Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem4 Structured version   Visualization version   GIF version

Theorem lbsextlem4 19934
 Description: Lemma for lbsext 19936. lbsextlem3 19933 satisfies the conditions for the application of Zorn's lemma zorn 9925 (thus invoking AC), and so there is a maximal linearly independent set extending 𝐶. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.k (𝜑 → 𝒫 𝑉 ∈ dom card)
Assertion
Ref Expression
lbsextlem4 (𝜑 → ∃𝑠𝐽 𝐶𝑠)
Distinct variable groups:   𝑥,𝐽   𝜑,𝑥,𝑠   𝑆,𝑠,𝑥   𝑥,𝑧,𝐶   𝑥,𝑁,𝑧   𝑥,𝑉,𝑧   𝑥,𝑊   𝑧,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑠)   𝑆(𝑧)   𝐽(𝑧,𝑠)   𝑁(𝑠)   𝑉(𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem lbsextlem4
Dummy variables 𝑢 𝑤 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsext.k . . . 4 (𝜑 → 𝒫 𝑉 ∈ dom card)
2 lbsext.s . . . . 5 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
32ssrab3 4008 . . . 4 𝑆 ⊆ 𝒫 𝑉
4 ssnum 9457 . . . 4 ((𝒫 𝑉 ∈ dom card ∧ 𝑆 ⊆ 𝒫 𝑉) → 𝑆 ∈ dom card)
51, 3, 4sylancl 589 . . 3 (𝜑𝑆 ∈ dom card)
6 lbsext.v . . . 4 𝑉 = (Base‘𝑊)
7 lbsext.j . . . 4 𝐽 = (LBasis‘𝑊)
8 lbsext.n . . . 4 𝑁 = (LSpan‘𝑊)
9 lbsext.w . . . 4 (𝜑𝑊 ∈ LVec)
10 lbsext.c . . . 4 (𝜑𝐶𝑉)
11 lbsext.x . . . 4 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
126, 7, 8, 9, 10, 11, 2lbsextlem1 19931 . . 3 (𝜑𝑆 ≠ ∅)
139adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑊 ∈ LVec)
1410adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝐶𝑉)
1511adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
16 eqid 2798 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
17 simpr1 1191 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑆)
18 simpr2 1192 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦 ≠ ∅)
19 simpr3 1193 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → [] Or 𝑦)
20 eqid 2798 . . . . . 6 𝑢𝑦 (𝑁‘(𝑢 ∖ {𝑥})) = 𝑢𝑦 (𝑁‘(𝑢 ∖ {𝑥}))
216, 7, 8, 13, 14, 15, 2, 16, 17, 18, 19, 20lbsextlem3 19933 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑆)
2221ex 416 . . . 4 (𝜑 → ((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆))
2322alrimiv 1928 . . 3 (𝜑 → ∀𝑦((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆))
24 zornn0g 9923 . . 3 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅ ∧ ∀𝑦((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆)) → ∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡)
255, 12, 23, 24syl3anc 1368 . 2 (𝜑 → ∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡)
26 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝑆)
27 sseq2 3941 . . . . . . . 8 (𝑧 = 𝑠 → (𝐶𝑧𝐶𝑠))
28 difeq1 4043 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (𝑧 ∖ {𝑥}) = (𝑠 ∖ {𝑥}))
2928fveq2d 6654 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑥})))
3029eleq2d 2875 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3130notbid 321 . . . . . . . . 9 (𝑧 = 𝑠 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3231raleqbi1dv 3356 . . . . . . . 8 (𝑧 = 𝑠 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3327, 32anbi12d 633 . . . . . . 7 (𝑧 = 𝑠 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3433, 2elrab2 3631 . . . . . 6 (𝑠𝑆 ↔ (𝑠 ∈ 𝒫 𝑉 ∧ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3526, 34sylib 221 . . . . 5 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠 ∈ 𝒫 𝑉 ∧ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3635simpld 498 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠 ∈ 𝒫 𝑉)
3736elpwid 4508 . . 3 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝑉)
38 lveclmod 19879 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
399, 38syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
4039adantr 484 . . . . 5 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑊 ∈ LMod)
416, 8lspssv 19756 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → (𝑁𝑠) ⊆ 𝑉)
4240, 37, 41syl2anc 587 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁𝑠) ⊆ 𝑉)
43 ssun1 4099 . . . . . . . . 9 𝑠 ⊆ (𝑠 ∪ {𝑤})
4443a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊆ (𝑠 ∪ {𝑤}))
45 ssun2 4100 . . . . . . . . . . 11 {𝑤} ⊆ (𝑠 ∪ {𝑤})
46 vsnid 4562 . . . . . . . . . . 11 𝑤 ∈ {𝑤}
4745, 46sselii 3912 . . . . . . . . . 10 𝑤 ∈ (𝑠 ∪ {𝑤})
486, 8lspssid 19758 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → 𝑠 ⊆ (𝑁𝑠))
4940, 37, 48syl2anc 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠 ⊆ (𝑁𝑠))
5049adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊆ (𝑁𝑠))
51 eldifn 4055 . . . . . . . . . . . 12 (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) → ¬ 𝑤 ∈ (𝑁𝑠))
5251adantl 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤 ∈ (𝑁𝑠))
5350, 52ssneldd 3918 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤𝑠)
54 nelne1 3083 . . . . . . . . . 10 ((𝑤 ∈ (𝑠 ∪ {𝑤}) ∧ ¬ 𝑤𝑠) → (𝑠 ∪ {𝑤}) ≠ 𝑠)
5547, 53, 54sylancr 590 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ≠ 𝑠)
