MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a1 29928
Description: Lemma 1 for clwlkclwwlklem2a 29934. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem2a1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑃,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem clwlkclwwlklem2a1
StepHypRef Expression
1 lencl 14505 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
2 nn0cn 12459 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℂ)
3 peano2cnm 11495 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℂ → ((♯‘𝑃) − 1) ∈ ℂ)
43subid1d 11529 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
54oveq1d 7405 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → ((((♯‘𝑃) − 1) − 0) − 1) = (((♯‘𝑃) − 1) − 1))
6 sub1m1 12441 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
75, 6eqtrd 2765 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℂ → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
81, 2, 73syl 18 . . . . . . . . . . 11 (𝑃 ∈ Word 𝑉 → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
98adantr 480 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
109oveq2d 7406 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((((♯‘𝑃) − 1) − 0) − 1)) = (0..^((♯‘𝑃) − 2)))
1110raleqdv 3301 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1211biimpcd 249 . . . . . . 7 (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1312adantr 480 . . . . . 6 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1413adantl 481 . . . . 5 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1514impcom 407 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
16 lsw 14536 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
17 2m1e1 12314 . . . . . . . . . . . . . . . . . . . . 21 (2 − 1) = 1
1817a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → (2 − 1) = 1)
1918eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
2019oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
211, 2syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
22 2cnd 12271 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 2 ∈ ℂ)
23 1cnd 11176 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
2421, 22, 23subsubd 11568 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − (2 − 1)) = (((♯‘𝑃) − 2) + 1))
2520, 24eqtrd 2765 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
2625fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2716, 26eqtrd 2765 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2827adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
2928adantr 480 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
30 eqeq1 2734 . . . . . . . . . . . . . 14 ((lastS‘𝑃) = (𝑃‘0) → ((lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
3130adantl 481 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ((lastS‘𝑃) = (𝑃‘(((♯‘𝑃) − 2) + 1)) ↔ (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
3229, 31mpbid 232 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
3332preq2d 4707 . . . . . . . . . . 11 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
3433eleq1d 2814 . . . . . . . . . 10 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3534biimpd 229 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
3635ex 412 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((lastS‘𝑃) = (𝑃‘0) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3736com13 88 . . . . . . 7 ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → ((lastS‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3837adantl 481 . . . . . 6 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((lastS‘𝑃) = (𝑃‘0) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
3938impcom 407 . . . . 5 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4039impcom 407 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)
41 ovexd 7425 . . . . 5 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((♯‘𝑃) − 2) ∈ V)
42 fveq2 6861 . . . . . . . 8 (𝑖 = ((♯‘𝑃) − 2) → (𝑃𝑖) = (𝑃‘((♯‘𝑃) − 2)))
43 fvoveq1 7413 . . . . . . . 8 (𝑖 = ((♯‘𝑃) − 2) → (𝑃‘(𝑖 + 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
4442, 43preq12d 4708 . . . . . . 7 (𝑖 = ((♯‘𝑃) − 2) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
4544eleq1d 2814 . . . . . 6 (𝑖 = ((♯‘𝑃) − 2) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸))
4645ralunsn 4861 . . . . 5 (((♯‘𝑃) − 2) ∈ V → (∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4741, 46syl 17 . . . 4 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 2)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} ∈ ran 𝐸)))
4815, 40, 47mpbir2and 713 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
49 1e2m1 12315 . . . . . . . . . 10 1 = (2 − 1)
5049a1i 11 . . . . . . . . 9 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
5150oveq2d 7406 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
5251, 24eqtrd 2765 . . . . . . 7 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
5352oveq2d 7406 . . . . . 6 (𝑃 ∈ Word 𝑉 → (0..^((♯‘𝑃) − 1)) = (0..^(((♯‘𝑃) − 2) + 1)))
5453adantr 480 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘𝑃) − 1)) = (0..^(((♯‘𝑃) − 2) + 1)))
55 nn0re 12458 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
56 2re 12267 . . . . . . . . . . . . . 14 2 ∈ ℝ
5756a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
5855, 57subge0d 11775 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
5958biimprd 248 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → 0 ≤ ((♯‘𝑃) − 2)))
60 nn0z 12561 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
61 2z 12572 . . . . . . . . . . . . 13 2 ∈ ℤ
6261a1i 11 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
6360, 62zsubcld 12650 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
6459, 63jctild 525 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2))))
651, 64syl 17 . . . . . . . . 9 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2))))
6665imp 406 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
67 elnn0z 12549 . . . . . . . 8 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
6866, 67sylibr 234 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
69 elnn0uz 12845 . . . . . . 7 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ ((♯‘𝑃) − 2) ∈ (ℤ‘0))
7068, 69sylib 218 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (ℤ‘0))
71 fzosplitsn 13743 . . . . . 6 (((♯‘𝑃) − 2) ∈ (ℤ‘0) → (0..^(((♯‘𝑃) − 2) + 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7270, 71syl 17 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^(((♯‘𝑃) − 2) + 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7354, 72eqtrd 2765 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘𝑃) − 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7473adantr 480 . . 3 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (0..^((♯‘𝑃) − 1)) = ((0..^((♯‘𝑃) − 2)) ∪ {((♯‘𝑃) − 2)}))
7548, 74raleqtrrdv 3305 . 2 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
7675ex 412 1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cun 3915  {csn 4592  {cpr 4594   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  cle 11216  cmin 11412  2c2 12248  0cn0 12449  cz 12536  cuz 12800  ..^cfzo 13622  chash 14302  Word cword 14485  lastSclsw 14534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-lsw 14535
This theorem is referenced by:  clwlkclwwlklem2a  29934
  Copyright terms: Public domain W3C validator