝑆,𝑠,𝑥   𝑥,𝑧,𝐶   𝑥,𝑁,𝑧   𝑥,𝑉,𝑧   𝑥,𝑊   𝑧,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑠)   𝑆(𝑧)   𝐽(𝑧,𝑠)   𝑁(𝑠)   𝑉(𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem lbsextlem4
Dummy variables 𝑢 𝑤 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsext.k . . . 4 (𝜑 → 𝒫 𝑉 ∈ dom card)
2 lbsext.s . . . . 5 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
3 ssrab2 3895 . . . . 5 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ 𝒫 𝑉
42, 3eqsstri 3843 . . . 4 𝑆 ⊆ 𝒫 𝑉
5 ssnum 9152 . . . 4 ((𝒫 𝑉 ∈ dom card ∧ 𝑆 ⊆ 𝒫 𝑉) → 𝑆 ∈ dom card)
61, 4, 5sylancl 576 . . 3 (𝜑𝑆 ∈ dom card)
7 lbsext.v . . . 4 𝑉 = (Base‘𝑊)
8 lbsext.j . . . 4 𝐽 = (LBasis‘𝑊)
9 lbsext.n . . . 4 𝑁 = (LSpan‘𝑊)
10 lbsext.w . . . 4 (𝜑𝑊 ∈ LVec)
11 lbsext.c . . . 4 (𝜑𝐶𝑉)
12 lbsext.x . . . 4 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
137, 8, 9, 10, 11, 12, 2lbsextlem1 19374 . . 3 (𝜑𝑆 ≠ ∅)
1410adantr 468 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑊 ∈ LVec)
1511adantr 468 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝐶𝑉)
1612adantr 468 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
17 eqid 2817 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
18 simpr1 1241 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑆)
19 simpr2 1243 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦 ≠ ∅)
20 simpr3 1245 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → [] Or 𝑦)
21 eqid 2817 . . . . . 6 𝑢𝑦 (𝑁‘(𝑢 ∖ {𝑥})) = 𝑢𝑦 (𝑁‘(𝑢 ∖ {𝑥}))
227, 8, 9, 14, 15, 16, 2, 17, 18, 19, 20, 21lbsextlem3 19376 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑆)
2322ex 399 . . . 4 (𝜑 → ((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆))
2423alrimiv 2018 . . 3 (𝜑 → ∀𝑦((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆))
25 zornn0g 9619 . . 3 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅ ∧ ∀𝑦((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆)) → ∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡)
266, 13, 24, 25syl3anc 1483 . 2 (𝜑 → ∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡)
27 simprl 778 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝑆)
28 sseq2 3835 . . . . . . . 8 (𝑧 = 𝑠 → (𝐶𝑧𝐶𝑠))
29 difeq1 3931 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (𝑧 ∖ {𝑥}) = (𝑠 ∖ {𝑥}))
3029fveq2d 6419 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑥})))
3130eleq2d 2882 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3231notbid 309 . . . . . . . . 9 (𝑧 = 𝑠 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3332raleqbi1dv 3346 . . . . . . . 8 (𝑧 = 𝑠 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3428, 33anbi12d 618 . . . . . . 7 (𝑧 = 𝑠 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3534, 2elrab2 3573 . . . . . 6 (𝑠𝑆 ↔ (𝑠 ∈ 𝒫 𝑉 ∧ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3627, 35sylib 209 . . . . 5 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠 ∈ 𝒫 𝑉 ∧ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3736simpld 484 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠 ∈ 𝒫 𝑉)
3837elpwid 4374 . . 3 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝑉)
39 lveclmod 19320 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
4010, 39syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
4140adantr 468 . . . . 5 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑊 ∈ LMod)
427, 9lspssv 19197 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → (𝑁𝑠) ⊆ 𝑉)
4341, 38, 42syl2anc 575 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁𝑠) ⊆ 𝑉)
44 ssun1 3986 . . . . . . . . 9 𝑠 ⊆ (𝑠 ∪ {𝑤})
4544a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊆ (𝑠 ∪ {𝑤}))
46 ssun2 3987 . . . . . . . . . . 11 {𝑤} ⊆ (𝑠 ∪ {𝑤})
47 vsnid 4414 . . . . . . . . . . 11 𝑤 ∈ {𝑤}
4846, 47sselii 3806 . . . . . . . . . 10 𝑤 ∈ (𝑠 ∪ {𝑤})
497, 9lspssid 19199 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → 𝑠 ⊆ (𝑁𝑠))
5041, 38, 49syl2anc 575 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠 ⊆ (𝑁𝑠))
5150adantr 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊆ (𝑁𝑠))
52 eldifn 3943 . . . . . . . . . . . 12 (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) → ¬ 𝑤 ∈ (𝑁𝑠))
5352adantl 469 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤 ∈ (𝑁𝑠))
5451, 53ssneldd 3812 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤𝑠)
55 nelne1 3085 . . . . . . . . . 10 ((𝑤 ∈ (𝑠 ∪ {𝑤}) ∧ ¬ 𝑤𝑠) → (𝑠 ∪ {𝑤}) ≠ 𝑠)
5648, 54, 55sylancr 577 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ≠ 𝑠)
5756necomd 3044 . . . . . . . 8 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ≠ (𝑠 ∪ {𝑤}))
58 df-pss 3796 . . . . . . . 8 (𝑠 ⊊ (𝑠 ∪ {𝑤}) ↔ (𝑠 ⊆ (𝑠 ∪ {𝑤}) ∧ 𝑠 ≠ (𝑠 ∪ {𝑤})))
5945, 57, 58sylanbrc 574 . . . . . . 7 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊊ (𝑠 ∪ {𝑤}))
60 psseq2 3904 . . . . . . . . 9 (𝑡 = (𝑠 ∪ {𝑤}) → (𝑠𝑡𝑠 ⊊ (𝑠 ∪ {𝑤})))
6160notbid 309 . . . . . . . 8 (𝑡 = (𝑠 ∪ {𝑤}) → (¬ 𝑠𝑡 ↔ ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤})))
