MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpopc Structured version   Visualization version   GIF version

Theorem cnmpopc 24820
Description: Piecewise definition of a continuous function on a real interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpopc.r 𝑅 = (topGen‘ran (,))
cnmpopc.m 𝑀 = (𝑅t (𝐴[,]𝐵))
cnmpopc.n 𝑁 = (𝑅t (𝐵[,]𝐶))
cnmpopc.o 𝑂 = (𝑅t (𝐴[,]𝐶))
cnmpopc.a (𝜑𝐴 ∈ ℝ)
cnmpopc.c (𝜑𝐶 ∈ ℝ)
cnmpopc.b (𝜑𝐵 ∈ (𝐴[,]𝐶))
cnmpopc.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpopc.q ((𝜑 ∧ (𝑥 = 𝐵𝑦𝑋)) → 𝐷 = 𝐸)
cnmpopc.d (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
cnmpopc.e (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
Assertion
Ref Expression
cnmpopc (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem cnmpopc
StepHypRef Expression
1 eqid 2729 . 2 (𝑂 ×t 𝐽) = (𝑂 ×t 𝐽)
2 eqid 2729 . 2 𝐾 = 𝐾
3 cnmpopc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 cnmpopc.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
5 iccssre 13332 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴[,]𝐶) ⊆ ℝ)
63, 4, 5syl2anc 584 . . . . 5 (𝜑 → (𝐴[,]𝐶) ⊆ ℝ)
7 cnmpopc.b . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐶))
86, 7sseldd 3936 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 icccld 24652 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
103, 8, 9syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
11 cnmpopc.r . . . . . . 7 𝑅 = (topGen‘ran (,))
1211fveq2i 6825 . . . . . 6 (Clsd‘𝑅) = (Clsd‘(topGen‘ran (,)))
1310, 12eleqtrrdi 2839 . . . . 5 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑅))
14 ssun1 4129 . . . . . 6 (𝐴[,]𝐵) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))
15 iccsplit 13388 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
163, 4, 7, 15syl3anc 1373 . . . . . 6 (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
1714, 16sseqtrrid 3979 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶))
18 uniretop 24648 . . . . . . 7 ℝ = (topGen‘ran (,))
1911unieqi 4870 . . . . . . 7 𝑅 = (topGen‘ran (,))
2018, 19eqtr4i 2755 . . . . . 6 ℝ = 𝑅
2120restcldi 23058 . . . . 5 (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐴[,]𝐵) ∈ (Clsd‘𝑅) ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶)) → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
226, 13, 17, 21syl3anc 1373 . . . 4 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
23 cnmpopc.o . . . . 5 𝑂 = (𝑅t (𝐴[,]𝐶))
2423fveq2i 6825 . . . 4 (Clsd‘𝑂) = (Clsd‘(𝑅t (𝐴[,]𝐶)))
2522, 24eleqtrrdi 2839 . . 3 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑂))
26 cnmpopc.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
27 toponuni 22799 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2826, 27syl 17 . . . 4 (𝜑𝑋 = 𝐽)
29 topontop 22798 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
30 eqid 2729 . . . . . 6 𝐽 = 𝐽
3130topcld 22920 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
3226, 29, 313syl 18 . . . 4 (𝜑 𝐽 ∈ (Clsd‘𝐽))
3328, 32eqeltrd 2828 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
34 txcld 23488 . . 3 (((𝐴[,]𝐵) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
3525, 33, 34syl2anc 584 . 2 (𝜑 → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
36 icccld 24652 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran (,))))
378, 4, 36syl2anc 584 . . . . . 6 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran (,))))
3837, 12eleqtrrdi 2839 . . . . 5 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑅))
39 ssun2 4130 . . . . . 6 (𝐵[,]𝐶) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))
4039, 16sseqtrrid 3979 . . . . 5 (𝜑 → (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶))
4120restcldi 23058 . . . . 5 (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐵[,]𝐶) ∈ (Clsd‘𝑅) ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶)) → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
426, 38, 40, 41syl3anc 1373 . . . 4 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
4342, 24eleqtrrdi 2839 . . 3 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑂))
44 txcld 23488 . . 3 (((𝐵[,]𝐶) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
4543, 33, 44syl2anc 584 . 2 (𝜑 → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
4616xpeq1d 5648 . . . 4 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋))
47 xpundir 5689 . . . 4 (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋))
4846, 47eqtrdi 2780 . . 3 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)))
49 retopon 24649 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
5011, 49eqeltri 2824 . . . . . . 7 𝑅 ∈ (TopOn‘ℝ)
51 resttopon 23046 . . . . . . 7 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐶) ⊆ ℝ) → (𝑅t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶)))
5250, 6, 51sylancr 587 . . . . . 6 (𝜑 → (𝑅t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶)))
5323, 52eqeltrid 2832 . . . . 5 (𝜑𝑂 ∈ (TopOn‘(𝐴[,]𝐶)))
54 txtopon 23476 . . . . 5 ((𝑂 ∈ (TopOn‘(𝐴[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)))
5553, 26, 54syl2anc 584 . . . 4 (𝜑 → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)))
