MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a1 30024
Description: Lemma 1 for clwlkclwwlklem2a 30030. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem2a1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑃,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem clwlkclwwlklem2a1
StepHypRef Expression
1 lencl 14581 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
2 nn0cn 12563 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℂ)
3 peano2cnm 11602 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℂ → ((♯‘𝑃) − 1) ∈ ℂ)
43subid1d 11636 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
54oveq1d 7463 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → ((((♯‘𝑃) − 1) − 0) − 1) = (((♯‘𝑃) − 1) − 1))
6 sub1m1 12545 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
75, 6eqtrd 2780 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℂ → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
81, 2, 73syl 18 . . . . . . . . . . 11 (𝑃 ∈ Word 𝑉 → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
98adantr 480 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
109oveq2d 7464 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((((♯‘𝑃) − 1) − 0) − 1)) = (0..^((♯‘𝑃) − 2)))
1110raleqdv 3334 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1211biimpcd 249 . . . . . . 7 (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1312adantr 480 . . . . . 6 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1413adantl 481 . . . . 5 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1514impcom 407 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
16 lsw 14612 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
17 2m1e1 12419 . . . . . . . . . . . . . . . . . . . . 21 (2 − 1) = 1
1817a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → (2 − 1) = 1)
1918eqcomd 2746 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
2019oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
211, 2syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
22 2cnd 12371 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 2 ∈ ℂ)
23 1cnd 11285 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
2421, 22, 23subsubd 11675 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − (2 − 1)) = (((♯‘𝑃) − 2) + 1))
2520, 24eqtrd 2780 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
2625fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2716, 26eqtrd 2780 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2827adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2928adantr 480 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
30 eqeq1 2744 . . . . . . . . . . . . . 14 ((lastS‘𝑃) = (𝑃‘0) → ((lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
3130adantl 481 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ((lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
3229, 31mpbid 232 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
3332preq2d 4765 . . . . . . . . . . 11 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
3433eleq1d 2829 . . . . . . . . . 10 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3534biimpd 229 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3635ex 412 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((lastS‘𝑃) = (𝑃‘0) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3736com13 88 . . . . . . 7 ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → ((lastS‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3837adantl 481 . . . . . 6 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((lastS‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3938impcom 407 . . . . 5 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4039impcom 407 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)
41 ovexd 7483 . . . . 5 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((♯‘𝑃) − 2) ∈ V)
42 fveq2 6920 . . . . . . . 8 (𝑖 = ((♯‘𝑃) − 2) → (𝑃𝑖) = (𝑃‘((♯‘𝑃) − 2)))
43 fvoveq1 7471 . . . . . . . 8 (𝑖 = ((♯‘𝑃) − 2) → (𝑃‘(𝑖 + 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
4442, 43preq12d 4766 . . . . . . 7 (𝑖 = ((♯‘𝑃) − 2) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
4544eleq1d 2829 . . . . . 6 (𝑖 = ((♯‘𝑃) − 2) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4645ralunsn 4918 . . . . 5 (((♯‘𝑃) − 2) ∈ V → (∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4741, 46syl 17 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4815, 40, 47mpbir2and 712 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
49 1e2m1 12420 . . . . . . . . . 10 1 = (2 − 1)
5049a1i 11 . . . . . . . . 9 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
5150oveq2d 7464 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
5251, 24eqtrd 2780 . . . . . . 7 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
5352oveq2d 7464 . . . . . 6 (𝑃 ∈ Word 𝑉 → (0..^((♯‘𝑃) − 1)) = (0..^(((♯‘𝑃) − 2) + 1)))
5453adantr 480 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘𝑃) − 1)) = (0..^(((♯‘𝑃) − 2) + 1)))
55 nn0re 12562 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
56 2re 12367 . . . . . . . . . . . . . 14 2 ∈ ℝ
5756a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
5855, 57subge0d 11880 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
5958biimprd 248 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → 0 ≤ ((♯‘𝑃) − 2)))
60 nn0z 12664 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
61 2z 12675 . . . . . . . . . . . . 13 2 ∈ ℤ
6261a1i 11 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
6360, 62zsubcld 12752 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
6459, 63jctild 525 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2))))
651, 64syl 17 . . . . . . . . 9 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2))))
6665imp 406 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
67 elnn0z 12652 . . . . . . . 8 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
6866, 67sylibr 234 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
69 elnn0uz 12948 . . . . . . 7 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ ((♯‘𝑃) − 2) ∈ (ℤ‘0))
7068, 69sylib 218 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (ℤ‘0))
71 fzosplitsn 13825 . . . . . 6 (((♯‘𝑃) − 2) ∈ (ℤ‘0) → (0..^(((♯‘𝑃) − 2) + 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7270, 71syl 17 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^(((♯‘𝑃) − 2) + 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7354, 72eqtrd 2780 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘𝑃) − 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7473adantr 480 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (0..^((♯‘𝑃) − 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7548, 74raleqtrrdv 3338 . 2 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
7675ex 412 1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  {csn 4648  {cpr 4650   class class class wbr 5166  ran crn 5701  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  cmin 11520  2c2 12348  0cn0 12553  cz 12639  cuz 12903  ..^cfzo 13711  chash 14379  Word cword 14562  lastSclsw 14610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611
This theorem is referenced by:  clwlkclwwlklem2a  30030
  Copyright terms: Public domain W3C validator