MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a1 28257
Description: Lemma 1 for clwlkclwwlklem2a 28263. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem2a1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑃,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem clwlkclwwlklem2a1
StepHypRef Expression
1 lencl 14164 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
2 nn0cn 12173 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℂ)
3 peano2cnm 11217 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℂ → ((♯‘𝑃) − 1) ∈ ℂ)
43subid1d 11251 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
54oveq1d 7270 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → ((((♯‘𝑃) − 1) − 0) − 1) = (((♯‘𝑃) − 1) − 1))
6 sub1m1 12155 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
75, 6eqtrd 2778 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℂ → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
81, 2, 73syl 18 . . . . . . . . . . 11 (𝑃 ∈ Word 𝑉 → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
98adantr 480 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
109oveq2d 7271 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((((♯‘𝑃) − 1) − 0) − 1)) = (0..^((♯‘𝑃) − 2)))
1110raleqdv 3339 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1211biimpcd 248 . . . . . . 7 (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1312adantr 480 . . . . . 6 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1413adantl 481 . . . . 5 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1514impcom 407 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
16 lsw 14195 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
17 2m1e1 12029 . . . . . . . . . . . . . . . . . . . . 21 (2 − 1) = 1
1817a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → (2 − 1) = 1)
1918eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
2019oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
211, 2syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
22 2cnd 11981 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 2 ∈ ℂ)
23 1cnd 10901 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
2421, 22, 23subsubd 11290 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − (2 − 1)) = (((♯‘𝑃) − 2) + 1))
2520, 24eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
2625fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2716, 26eqtrd 2778 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2827adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2928adantr 480 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
30 eqeq1 2742 . . . . . . . . . . . . . 14 ((lastS‘𝑃) = (𝑃‘0) → ((lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
3130adantl 481 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ((lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
3229, 31mpbid 231 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
3332preq2d 4673 . . . . . . . . . . 11 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
3433eleq1d 2823 . . . . . . . . . 10 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3534biimpd 228 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3635ex 412 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((lastS‘𝑃) = (𝑃‘0) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3736com13 88 . . . . . . 7 ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → ((lastS‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3837adantl 481 . . . . . 6 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((lastS‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3938impcom 407 . . . . 5 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4039impcom 407 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)
41 ovexd 7290 . . . . 5 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((♯‘𝑃) − 2) ∈ V)
42 fveq2 6756 . . . . . . . 8 (𝑖 = ((♯‘𝑃) − 2) → (𝑃𝑖) = (𝑃‘((♯‘𝑃) − 2)))
43 fvoveq1 7278 . . . . . . . 8 (𝑖 = ((♯‘𝑃) − 2) → (𝑃‘(𝑖 + 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
4442, 43preq12d 4674 . . . . . . 7 (𝑖 = ((♯‘𝑃) − 2) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
4544eleq1d 2823 . . . . . 6 (𝑖 = ((♯‘𝑃) − 2) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4645ralunsn 4822 . . . . 5 (((♯‘𝑃) − 2) ∈ V → (∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4741, 46syl 17 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4815, 40, 47mpbir2and 709 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
49 1e2m1 12030 . . . . . . . . . . 11 1 = (2 − 1)
5049a1i 11 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
5150oveq2d 7271 . . . . . . . . 9 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
5251, 24eqtrd 2778 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
5352oveq2d 7271 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (0..^((♯‘𝑃) − 1)) = (0..^(((♯‘𝑃) − 2) + 1)))
5453adantr 480 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘𝑃) − 1)) = (0..^(((♯‘𝑃) − 2) + 1)))
55 nn0re 12172 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
56 2re 11977 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5756a1i 11 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
5855, 57subge0d 11495 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
5958biimprd 247 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → 0 ≤ ((♯‘𝑃) − 2)))
60 nn0z 12273 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
61 2z 12282 . . . . . . . . . . . . . 14 2 ∈ ℤ
6261a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
6360, 62zsubcld 12360 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
6459, 63jctild 525 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2))))
651, 64syl 17 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2))))
6665imp 406 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
67 elnn0z 12262 . . . . . . . . 9 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
6866, 67sylibr 233 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
69 elnn0uz 12552 . . . . . . . 8 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ ((♯‘𝑃) − 2) ∈ (ℤ‘0))
7068, 69sylib 217 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (ℤ‘0))
71 fzosplitsn 13423 . . . . . . 7 (((♯‘𝑃) − 2) ∈ (ℤ‘0) → (0..^(((♯‘𝑃) − 2) + 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7270, 71syl 17 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^(((♯‘𝑃) − 2) + 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7354, 72eqtrd 2778 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘𝑃) − 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7473adantr 480 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (0..^((♯‘𝑃) − 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7574raleqdv 3339 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
7648, 75mpbird 256 . 2 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
7776ex 412 1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cun 3881  {csn 4558  {cpr 4560   class class class wbr 5070  ran crn 5581  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  2c2 11958  0cn0 12163  cz 12249  cuz 12511  ..^cfzo 13311  chash 13972  Word cword 14145  lastSclsw 14193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194
This theorem is referenced by:  clwlkclwwlklem2a  28263
  Copyright terms: Public domain W3C validator