Step | Hyp | Ref
| Expression |
1 | | ccatws1len 13640 |
. . . . . . . . . 10
⊢ (𝑋 ∈ Word 𝐵 → (♯‘(𝑋 ++ 〈“𝐶”〉)) = ((♯‘𝑋) + 1)) |
2 | 1 | adantr 473 |
. . . . . . . . 9
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (♯‘(𝑋 ++ 〈“𝐶”〉)) = ((♯‘𝑋) + 1)) |
3 | 2 | 3ad2ant1 1164 |
. . . . . . . 8
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (♯‘(𝑋 ++ 〈“𝐶”〉)) = ((♯‘𝑋) + 1)) |
4 | 3 | oveq2d 6894 |
. . . . . . 7
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (0..^(♯‘(𝑋 ++ 〈“𝐶”〉))) =
(0..^((♯‘𝑋) +
1))) |
5 | | lencl 13553 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ Word 𝐵 → (♯‘𝑋) ∈
ℕ0) |
6 | | elnn0uz 11969 |
. . . . . . . . . . 11
⊢
((♯‘𝑋)
∈ ℕ0 ↔ (♯‘𝑋) ∈
(ℤ≥‘0)) |
7 | 5, 6 | sylib 210 |
. . . . . . . . . 10
⊢ (𝑋 ∈ Word 𝐵 → (♯‘𝑋) ∈
(ℤ≥‘0)) |
8 | 7 | adantr 473 |
. . . . . . . . 9
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (♯‘𝑋) ∈
(ℤ≥‘0)) |
9 | | fzosplitsn 12831 |
. . . . . . . . 9
⊢
((♯‘𝑋)
∈ (ℤ≥‘0) → (0..^((♯‘𝑋) + 1)) =
((0..^(♯‘𝑋))
∪ {(♯‘𝑋)})) |
10 | 8, 9 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (0..^((♯‘𝑋) + 1)) =
((0..^(♯‘𝑋))
∪ {(♯‘𝑋)})) |
11 | 10 | 3ad2ant1 1164 |
. . . . . . 7
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (0..^((♯‘𝑋) + 1)) =
((0..^(♯‘𝑋))
∪ {(♯‘𝑋)})) |
12 | 4, 11 | eqtrd 2833 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (0..^(♯‘(𝑋 ++ 〈“𝐶”〉))) =
((0..^(♯‘𝑋))
∪ {(♯‘𝑋)})) |
13 | 12 | raleqdv 3327 |
. . . . 5
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛))) |
14 | 5 | adantr 473 |
. . . . . . 7
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (♯‘𝑋) ∈
ℕ0) |
15 | 14 | 3ad2ant1 1164 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (♯‘𝑋) ∈
ℕ0) |
16 | | fveq2 6411 |
. . . . . . . . . 10
⊢ (𝑖 = (♯‘𝑋) → ((𝑋 ++ 〈“𝐶”〉)‘𝑖) = ((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))) |
17 | 16 | fveq1d 6413 |
. . . . . . . . 9
⊢ (𝑖 = (♯‘𝑋) → (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛)) |
18 | | fveq2 6411 |
. . . . . . . . . 10
⊢ (𝑖 = (♯‘𝑋) → ((𝑌 ++ 〈“𝑅”〉)‘𝑖) = ((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))) |
19 | 18 | fveq1d 6413 |
. . . . . . . . 9
⊢ (𝑖 = (♯‘𝑋) → (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛)) |
20 | 17, 19 | eqeq12d 2814 |
. . . . . . . 8
⊢ (𝑖 = (♯‘𝑋) → ((((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛))) |
21 | 20 | ralbidv 3167 |
. . . . . . 7
⊢ (𝑖 = (♯‘𝑋) → (∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛))) |
22 | 21 | ralunsn 4614 |
. . . . . 6
⊢
((♯‘𝑋)
∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛)))) |
23 | 15, 22 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛)))) |
24 | | simpl 475 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Word 𝐵) |
25 | 24 | 3ad2ant1 1164 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → 𝑋 ∈ Word 𝐵) |
26 | 25 | adantr 473 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝑋 ∈ Word 𝐵) |
27 | | simpr 478 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
28 | 27 | 3ad2ant1 1164 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → 𝐶 ∈ 𝐵) |
29 | 28 | adantr 473 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝐶 ∈ 𝐵) |
30 | | simpr 478 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝑖 ∈ (0..^(♯‘𝑋))) |
31 | | ccats1val1 13649 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑋 ++ 〈“𝐶”〉)‘𝑖) = (𝑋‘𝑖)) |
32 | 26, 29, 30, 31 | syl3anc 1491 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑋 ++ 〈“𝐶”〉)‘𝑖) = (𝑋‘𝑖)) |
33 | 32 | fveq1d 6413 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = ((𝑋‘𝑖)‘𝑛)) |
34 | | simpl2l 1298 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝑌 ∈ Word 𝑃) |
35 | | simpl2r 1300 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝑅 ∈ 𝑃) |
36 | | oveq2 6886 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑋) =
(♯‘𝑌) →
(0..^(♯‘𝑋)) =
(0..^(♯‘𝑌))) |
37 | 36 | eleq2d 2864 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑋) =
(♯‘𝑌) →
(𝑖 ∈
(0..^(♯‘𝑋))
↔ 𝑖 ∈
(0..^(♯‘𝑌)))) |
38 | 37 | biimpd 221 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑋) =
(♯‘𝑌) →
(𝑖 ∈
(0..^(♯‘𝑋))
→ 𝑖 ∈
(0..^(♯‘𝑌)))) |
39 | 38 | 3ad2ant3 1166 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝑖 ∈ (0..^(♯‘𝑋)) → 𝑖 ∈ (0..^(♯‘𝑌)))) |
40 | 39 | imp 396 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝑖 ∈ (0..^(♯‘𝑌))) |
41 | | ccats1val1 13649 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ 𝑖 ∈ (0..^(♯‘𝑌))) → ((𝑌 ++ 〈“𝑅”〉)‘𝑖) = (𝑌‘𝑖)) |
42 | 34, 35, 40, 41 | syl3anc 1491 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑌 ++ 〈“𝑅”〉)‘𝑖) = (𝑌‘𝑖)) |
43 | 42 | fveq1d 6413 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛)) |
44 | 33, 43 | eqeq12d 2814 |
. . . . . . . 8
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛))) |
45 | 44 | ralbidv 3167 |
. . . . . . 7
⊢ ((((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛))) |
46 | 45 | ralbidva 3166 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛))) |
47 | | eqidd 2800 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (♯‘𝑋) = (♯‘𝑋)) |
48 | 24, 27, 47 | 3jca 1159 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ (♯‘𝑋) = (♯‘𝑋))) |