62 simplrr 787 . . . . . . . 8 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑡𝑆 ¬ 𝑠𝑡)
6338adantr 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠𝑉)
64 eldifi 3942 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) → 𝑤𝑉)
6564adantl 469 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑤𝑉)
6665snssd 4541 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → {𝑤} ⊆ 𝑉)
6763, 66unssd 3999 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ⊆ 𝑉)
687fvexi 6429 . . . . . . . . . . 11 𝑉 ∈ V
6968elpw2 5031 . . . . . . . . . 10 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑉)
7067, 69sylibr 225 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉)
7136simprd 485 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
7271simpld 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝐶𝑠)
7372adantr 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝐶𝑠)
7473, 44syl6ss 3821 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝐶 ⊆ (𝑠 ∪ {𝑤}))
7510ad2antrr 708 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑊 ∈ LVec)
7638adantr 468 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑠𝑉)
7776ssdifssd 3958 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑠 ∖ {𝑥}) ⊆ 𝑉)
7865adantrr 699 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤𝑉)
79 simprrr 791 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
80 simprrl 790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥𝑠)
8154adantrr 699 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑤𝑠)
82 nelne2 3086 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝑠 ∧ ¬ 𝑤𝑠) → 𝑥𝑤)
8380, 81, 82syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥𝑤)
84 nelsn 4417 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑤 → ¬ 𝑥 ∈ {𝑤})
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑥 ∈ {𝑤})
86 disjsn 4449 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑤} ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ {𝑤})
8785, 86sylibr 225 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ({𝑤} ∩ {𝑥}) = ∅)
88 disj3 4229 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑤} ∩ {𝑥}) = ∅ ↔ {𝑤} = ({𝑤} ∖ {𝑥}))
8987, 88sylib 209 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → {𝑤} = ({𝑤} ∖ {𝑥}))
9089uneq2d 3977 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∖ {𝑥}) ∪ {𝑤}) = ((𝑠 ∖ {𝑥}) ∪ ({𝑤} ∖ {𝑥})))
91 difundir 4093 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∖ {𝑥}) ∪ ({𝑤} ∖ {𝑥}))
9290, 91syl6reqr 2870 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∖ {𝑥}) ∪ {𝑤}))
9392fveq2d 6419 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) = (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})))
9479, 93eleqtrd 2898 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})))
9571simprd 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
9695adantr 468 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
97 rsp 3128 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) → (𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
9896, 80, 97sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
9994, 98eldifd 3791 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ ((𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})) ∖ (𝑁‘(𝑠 ∖ {𝑥}))))
1007, 17, 9lspsolv 19358 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ ((𝑠 ∖ {𝑥}) ⊆ 𝑉𝑤𝑉𝑥 ∈ ((𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})) ∖ (𝑁‘(𝑠 ∖ {𝑥}))))) → 𝑤 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})))
10175, 77, 78, 99, 100syl13anc 1484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})))
102 undif1 4250 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∖ {𝑥}) ∪ {𝑥}) = (𝑠 ∪ {𝑥})
10380snssd 4541 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → {𝑥} ⊆ 𝑠)
104 ssequn2 3996 . . . . . . . . . . . . . . . . . . 19 ({𝑥} ⊆ 𝑠 ↔ (𝑠 ∪ {𝑥}) = 𝑠)
105103, 104sylib 209 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑠 ∪ {𝑥}) = 𝑠)
106102, 105syl5eq 2863 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∖ {𝑥}) ∪ {𝑥}) = 𝑠)
107106fveq2d 6419 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})) = (𝑁𝑠))
108101, 107eleqtrd 2898 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤 ∈ (𝑁𝑠))
109108expr 446 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ((𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) → 𝑤 ∈ (𝑁𝑠)))
11053, 109mtod 189 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
111 imnan 388 . . . . . . . . . . . . 13 ((𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) ↔ ¬ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
112110, 111sylibr 225 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
113112ralrimiv 3164 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
114 difssd 3948 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠 ∖ {𝑤}) ⊆ 𝑠)
1157, 9lspss 19198 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑠𝑉 ∧ (𝑠 ∖ {𝑤}) ⊆ 𝑠) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
