MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreqlem2 Structured version   Visualization version   GIF version

Theorem gsmsymgreqlem2 19337
Description: Lemma 2 for gsmsymgreq 19338. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreqlem2 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁   𝑃,𝑖   𝑛,𝐼   𝑛,𝑋   𝐶,𝑛   𝑅,𝑛   𝑆,𝑛   𝑛,𝑌   𝑛,𝑍   𝐵,𝑛   𝐶,𝑖,𝑛   𝑖,𝐼   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem gsmsymgreqlem2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ccatws1len 14561 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵 → (♯‘(𝑋 ++ ⟨“𝐶”⟩)) = ((♯‘𝑋) + 1))
21oveq2d 7385 . . . . . . . . 9 (𝑋 ∈ Word 𝐵 → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = (0..^((♯‘𝑋) + 1)))
3 lencl 14474 . . . . . . . . . . 11 (𝑋 ∈ Word 𝐵 → (♯‘𝑋) ∈ ℕ0)
4 elnn0uz 12814 . . . . . . . . . . 11 ((♯‘𝑋) ∈ ℕ0 ↔ (♯‘𝑋) ∈ (ℤ‘0))
53, 4sylib 218 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵 → (♯‘𝑋) ∈ (ℤ‘0))
6 fzosplitsn 13712 . . . . . . . . . 10 ((♯‘𝑋) ∈ (ℤ‘0) → (0..^((♯‘𝑋) + 1)) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
75, 6syl 17 . . . . . . . . 9 (𝑋 ∈ Word 𝐵 → (0..^((♯‘𝑋) + 1)) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
82, 7eqtrd 2764 . . . . . . . 8 (𝑋 ∈ Word 𝐵 → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
98adantr 480 . . . . . . 7 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
1093ad2ant1 1133 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
1110raleqdv 3296 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛)))
123adantr 480 . . . . . . 7 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (♯‘𝑋) ∈ ℕ0)
13123ad2ant1 1133 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (♯‘𝑋) ∈ ℕ0)
14 fveq2 6840 . . . . . . . . . 10 (𝑖 = (♯‘𝑋) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = ((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋)))
1514fveq1d 6842 . . . . . . . . 9 (𝑖 = (♯‘𝑋) → (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛))
16 fveq2 6840 . . . . . . . . . 10 (𝑖 = (♯‘𝑋) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = ((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋)))
1716fveq1d 6842 . . . . . . . . 9 (𝑖 = (♯‘𝑋) → (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))
1815, 17eqeq12d 2745 . . . . . . . 8 (𝑖 = (♯‘𝑋) → ((((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)))
1918ralbidv 3156 . . . . . . 7 (𝑖 = (♯‘𝑋) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)))
2019ralunsn 4854 . . . . . 6 ((♯‘𝑋) ∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))))
2113, 20syl 17 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))))
22 simp1l 1198 . . . . . . . . . . 11 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → 𝑋 ∈ Word 𝐵)
23 ccats1val1 14567 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = (𝑋𝑖))
2422, 23sylan 580 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = (𝑋𝑖))
2524fveq1d 6842 . . . . . . . . 9 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = ((𝑋𝑖)‘𝑛))
26 simp2l 1200 . . . . . . . . . . 11 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → 𝑌 ∈ Word 𝑃)
27 oveq2 7377 . . . . . . . . . . . . . . 15 ((♯‘𝑋) = (♯‘𝑌) → (0..^(♯‘𝑋)) = (0..^(♯‘𝑌)))
2827eleq2d 2814 . . . . . . . . . . . . . 14 ((♯‘𝑋) = (♯‘𝑌) → (𝑖 ∈ (0..^(♯‘𝑋)) ↔ 𝑖 ∈ (0..^(♯‘𝑌))))
2928biimpd 229 . . . . . . . . . . . . 13 ((♯‘𝑋) = (♯‘𝑌) → (𝑖 ∈ (0..^(♯‘𝑋)) → 𝑖 ∈ (0..^(♯‘𝑌))))
30293ad2ant3 1135 . . . . . . . . . . . 12 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝑖 ∈ (0..^(♯‘𝑋)) → 𝑖 ∈ (0..^(♯‘𝑌))))
3130imp 406 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝑖 ∈ (0..^(♯‘𝑌)))
32 ccats1val1 14567 . . . . . . . . . . 11 ((𝑌 ∈ Word 𝑃𝑖 ∈ (0..^(♯‘𝑌))) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = (𝑌𝑖))
3326, 31, 32syl2an2r 685 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = (𝑌𝑖))
3433fveq1d 6842 . . . . . . . . 9 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛))
3525, 34eqeq12d 2745 . . . . . . . 8 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
3635ralbidv 3156 . . . . . . 7 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
3736ralbidva 3154 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
38 eqidd 2730 . . . . . . . . . 10 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (♯‘𝑋) = (♯‘𝑋))
39 ccats1val2 14568 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝐶𝐵 ∧ (♯‘𝑋) = (♯‘𝑋)) → ((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋)) = 𝐶)
