MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreqlem2 Structured version   Visualization version   GIF version

Theorem gsmsymgreqlem2 18559
Description: Lemma 2 for gsmsymgreq 18560. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreqlem2 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑁   𝑃,𝑖   𝑛,𝐼   𝑛,𝑋   𝐶,𝑛   𝑅,𝑛   𝑆,𝑛   𝑛,𝑌   𝑛,𝑍   𝐵,𝑛   𝐶,𝑖,𝑛   𝑖,𝐼   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑍(𝑖)

Proof of Theorem gsmsymgreqlem2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ccatws1len 13974 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵 → (♯‘(𝑋 ++ ⟨“𝐶”⟩)) = ((♯‘𝑋) + 1))
21oveq2d 7172 . . . . . . . . 9 (𝑋 ∈ Word 𝐵 → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = (0..^((♯‘𝑋) + 1)))
3 lencl 13883 . . . . . . . . . . 11 (𝑋 ∈ Word 𝐵 → (♯‘𝑋) ∈ ℕ0)
4 elnn0uz 12284 . . . . . . . . . . 11 ((♯‘𝑋) ∈ ℕ0 ↔ (♯‘𝑋) ∈ (ℤ‘0))
53, 4sylib 220 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵 → (♯‘𝑋) ∈ (ℤ‘0))
6 fzosplitsn 13146 . . . . . . . . . 10 ((♯‘𝑋) ∈ (ℤ‘0) → (0..^((♯‘𝑋) + 1)) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
75, 6syl 17 . . . . . . . . 9 (𝑋 ∈ Word 𝐵 → (0..^((♯‘𝑋) + 1)) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
82, 7eqtrd 2856 . . . . . . . 8 (𝑋 ∈ Word 𝐵 → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
98adantr 483 . . . . . . 7 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
1093ad2ant1 1129 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩))) = ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)}))
1110raleqdv 3415 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛)))
123adantr 483 . . . . . . 7 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (♯‘𝑋) ∈ ℕ0)
13123ad2ant1 1129 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (♯‘𝑋) ∈ ℕ0)
14 fveq2 6670 . . . . . . . . . 10 (𝑖 = (♯‘𝑋) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = ((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋)))
1514fveq1d 6672 . . . . . . . . 9 (𝑖 = (♯‘𝑋) → (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛))
16 fveq2 6670 . . . . . . . . . 10 (𝑖 = (♯‘𝑋) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = ((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋)))
1716fveq1d 6672 . . . . . . . . 9 (𝑖 = (♯‘𝑋) → (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))
1815, 17eqeq12d 2837 . . . . . . . 8 (𝑖 = (♯‘𝑋) → ((((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)))
1918ralbidv 3197 . . . . . . 7 (𝑖 = (♯‘𝑋) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)))
2019ralunsn 4824 . . . . . 6 ((♯‘𝑋) ∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))))
2113, 20syl 17 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ ((0..^(♯‘𝑋)) ∪ {(♯‘𝑋)})∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛))))
22 simp1l 1193 . . . . . . . . . . 11 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → 𝑋 ∈ Word 𝐵)
23 ccats1val1 13981 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = (𝑋𝑖))
2422, 23sylan 582 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑋 ++ ⟨“𝐶”⟩)‘𝑖) = (𝑋𝑖))
2524fveq1d 6672 . . . . . . . . 9 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = ((𝑋𝑖)‘𝑛))
26 simp2l 1195 . . . . . . . . . . 11 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → 𝑌 ∈ Word 𝑃)
27 oveq2 7164 . . . . . . . . . . . . . . 15 ((♯‘𝑋) = (♯‘𝑌) → (0..^(♯‘𝑋)) = (0..^(♯‘𝑌)))
2827eleq2d 2898 . . . . . . . . . . . . . 14 ((♯‘𝑋) = (♯‘𝑌) → (𝑖 ∈ (0..^(♯‘𝑋)) ↔ 𝑖 ∈ (0..^(♯‘𝑌))))
2928biimpd 231 . . . . . . . . . . . . 13 ((♯‘𝑋) = (♯‘𝑌) → (𝑖 ∈ (0..^(♯‘𝑋)) → 𝑖 ∈ (0..^(♯‘𝑌))))
30293ad2ant3 1131 . . . . . . . . . . . 12 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝑖 ∈ (0..^(♯‘𝑋)) → 𝑖 ∈ (0..^(♯‘𝑌))))
3130imp 409 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → 𝑖 ∈ (0..^(♯‘𝑌)))
32 ccats1val1 13981 . . . . . . . . . . 11 ((𝑌 ∈ Word 𝑃𝑖 ∈ (0..^(♯‘𝑌))) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = (𝑌𝑖))
3326, 31, 32syl2an2r 683 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((𝑌 ++ ⟨“𝑅”⟩)‘𝑖) = (𝑌𝑖))
3433fveq1d 6672 . . . . . . . . 9 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛))
3525, 34eqeq12d 2837 . . . . . . . 8 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → ((((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
3635ralbidv 3197 . . . . . . 7 ((((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) ∧ 𝑖 ∈ (0..^(♯‘𝑋))) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
3736ralbidva 3196 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ ∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛)))
38 eqidd 2822 . . . . . . . . . 10 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (♯‘𝑋) = (♯‘𝑋))
39 ccats1val2 13983 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝐶𝐵 ∧ (♯‘𝑋) = (♯‘𝑋)) → ((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋)) = 𝐶)
4039fveq1d 6672 . . . . . . . . . 10 ((𝑋 ∈ Word 𝐵𝐶𝐵 ∧ (♯‘𝑋) = (♯‘𝑋)) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
4138, 40mpd3an3 1458 . . . . . . . . 9 ((𝑋 ∈ Word 𝐵𝐶𝐵) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