56 toponuni 22799 . . . 4 ((𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)) → ((𝐴[,]𝐶) × 𝑋) = (𝑂 ×t 𝐽))
5755, 56syl 17 . . 3 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (𝑂 ×t 𝐽))
5848, 57eqtr3d 2766 . 2 (𝜑 → (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)) = (𝑂 ×t 𝐽))
59 cnmpopc.m . . . . . . . . . 10 𝑀 = (𝑅t (𝐴[,]𝐵))
6017, 6sstrd 3946 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
61 resttopon 23046 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝑅t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
6250, 60, 61sylancr 587 . . . . . . . . . 10 (𝜑 → (𝑅t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
6359, 62eqeltrid 2832 . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘(𝐴[,]𝐵)))
64 txtopon 23476 . . . . . . . . 9 ((𝑀 ∈ (TopOn‘(𝐴[,]𝐵)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)))
6563, 26, 64syl2anc 584 . . . . . . . 8 (𝜑 → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)))
66 cnmpopc.d . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
67 cntop2 23126 . . . . . . . . . 10 ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾) → 𝐾 ∈ Top)
6866, 67syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
69 toptopon2 22803 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
7068, 69sylib 218 . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
71 elicc2 13314 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
723, 8, 71syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
7372biimpa 476 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
7473simp3d 1144 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
75743adant3 1132 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑋) → 𝑥𝐵)
7675iftrued 4484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑋) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐷)
7776mpoeq3dva 7426 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷))
7877, 66eqeltrd 2828 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
79 cnf2 23134 . . . . . . . 8 (((𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
8065, 70, 78, 79syl3anc 1373 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
81 eqid 2729 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
8281fmpo 8003 . . . . . . 7 (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
8380, 82sylibr 234 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
84 cnmpopc.n . . . . . . . . . 10 𝑁 = (𝑅t (𝐵[,]𝐶))
8540, 6sstrd 3946 . . . . . . . . . . 11 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
86 resttopon 23046 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐵[,]𝐶) ⊆ ℝ) → (𝑅t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶)))
8750, 85, 86sylancr 587 . . . . . . . . . 10 (𝜑 → (𝑅t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶)))
8884, 87eqeltrid 2832 . . . . . . . . 9 (𝜑𝑁 ∈ (TopOn‘(𝐵[,]𝐶)))
89 txtopon 23476 . . . . . . . . 9 ((𝑁 ∈ (TopOn‘(𝐵[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)))
9088, 26, 89syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)))
91 elicc2 13314 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
928, 4, 91syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
9392biimpa 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶))
9493simp2d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
9594biantrud 531 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥𝐵 ↔ (𝑥𝐵𝐵𝑥)))
9693simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 ∈ ℝ)
978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝐵 ∈ ℝ)
9896, 97letri3d 11258 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
9995, 98bitr4d 282 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥𝐵𝑥 = 𝐵))
100993adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥𝐵𝑥 = 𝐵))
101 cnmpopc.q . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 = 𝐵𝑦𝑋)) → 𝐷 = 𝐸)
102101ancom2s 650 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → 𝐷 = 𝐸)
103102ifeq1d 4496 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → if(𝑥𝐵, 𝐷, 𝐸) = if(𝑥𝐵, 𝐸, 𝐸))
104 ifid 4517 . . . . . . . . . . . . . . 15 if(𝑥𝐵, 𝐸, 𝐸) = 𝐸
105103, 104eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
106105expr 456 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋) → (𝑥 = 𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
1071063adant2 1131 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥 = 𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
108100, 107sylbid 240 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
109 iffalse 4485 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
110108, 109pm2.61d1 180 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
111110mpoeq3dva 7426 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸))
112 cnmpopc.e . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
113111, 112eqeltrd 2828 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
114 cnf2 23134 . . . . . . . 8 (((𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
11590, 70, 113, 114syl3anc 1373 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
116 eqid 2729 . . . . . . . 8 (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