4039fveq1d 6842 . . . . . . . . . 10 ((𝑋 ∈ Word 𝐵𝐶𝐵 ∧ (♯‘𝑋) = (♯‘𝑋)) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
4138, 40mpd3an3 1464 . . . . . . . . 9 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
42413ad2ant1 1133 . . . . . . . 8 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
43 ccats1val2 14568 . . . . . . . . . . 11 ((𝑌 ∈ Word 𝑃𝑅𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) → ((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋)) = 𝑅)
4443fveq1d 6842 . . . . . . . . . 10 ((𝑌 ∈ Word 𝑃𝑅𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
45443expa 1118 . . . . . . . . 9 (((𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
46453adant1 1130 . . . . . . . 8 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
4742, 46eqeq12d 2745 . . . . . . 7 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) ↔ (𝐶𝑛) = (𝑅𝑛)))
4847ralbidv 3156 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) ↔ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)))
4937, 48anbi12d 632 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
5011, 21, 493bitrd 305 . . . 4 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
5150ad2antlr 727 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
52 pm3.35 802 . . . . . . 7 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))
53 fveq2 6840 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝑆 Σg 𝑋)‘𝑛) = ((𝑆 Σg 𝑋)‘𝑗))
54 fveq2 6840 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝑍 Σg 𝑌)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑗))
5553, 54eqeq12d 2745 . . . . . . . . . 10 (𝑛 = 𝑗 → (((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)))
5655cbvralvw 3213 . . . . . . . . 9 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗))
57 simp-4l 782 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑁 ∈ Fin)
58 simp-4r 783 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑀 ∈ Fin)
59 simpr 484 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑛𝐼)
6057, 58, 593jca 1128 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼))
6160adantr 480 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼))
62 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)))
63 simplr 768 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗))
6463anim1i 615 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛)))
65 gsmsymgrfix.s . . . . . . . . . . . . . . 15 𝑆 = (SymGrp‘𝑁)
66 gsmsymgrfix.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑆)
67 gsmsymgreq.z . . . . . . . . . . . . . . 15 𝑍 = (SymGrp‘𝑀)
68 gsmsymgreq.p . . . . . . . . . . . . . . 15 𝑃 = (Base‘𝑍)
69 gsmsymgreq.i . . . . . . . . . . . . . . 15 𝐼 = (𝑁𝑀)
7065, 66, 67, 68, 69gsmsymgreqlem1 19336 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7170imp 406 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛))) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))
7261, 62, 64, 71syl21anc 837 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))
7372ex 412 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → ((𝐶𝑛) = (𝑅𝑛) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7473ralimdva 3145 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7574expcom 413 . . . . . . . . 9 (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7656, 75sylbi 217 . . . . . . . 8 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7776com23 86 . . . . . . 7 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7852, 77syl 17 . . . . . 6 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7978impancom 451 . . . . 5 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
8079com13 88 . . . 4 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
8180imp 406 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
8251, 81sylbid 240 . 2 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
8382ex 412 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3909  cin 3910  {csn 4585  cfv 6499  (class class class)co 7369  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047  0cn0 12418  cuz 12769  ..^cfzo 13591  chash 14271  Word cword 14454   ++ cconcat 14511  ⟨“cs1 14536  Basecbs 17155   Σg cgsu 17379  SymGrpcsymg 19275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-tset 17215  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-symg 19276
This theorem is referenced by:  gsmsymgreq  19338
  Copyright terms: Public domain W3C validator