5655necomd 3042 . . . . . . . 8 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ≠ (𝑠 ∪ {𝑤}))
57 df-pss 3900 . . . . . . . 8 (𝑠 ⊊ (𝑠 ∪ {𝑤}) ↔ (𝑠 ⊆ (𝑠 ∪ {𝑤}) ∧ 𝑠 ≠ (𝑠 ∪ {𝑤})))
5844, 56, 57sylanbrc 586 . . . . . . 7 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊊ (𝑠 ∪ {𝑤}))
59 psseq2 4016 . . . . . . . . 9 (𝑡 = (𝑠 ∪ {𝑤}) → (𝑠𝑡𝑠 ⊊ (𝑠 ∪ {𝑤})))
6059notbid 321 . . . . . . . 8 (𝑡 = (𝑠 ∪ {𝑤}) → (¬ 𝑠𝑡 ↔ ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤})))
61 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑡𝑆 ¬ 𝑠𝑡)
6237adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠𝑉)
63 eldifi 4054 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) → 𝑤𝑉)
6463adantl 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑤𝑉)
6564snssd 4702 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → {𝑤} ⊆ 𝑉)
6662, 65unssd 4113 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ⊆ 𝑉)
676fvexi 6664 . . . . . . . . . . 11 𝑉 ∈ V
6867elpw2 5213 . . . . . . . . . 10 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑉)
6966, 68sylibr 237 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉)
7035simprd 499 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
7170simpld 498 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝐶𝑠)
7271adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝐶𝑠)
7372, 43sstrdi 3927 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝐶 ⊆ (𝑠 ∪ {𝑤}))
749ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑊 ∈ LVec)
7537adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑠𝑉)
7675ssdifssd 4070 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑠 ∖ {𝑥}) ⊆ 𝑉)
7764adantrr 716 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤𝑉)
78 simprrr 781 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
79 difundir 4207 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∖ {𝑥}) ∪ ({𝑤} ∖ {𝑥}))
80 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥𝑠)
8153adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑤𝑠)
82 nelne2 3084 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝑠 ∧ ¬ 𝑤𝑠) → 𝑥𝑤)
8380, 81, 82syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥𝑤)
84 nelsn 4565 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑤 → ¬ 𝑥 ∈ {𝑤})
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑥 ∈ {𝑤})
86 disjsn 4607 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑤} ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ {𝑤})
8785, 86sylibr 237 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ({𝑤} ∩ {𝑥}) = ∅)
88 disj3 4361 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑤} ∩ {𝑥}) = ∅ ↔ {𝑤} = ({𝑤} ∖ {𝑥}))
8987, 88sylib 221 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → {𝑤} = ({𝑤} ∖ {𝑥}))
9089uneq2d 4090 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∖ {𝑥}) ∪ {𝑤}) = ((𝑠 ∖ {𝑥}) ∪ ({𝑤} ∖ {𝑥})))
9179, 90eqtr4id 2852 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∖ {𝑥}) ∪ {𝑤}))
9291fveq2d 6654 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) = (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})))
9378, 92eleqtrd 2892 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})))
9470simprd 499 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
9594adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
96 rsp 3170 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) → (𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
9795, 80, 96sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
9893, 97eldifd 3892 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ ((𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})) ∖ (𝑁‘(𝑠 ∖ {𝑥}))))
996, 16, 8lspsolv 19916 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ ((𝑠 ∖ {𝑥}) ⊆ 𝑉𝑤𝑉𝑥 ∈ ((𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})) ∖ (𝑁‘(𝑠 ∖ {𝑥}))))) → 𝑤 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})))
10074, 76, 77, 98, 99syl13anc 1369 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})))
101 undif1 4382 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∖ {𝑥}) ∪ {𝑥}) = (𝑠 ∪ {𝑥})
10280snssd 4702 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → {𝑥} ⊆ 𝑠)
103 ssequn2 4110 . . . . . . . . . . . . . . . . . . 19 ({𝑥} ⊆ 𝑠 ↔ (𝑠 ∪ {𝑥}) = 𝑠)
104102, 103sylib 221 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑠 ∪ {𝑥}) = 𝑠)
105101, 104syl5eq 2845 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∖ {𝑥}) ∪ {𝑥}) = 𝑠)
106105fveq2d 6654 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})) = (𝑁𝑠))
107100, 106eleqtrd 2892 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤 ∈ (𝑁𝑠))
108107expr 460 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ((𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) → 𝑤 ∈ (𝑁𝑠)))
10952, 108mtod 201 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
110 imnan 403 . . . . . . . . . . . . 13 ((𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) ↔ ¬ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