42413ad2ant1 1129 . . . . . . . 8 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (𝐶𝑛))
43 ccats1val2 13983 . . . . . . . . . . 11 ((𝑌 ∈ Word 𝑃𝑅𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) → ((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋)) = 𝑅)
4443fveq1d 6672 . . . . . . . . . 10 ((𝑌 ∈ Word 𝑃𝑅𝑃 ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
45443expa 1114 . . . . . . . . 9 (((𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
46453adant1 1126 . . . . . . . 8 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) = (𝑅𝑛))
4742, 46eqeq12d 2837 . . . . . . 7 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) ↔ (𝐶𝑛) = (𝑅𝑛)))
4847ralbidv 3197 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛) ↔ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)))
4937, 48anbi12d 632 . . . . 5 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ∧ ∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘(♯‘𝑋))‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘(♯‘𝑋))‘𝑛)) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
5011, 21, 493bitrd 307 . . . 4 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
5150ad2antlr 725 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) ↔ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛))))
52 pm3.35 801 . . . . . . 7 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))
53 fveq2 6670 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝑆 Σg 𝑋)‘𝑛) = ((𝑆 Σg 𝑋)‘𝑗))
54 fveq2 6670 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝑍 Σg 𝑌)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑗))
5553, 54eqeq12d 2837 . . . . . . . . . 10 (𝑛 = 𝑗 → (((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)))
5655cbvralvw 3449 . . . . . . . . 9 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ↔ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗))
57 simp-4l 781 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑁 ∈ Fin)
58 simp-4r 782 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑀 ∈ Fin)
59 simpr 487 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → 𝑛𝐼)
6057, 58, 593jca 1124 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼))
6160adantr 483 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼))
62 simp-4r 782 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)))
63 simplr 767 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗))
6463anim1i 616 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛)))
65 gsmsymgrfix.s . . . . . . . . . . . . . . 15 𝑆 = (SymGrp‘𝑁)
66 gsmsymgrfix.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑆)
67 gsmsymgreq.z . . . . . . . . . . . . . . 15 𝑍 = (SymGrp‘𝑀)
68 gsmsymgreq.p . . . . . . . . . . . . . . 15 𝑃 = (Base‘𝑍)
69 gsmsymgreq.i . . . . . . . . . . . . . . 15 𝐼 = (𝑁𝑀)
7065, 66, 67, 68, 69gsmsymgreqlem1 18558 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7170imp 409 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) ∧ (𝐶𝑛) = (𝑅𝑛))) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))
7261, 62, 64, 71syl21anc 835 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) ∧ (𝐶𝑛) = (𝑅𝑛)) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))
7372ex 415 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) ∧ 𝑛𝐼) → ((𝐶𝑛) = (𝑅𝑛) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7473ralimdva 3177 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ ∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗)) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
7574expcom 416 . . . . . . . . 9 (∀𝑗𝐼 ((𝑆 Σg 𝑋)‘𝑗) = ((𝑍 Σg 𝑌)‘𝑗) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7656, 75sylbi 219 . . . . . . . 8 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7776com23 86 . . . . . . 7 (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7852, 77syl 17 . . . . . 6 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
7978impancom 454 . . . . 5 ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
8079com13 88 . . . 4 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
8180imp 409 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) ∧ ∀𝑛𝐼 (𝐶𝑛) = (𝑅𝑛)) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
8251, 81sylbid 242 . 2 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛)))
8382ex 415 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛𝐼 ((𝑋𝑖)‘𝑛) = ((𝑌𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ ⟨“𝐶”⟩)))∀𝑛𝐼 (((𝑋 ++ ⟨“𝐶”⟩)‘𝑖)‘𝑛) = (((𝑌 ++ ⟨“𝑅”⟩)‘𝑖)‘𝑛) → ∀𝑛𝐼 ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝑛) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cun 3934  cin 3935  {csn 4567  cfv 6355  (class class class)co 7156  Fincfn 8509  0cc0 10537  1c1 10538   + caddc 10540  0cn0 11898  cuz 12244  ..^cfzo 13034  chash 13691  Word cword 13862   ++ cconcat 13922  ⟨“cs1 13949  Basecbs 16483   Σg cgsu 16714  SymGrpcsymg 18495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-0g 16715  df-gsum 16716  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-symg 18496
This theorem is referenced by:  gsmsymgreq  18560
  Copyright terms: Public domain W3C validator