117116fmpo 8003 . . . . . . 7 (∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
118115, 117sylibr 234 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
119 ralun 4149 . . . . . 6 ((∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ∧ ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾) → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
12083, 118, 119syl2anc 584 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
121120, 16raleqtrrdv 3293 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
122 eqid 2729 . . . . 5 (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
123122fmpo 8003 . . . 4 (∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾)
124121, 123sylib 218 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾)
12557feq2d 6636 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)): (𝑂 ×t 𝐽)⟶ 𝐾))
126124, 125mpbid 232 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)): (𝑂 ×t 𝐽)⟶ 𝐾)
127 ssid 3958 . . . 4 𝑋𝑋
128 resmpo 7469 . . . 4 (((𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ 𝑋𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
12917, 127, 128sylancl 586 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
130 retop 24647 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
13111, 130eqeltri 2824 . . . . . . . . 9 𝑅 ∈ Top
132 ovex 7382 . . . . . . . . 9 (𝐴[,]𝐶) ∈ V
133 resttop 23045 . . . . . . . . 9 ((𝑅 ∈ Top ∧ (𝐴[,]𝐶) ∈ V) → (𝑅t (𝐴[,]𝐶)) ∈ Top)
134131, 132, 133mp2an 692 . . . . . . . 8 (𝑅t (𝐴[,]𝐶)) ∈ Top
13523, 134eqeltri 2824 . . . . . . 7 𝑂 ∈ Top
136135a1i 11 . . . . . 6 (𝜑𝑂 ∈ Top)
137 ovexd 7384 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ∈ V)
138 txrest 23516 . . . . . 6 (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐴[,]𝐵) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)))
139136, 26, 137, 33, 138syl22anc 838 . . . . 5 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)))
140131a1i 11 . . . . . . . 8 (𝜑𝑅 ∈ Top)
141 ovexd 7384 . . . . . . . 8 (𝜑 → (𝐴[,]𝐶) ∈ V)
142 restabs 23050 . . . . . . . 8 ((𝑅 ∈ Top ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅t (𝐴[,]𝐵)))
143140, 17, 141, 142syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅t (𝐴[,]𝐵)))
14423oveq1i 7359 . . . . . . 7 (𝑂t (𝐴[,]𝐵)) = ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵))
145143, 144, 593eqtr4g 2789 . . . . . 6 (𝜑 → (𝑂t (𝐴[,]𝐵)) = 𝑀)
14628oveq2d 7365 . . . . . . 7 (𝜑 → (𝐽t 𝑋) = (𝐽t 𝐽))
14730restid 17337 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝐽t 𝐽) = 𝐽)
14826, 147syl 17 . . . . . . 7 (𝜑 → (𝐽t 𝐽) = 𝐽)
149146, 148eqtrd 2764 . . . . . 6 (𝜑 → (𝐽t 𝑋) = 𝐽)
150145, 149oveq12d 7367 . . . . 5 (𝜑 → ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)) = (𝑀 ×t 𝐽))
151139, 150eqtrd 2764 . . . 4 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = (𝑀 ×t 𝐽))
152151oveq1d 7364 . . 3 (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾) = ((𝑀 ×t 𝐽) Cn 𝐾))
15378, 129, 1523eltr4d 2843 . 2 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾))
154 resmpo 7469 . . . 4 (((𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ 𝑋𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
15540, 127, 154sylancl 586 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
156 ovexd 7384 . . . . . 6 (𝜑 → (𝐵[,]𝐶) ∈ V)
157 txrest 23516 . . . . . 6 (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐵[,]𝐶) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)))
158136, 26, 156, 33, 157syl22anc 838 . . . . 5 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)))
159 restabs 23050 . . . . . . . 8 ((𝑅 ∈ Top ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅t (𝐵[,]𝐶)))
160140, 40, 141, 159syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅t (𝐵[,]𝐶)))
16123oveq1i 7359 . . . . . . 7 (𝑂t (𝐵[,]𝐶)) = ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶))
162160, 161, 843eqtr4g 2789 . . . . . 6 (𝜑 → (𝑂t (𝐵[,]𝐶)) = 𝑁)
163162, 149oveq12d 7367 . . . . 5 (𝜑 → ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)) = (𝑁 ×t 𝐽))
164158, 163eqtrd 2764 . . . 4 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = (𝑁 ×t 𝐽))
165164oveq1d 7364 . . 3 (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾) = ((𝑁 ×t 𝐽) Cn 𝐾))
166113, 155, 1653eltr4d 2843 . 2 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾))
1671, 2, 35, 45, 58, 126, 153, 166paste 23179 1 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  cun 3901  wss 3903  ifcif 4476   cuni 4858   class class class wbr 5092   × cxp 5617  ran crn 5620  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  cr 11008  cle 11150  (,)cioo 13248  [,]cicc 13251  t crest 17324  topGenctg 17341  Topctop 22778  TopOnctopon 22795  Clsdccld 22901   Cn ccn 23109   ×t ctx 23445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-ioo 13252  df-icc 13255  df-rest 17326  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-cn 23112  df-tx 23447
This theorem is referenced by:  htpycc  24877  pcocn  24915  pcohtpylem  24917  pcopt  24920  pcopt2  24921  pcoass  24922  pcorevlem  24924
  Copyright terms: Public domain W3C validator