111109, 110sylibr 237 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
112111ralrimiv 3148 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
113 difssd 4060 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠 ∖ {𝑤}) ⊆ 𝑠)
1146, 8lspss 19757 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑠𝑉 ∧ (𝑠 ∖ {𝑤}) ⊆ 𝑠) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
11540, 37, 113, 114syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
116115adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
117116, 52ssneldd 3918 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤})))
118 vex 3444 . . . . . . . . . . . . 13 𝑤 ∈ V
119 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤𝑥 = 𝑤)
120 sneq 4535 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → {𝑥} = {𝑤})
121120difeq2d 4050 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∪ {𝑤}) ∖ {𝑤}))
122 difun2 4387 . . . . . . . . . . . . . . . . 17 ((𝑠 ∪ {𝑤}) ∖ {𝑤}) = (𝑠 ∖ {𝑤})
123121, 122eqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = (𝑠 ∖ {𝑤}))
124123fveq2d 6654 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑤})))
125119, 124eleq12d 2884 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤}))))
126125notbid 321 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤}))))
127118, 126ralsn 4579 . . . . . . . . . . . 12 (∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤})))
128117, 127sylibr 237 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
129 ralun 4119 . . . . . . . . . . 11 ((∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ∧ ∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) → ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
130112, 128, 129syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
13173, 130jca 515 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
132 sseq2 3941 . . . . . . . . . . 11 (𝑧 = (𝑠 ∪ {𝑤}) → (𝐶𝑧𝐶 ⊆ (𝑠 ∪ {𝑤})))
133 difeq1 4043 . . . . . . . . . . . . . . 15 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑧 ∖ {𝑥}) = ((𝑠 ∪ {𝑤}) ∖ {𝑥}))
134133fveq2d 6654 . . . . . . . . . . . . . 14 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
135134eleq2d 2875 . . . . . . . . . . . . 13 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
136135notbid 321 . . . . . . . . . . . 12 (𝑧 = (𝑠 ∪ {𝑤}) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
137136raleqbi1dv 3356 . . . . . . . . . . 11 (𝑧 = (𝑠 ∪ {𝑤}) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
138132, 137anbi12d 633 . . . . . . . . . 10 (𝑧 = (𝑠 ∪ {𝑤}) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))))
139138, 2elrab2 3631 . . . . . . . . 9 ((𝑠 ∪ {𝑤}) ∈ 𝑆 ↔ ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))))
14069, 131, 139sylanbrc 586 . . . . . . . 8 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ∈ 𝑆)
14160, 61, 140rspcdva 3573 . . . . . . 7 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤}))
14258, 141pm2.65da 816 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → ¬ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠)))
143142eq0rdv 4312 . . . . 5 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑉 ∖ (𝑁𝑠)) = ∅)
144 ssdif0 4277 . . . . 5 (𝑉 ⊆ (𝑁𝑠) ↔ (𝑉 ∖ (𝑁𝑠)) = ∅)
145143, 144sylibr 237 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑉 ⊆ (𝑁𝑠))
14642, 145eqssd 3932 . . 3 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁𝑠) = 𝑉)
1479adantr 484 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑊 ∈ LVec)
1486, 7, 8islbs2 19927 . . . 4 (𝑊 ∈ LVec → (𝑠𝐽 ↔ (𝑠𝑉 ∧ (𝑁𝑠) = 𝑉 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
149147, 148syl 17 . . 3 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠𝐽 ↔ (𝑠𝑉 ∧ (𝑁𝑠) = 𝑉 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
15037, 146, 94, 149mpbir3and 1339 . 2 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝐽)
15125, 150, 71reximssdv 3235 1 (𝜑 → ∃𝑠𝐽 𝐶𝑠)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  {crab 3110   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881   ⊊ wpss 3882  ∅c0 4243  𝒫 cpw 4497  {csn 4525  ∪ cuni 4801  ∪ ciun 4882   Or wor 5438  dom cdm 5520  ‘cfv 6327   [⊊] crpss 7435  cardccrd 9355  Basecbs 16482  LModclmod 19635  LSubSpclss 19704  LSpanclspn 19744  LBasisclbs 19847  LVecclvec 19875 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-rpss 7436  df-om 7568  df-1st 7678  df-2nd 7679  df-tpos 7882  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-dju 9321  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-3 11696  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-cmn 18908  df-abl 18909  df-mgp 19241  df-ur 19253  df-ring 19300  df-oppr 19377  df-dvdsr 19395  df-unit 19396  df-invr 19426  df-drng 19505  df-lmod 19637  df-lss 19705  df-lsp 19745  df-lbs 19848  df-lvec 19876 This theorem is referenced by:  lbsextg  19935
 Copyright terms: Public domain W3C validator