11641, 38, 114, 115syl3anc 1483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
117116adantr 468 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
118117, 53ssneldd 3812 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤})))
119 vex 3405 . . . . . . . . . . . . 13 𝑤 ∈ V
120 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤𝑥 = 𝑤)
121 sneq 4391 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → {𝑥} = {𝑤})
122121difeq2d 3938 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∪ {𝑤}) ∖ {𝑤}))
123 difun2 4255 . . . . . . . . . . . . . . . . 17 ((𝑠 ∪ {𝑤}) ∖ {𝑤}) = (𝑠 ∖ {𝑤})
124122, 123syl6eq 2867 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = (𝑠 ∖ {𝑤}))
125124fveq2d 6419 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑤})))
126120, 125eleq12d 2890 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤}))))
127126notbid 309 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤}))))
128119, 127ralsn 4426 . . . . . . . . . . . 12 (∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤})))
129118, 128sylibr 225 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
130 ralun 4005 . . . . . . . . . . 11 ((∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ∧ ∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) → ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
131113, 129, 130syl2anc 575 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
13274, 131jca 503 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
133 sseq2 3835 . . . . . . . . . . 11 (𝑧 = (𝑠 ∪ {𝑤}) → (𝐶𝑧𝐶 ⊆ (𝑠 ∪ {𝑤})))
134 difeq1 3931 . . . . . . . . . . . . . . 15 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑧 ∖ {𝑥}) = ((𝑠 ∪ {𝑤}) ∖ {𝑥}))
135134fveq2d 6419 . . . . . . . . . . . . . 14 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
136135eleq2d 2882 . . . . . . . . . . . . 13 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
137136notbid 309 . . . . . . . . . . . 12 (𝑧 = (𝑠 ∪ {𝑤}) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
138137raleqbi1dv 3346 . . . . . . . . . . 11 (𝑧 = (𝑠 ∪ {𝑤}) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
139133, 138anbi12d 618 . . . . . . . . . 10 (𝑧 = (𝑠 ∪ {𝑤}) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))))
140139, 2elrab2 3573 . . . . . . . . 9 ((𝑠 ∪ {𝑤}) ∈ 𝑆 ↔ ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))))
14170, 132, 140sylanbrc 574 . . . . . . . 8 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ∈ 𝑆)
14261, 62, 141rspcdva 3519 . . . . . . 7 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤}))
14359, 142pm2.65da 842 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → ¬ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠)))
144143eq0rdv 4188 . . . . 5 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑉 ∖ (𝑁𝑠)) = ∅)
145 ssdif0 4154 . . . . 5 (𝑉 ⊆ (𝑁𝑠) ↔ (𝑉 ∖ (𝑁𝑠)) = ∅)
146144, 145sylibr 225 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑉 ⊆ (𝑁𝑠))
14743, 146eqssd 3826 . . 3 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁𝑠) = 𝑉)
14810adantr 468 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑊 ∈ LVec)
1497, 8, 9islbs2 19370 . . . 4 (𝑊 ∈ LVec → (𝑠𝐽 ↔ (𝑠𝑉 ∧ (𝑁𝑠) = 𝑉 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
150148, 149syl 17 . . 3 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠𝐽 ↔ (𝑠𝑉 ∧ (𝑁𝑠) = 𝑉 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
15138, 147, 95, 150mpbir3and 1435 . 2 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝐽)
15226, 151, 72reximssdv 3217 1 (𝜑 → ∃𝑠𝐽 𝐶𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100  wal 1635   = wceq 1637  wcel 2157  wne 2989  wral 3107  wrex 3108  {crab 3111  cdif 3777  cun 3778  cin 3779  wss 3780  wpss 3781  c0 4127  𝒫 cpw 4362  {csn 4381   cuni 4641   ciun 4723   Or wor 5242  dom cdm 5322  cfv 6108   [] crpss 7173  cardccrd 9051  Basecbs 16075  LModclmod 19074  LSubSpclss 19143  LSpanclspn 19185  LBasisclbs 19288  LVecclvec 19316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-se 5282  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-isom 6117  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-rpss 7174  df-om 7303  df-1st 7405  df-2nd 7406  df-tpos 7594  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-oadd 7807  df-er 7986  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-card 9055  df-cda 9282  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-nn 11313  df-2 11371  df-3 11372  df-ndx 16078  df-slot 16079  df-base 16081  df-sets 16082  df-ress 16083  df-plusg 16173  df-mulr 16174  df-0g 16314  df-mgm 17454  df-sgrp 17496  df-mnd 17507  df-grp 17637  df-minusg 17638  df-sbg 17639  df-cmn 18403  df-abl 18404  df-mgp 18699  df-ur 18711  df-ring 18758  df-oppr 18832  df-dvdsr 18850  df-unit 18851  df-invr 18881  df-drng 18960  df-lmod 19076  df-lss 19144  df-lsp 19186  df-lbs 19289  df-lvec 19317
This theorem is referenced by:  lbsextg  19378
  Copyright terms: Public domain W3C validator