MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreqlem2 Structured version   Visualization version   GIF version

Theorem gsmsymgreqlem2 18481
Description: Lemma 2 for gsmsymgreq 18482. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreqlem2 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁   𝑃,𝑖   𝑛,𝐼   𝑛,𝑋   𝐶,𝑛   𝑅,𝑛   𝑆,𝑛   𝑛,𝑌   𝑛,𝑍   𝐵,𝑛   𝐶,𝑖,𝑛   𝑖,𝐼   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem gsmsymgreqlem2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ccatws1len 13967 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵 → (♯‘(𝑋 ++ ⟨“𝐶”⟩)) = ((♯‘𝑋) + 1))
21oveq2d 7167 . . . . . . . . 9 (𝑋 ∈ Word 𝐵 → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = (0..^((♯‘𝑋) + 1)))
3 lencl 13876 . . . . . . . . . . 11 (𝑋 ∈ Word 𝐵 → (♯‘𝑋) ∈ ℕ0)
4 elnn0uz 12275 . . . . . . . . . . 11 ((♯‘𝑋) ∈ ℕ0 ↔ (♯‘𝑋) ∈ (ℤ‘0))
53, 4sylib 219 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵 → (♯‘𝑋) ∈ (ℤ‘0))
6 fzosplitsn 13138 . . . . . . . . . 10 ((♯‘𝑋) ∈ (ℤ‘0) → (0..^((♯‘𝑋) + 1)) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
75, 6syl 17 . . . . . . . . 9 (𝑋 ∈ Word 𝐵 → (0..^((♯‘𝑋) + 1)) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
82, 7eqtrd 2860 . . . . . . . 8 (𝑋 ∈ Word 𝐵 → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
98adantr 481 . . . . . . 7 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
1093ad2ant1 1127 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
1110raleqdv 3420 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛)))
123adantr 481 . . . . . . 7 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (♯‘𝑋) ∈ ℕ0)
13123ad2ant1 1127 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (♯‘𝑋) ∈ ℕ0)
14 fveq2 6666 . . . . . . . . . 10 (𝑖 = (♯‘𝑋) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = ((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋)))
1514fveq1d 6668 . . . . . . . . 9 (𝑖 = (♯‘𝑋) → (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛))
16 fveq2 6666 . . . . . . . . . 10 (𝑖 = (♯‘𝑋) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = ((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋)))
1716fveq1d 6668 . . . . . . . . 9 (𝑖 = (♯‘𝑋) → (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))
1815, 17eqeq12d 2841 . . . . . . . 8 (𝑖 = (♯‘𝑋) → ((((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)))
1918ralbidv 3201 . . . . . . 7 (𝑖 = (♯‘𝑋) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)))
2019ralunsn 4822 . . . . . 6 ((♯‘𝑋) ∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))))
2113, 20syl 17 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))))
22 simp1l 1191 . . . . . . . . . . 11 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → 𝑋 ∈ Word 𝐵)
23 ccats1val1 13974 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = (𝑋𝑖))
2422, 23sylan 580 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = (𝑋𝑖))
2524fveq1d 6668 . . . . . . . . 9 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = ((𝑋𝑖)‘𝑛))
26 simp2l 1193 . . . . . . . . . . 11 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → 𝑌 ∈ Word 𝑃)
27 oveq2 7159 . . . . . . . . . . . . . . 15 ((♯‘𝑋) = (♯‘𝑌) → (0..^(♯‘𝑋)) = (0..^(♯‘𝑌)))
2827eleq2d 2902 . . . . . . . . . . . . . 14 ((♯‘𝑋) = (♯‘𝑌) → (𝑖 ∈ (0..^(♯‘𝑋)) ↔ 𝑖 ∈ (0..^(♯‘𝑌))))
2928biimpd 230 . . . . . . . . . . . . 13 ((♯‘𝑋) = (♯‘𝑌) → (𝑖 ∈ (0..^(♯‘𝑋)) → 𝑖 ∈ (0..^(♯‘𝑌))))
30293ad2ant3 1129 . . . . . . . . . . . 12 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝑖 ∈ (0..^(♯‘𝑋)) → 𝑖 ∈ (0..^(♯‘𝑌))))
3130imp 407 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝑖 ∈ (0..^(♯‘𝑌)))
32 ccats1val1 13974 . . . . . . . . . . 11 ((𝑌 ∈ Word 𝑃𝑖 ∈ (0..^(♯‘𝑌))) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = (𝑌𝑖))
3326, 31, 32syl2an2r 681 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = (𝑌𝑖))
3433fveq1d 6668 . . . . . . . . 9 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛))
3525, 34eqeq12d 2841 . . . . . . . 8 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
3635ralbidv 3201 . . . . . . 7 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
3736ralbidva 3200 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
38 eqidd 2826 . . . . . . . . . 10 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (♯‘𝑋) = (♯‘𝑋))
39 ccats1val2 13976 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝐶𝐵 ∧ (♯‘𝑋) = (♯‘𝑋)) → ((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋)) = 𝐶)