49 | 48 | 3ad2ant1 1164 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ (♯‘𝑋) = (♯‘𝑋))) |
50 | | ccats1val2 13650 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ (♯‘𝑋) = (♯‘𝑋)) → ((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋)) = 𝐶) |
51 | 49, 50 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋)) = 𝐶) |
52 | 51 | fveq1d 6413 |
. . . . . . . 8
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛) = (𝐶‘𝑛)) |
53 | | df-3an 1110 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) ↔ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) |
54 | 53 | biimpri 220 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (♯‘𝑋) = (♯‘𝑌))) |
55 | 54 | 3adant1 1161 |
. . . . . . . . 9
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (♯‘𝑋) = (♯‘𝑌))) |
56 | | ccats1val2 13650 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) → ((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋)) = 𝑅) |
57 | 56 | fveq1d 6413 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛) = (𝑅‘𝑛)) |
58 | 55, 57 | syl 17 |
. . . . . . . 8
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛) = (𝑅‘𝑛)) |
59 | 52, 58 | eqeq12d 2814 |
. . . . . . 7
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛) ↔ (𝐶‘𝑛) = (𝑅‘𝑛))) |
60 | 59 | ralbidv 3167 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛) ↔ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛))) |
61 | 46, 60 | anbi12d 625 |
. . . . 5
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘(♯‘𝑋))‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)))) |
62 | 13, 23, 61 | 3bitrd 297 |
. . . 4
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)))) |
63 | 62 | ad2antlr 719 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)))) |
64 | | pm3.35 838 |
. . . . . . 7
⊢
((∀𝑖 ∈
(0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) |
65 | | fveq2 6411 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → ((𝑆 Σg 𝑋)‘𝑛) = ((𝑆 Σg 𝑋)‘𝑗)) |
66 | | fveq2 6411 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → ((𝑍 Σg 𝑌)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑗)) |
67 | 65, 66 | eqeq12d 2814 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗))) |
68 | 67 | cbvralv 3354 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) |
69 | | simp-4l 802 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → 𝑁 ∈ Fin) |
70 | | simp-4r 804 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → 𝑀 ∈ Fin) |
71 | | simpr 478 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → 𝑛 ∈ 𝐼) |
72 | 69, 70, 71 | 3jca 1159 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼)) |
73 | 72 | adantr 473 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼)) |
74 | | simp-4r 804 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) |
75 | | simpr 478 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) → ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) |
76 | 75 | adantr 473 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) |
77 | 76 | anim1i 609 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → (∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶‘𝑛) = (𝑅‘𝑛))) |
78 | | gsmsymgrfix.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (SymGrp‘𝑁) |
79 | | gsmsymgrfix.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = (Base‘𝑆) |
80 | | gsmsymgreq.z |
. . . . . . . . . . . . . . 15
⊢ 𝑍 = (SymGrp‘𝑀) |
81 | | gsmsymgreq.p |
. . . . . . . . . . . . . . 15
⊢ 𝑃 = (Base‘𝑍) |
82 | | gsmsymgreq.i |
. . . . . . . . . . . . . . 15
⊢ 𝐼 = (𝑁 ∩ 𝑀) |
83 | 78, 79, 80, 81, 82 | gsmsymgreqlem1 18162 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
84 | 83 | imp 396 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶‘𝑛) = (𝑅‘𝑛))) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)) |
85 | 73, 74, 77, 84 | syl21anc 867 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) ∧ (𝐶‘𝑛) = (𝑅‘𝑛)) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)) |
86 | 85 | ex 402 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑀 ∈ Fin) ∧
((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛 ∈ 𝐼) → ((𝐶‘𝑛) = (𝑅‘𝑛) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
87 | 86 | ralimdva 3143 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
88 | 87 | expcom 403 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
89 | 68, 88 | sylbi 209 |
. . . . . . . 8
⊢
(∀𝑛 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
90 | 89 | com23 86 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
91 | 64, 90 | syl 17 |
. . . . . 6
⊢
((∀𝑖 ∈
(0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
92 | 91 | impancom 444 |
. . . . 5
⊢
((∀𝑖 ∈
(0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
93 | 92 | com13 88 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |
94 | 93 | imp 396 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) ∧ ∀𝑛 ∈ 𝐼 (𝐶‘𝑛) = (𝑅‘𝑛)) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
95 | 63, 94 | sylbid 232 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛))) |
96 | 95 | ex 402 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) |