4039fveq1d 6668 . . . . . . . . . 10 ((𝑋 ∈ Word 𝐵𝐶𝐵 ∧ (♯‘𝑋) = (♯‘𝑋)) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
4138, 40mpd3an3 1455 . . . . . . . . 9 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
42413ad2ant1 1127 . . . . . . . 8 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
43 ccats1val2 13976 . . . . . . . . . . 11 ((𝑌 ∈ Word 𝑃𝑅𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) → ((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋)) = 𝑅)
4443fveq1d 6668 . . . . . . . . . 10 ((𝑌 ∈ Word 𝑃𝑅𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
45443expa 1112 . . . . . . . . 9 (((𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
46453adant1 1124 . . . . . . . 8 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
4742, 46eqeq12d 2841 . . . . . . 7 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) ↔ (𝐶𝑛) = (𝑅𝑛)))
4847ralbidv 3201 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) ↔ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)))
4937, 48anbi12d 630 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
5011, 21, 493bitrd 306 . . . 4 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
5150ad2antlr 723 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
52 pm3.35 799 . . . . . . 7 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))
53 fveq2 6666 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝑆 Σg 𝑋)‘𝑛) = ((𝑆 Σg 𝑋)‘𝑗))
54 fveq2 6666 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝑍 Σg 𝑌)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑗))
5553, 54eqeq12d 2841 . . . . . . . . . 10 (𝑛 = 𝑗 → (((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)))
5655cbvralvw 3454 . . . . . . . . 9 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗))
57 simp-4l 779 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑁 ∈ Fin)
58 simp-4r 780 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑀 ∈ Fin)
59 simpr 485 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑛𝐼)
6057, 58, 593jca 1122 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼))
6160adantr 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼))
62 simp-4r 780 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)))
63 simplr 765 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗))
6463anim1i 614 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛)))
65 gsmsymgrfix.s . . . . . . . . . . . . . . 15 𝑆 = (SymGrp‘𝑁)
66 gsmsymgrfix.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑆)
67 gsmsymgreq.z . . . . . . . . . . . . . . 15 𝑍 = (SymGrp‘𝑀)
68 gsmsymgreq.p . . . . . . . . . . . . . . 15 𝑃 = (Base‘𝑍)
69 gsmsymgreq.i . . . . . . . . . . . . . . 15 𝐼 = (𝑁𝑀)
7065, 66, 67, 68, 69gsmsymgreqlem1 18480 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7170imp 407 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛))) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))
7261, 62, 64, 71syl21anc 835 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))
7372ex 413 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → ((𝐶𝑛) = (𝑅𝑛) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7473ralimdva 3181 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7574expcom 414 . . . . . . . . 9 (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7656, 75sylbi 218 . . . . . . . 8 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7776com23 86 . . . . . . 7 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7852, 77syl 17 . . . . . 6 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7978impancom 452 . . . . 5 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
8079com13 88 . . . 4 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
8180imp 407 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
8251, 81sylbid 241 . 2 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
8382ex 413 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142  cun 3937  cin 3938  {csn 4563  cfv 6351  (class class class)co 7151  Fincfn 8501  0cc0 10529  1c1 10530   + caddc 10532  0cn0 11889  cuz 12235  ..^cfzo 13026  chash 13683  Word cword 13854   ++ cconcat 13915  ⟨“cs1 13942  Basecbs 16475   Σg cgsu 16706  SymGrpcsymg 18427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-word 13855  df-concat 13916  df-s1 13943  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-grp 18038  df-symg 18428
This theorem is referenced by:  gsmsymgreq  18482
  Copyright terms: Public domain W3C validator