MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixf1 Structured version   Visualization version   GIF version

Theorem symgfixf1 19423
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.h 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
Assertion
Ref Expression
symgfixf1 (𝐾𝑁𝐻:𝑄1-1𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑁,𝑞   𝑄,𝑞   𝑆,𝑞
Allowed substitution hint:   𝐻(𝑞)

Proof of Theorem symgfixf1
Dummy variables 𝑔 𝑝 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgfixf.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . 3 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
3 symgfixf.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
4 symgfixf.h . . 3 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
51, 2, 3, 4symgfixf 19422 . 2 (𝐾𝑁𝐻:𝑄𝑆)
64fvtresfn 6993 . . . . . 6 (𝑔𝑄 → (𝐻𝑔) = (𝑔 ↾ (𝑁 ∖ {𝐾})))
74fvtresfn 6993 . . . . . 6 (𝑝𝑄 → (𝐻𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾})))
86, 7eqeqan12d 2750 . . . . 5 ((𝑔𝑄𝑝𝑄) → ((𝐻𝑔) = (𝐻𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
98adantl 481 . . . 4 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝐻𝑔) = (𝐻𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
101, 2symgfixelq 19419 . . . . . . 7 (𝑔 ∈ V → (𝑔𝑄 ↔ (𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾)))
1110elv 3469 . . . . . 6 (𝑔𝑄 ↔ (𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾))
121, 2symgfixelq 19419 . . . . . . 7 (𝑝 ∈ V → (𝑝𝑄 ↔ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)))
1312elv 3469 . . . . . 6 (𝑝𝑄 ↔ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))
1411, 13anbi12i 628 . . . . 5 ((𝑔𝑄𝑝𝑄) ↔ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)))
15 f1ofn 6824 . . . . . . . . . . 11 (𝑔:𝑁1-1-onto𝑁𝑔 Fn 𝑁)
1615adantr 480 . . . . . . . . . 10 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → 𝑔 Fn 𝑁)
17 f1ofn 6824 . . . . . . . . . . 11 (𝑝:𝑁1-1-onto𝑁𝑝 Fn 𝑁)
1817adantr 480 . . . . . . . . . 10 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → 𝑝 Fn 𝑁)
1916, 18anim12i 613 . . . . . . . . 9 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (𝑔 Fn 𝑁𝑝 Fn 𝑁))
20 difss 4116 . . . . . . . . 9 (𝑁 ∖ {𝐾}) ⊆ 𝑁
2119, 20jctir 520 . . . . . . . 8 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → ((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
2221adantl 481 . . . . . . 7 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
23 fvreseq 7035 . . . . . . 7 (((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)))
2422, 23syl 17 . . . . . 6 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)))
25 f1of 6823 . . . . . . . . . . . 12 (𝑔:𝑁1-1-onto𝑁𝑔:𝑁𝑁)
2625adantr 480 . . . . . . . . . . 11 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → 𝑔:𝑁𝑁)
27 f1of 6823 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
2827adantr 480 . . . . . . . . . . 11 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → 𝑝:𝑁𝑁)
29 fdm 6720 . . . . . . . . . . . 12 (𝑔:𝑁𝑁 → dom 𝑔 = 𝑁)
30 fdm 6720 . . . . . . . . . . . 12 (𝑝:𝑁𝑁 → dom 𝑝 = 𝑁)
3129, 30anim12i 613 . . . . . . . . . . 11 ((𝑔:𝑁𝑁𝑝:𝑁𝑁) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁))
3226, 28, 31syl2an 596 . . . . . . . . . 10 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁))
33 eqtr3 2758 . . . . . . . . . 10 ((dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁) → dom 𝑔 = dom 𝑝)
3432, 33syl 17 . . . . . . . . 9 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → dom 𝑔 = dom 𝑝)
3534ad2antlr 727 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → dom 𝑔 = dom 𝑝)
36 simpr 484 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖))
37 eqtr3 2758 . . . . . . . . . . . 12 (((𝑔𝐾) = 𝐾 ∧ (𝑝𝐾) = 𝐾) → (𝑔𝐾) = (𝑝𝐾))
3837ad2ant2l 746 . . . . . . . . . . 11 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (𝑔𝐾) = (𝑝𝐾))
3938ad2antlr 727 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (𝑔𝐾) = (𝑝𝐾))
40 fveq2 6881 . . . . . . . . . . . . . 14 (𝑖 = 𝐾 → (𝑔𝑖) = (𝑔𝐾))
41 fveq2 6881 . . . . . . . . . . . . . 14 (𝑖 = 𝐾 → (𝑝𝑖) = (𝑝𝐾))
4240, 41eqeq12d 2752 . . . . . . . . . . . . 13 (𝑖 = 𝐾 → ((𝑔𝑖) = (𝑝𝑖) ↔ (𝑔𝐾) = (𝑝𝐾)))
4342ralunsn 4875 . . . . . . . . . . . 12 (𝐾𝑁 → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4443adantr 480 . . . . . . . . . . 11 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4544adantr 480 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4636, 39, 45mpbir2and 713 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖))
47 f1odm 6827 . . . . . . . . . . . . 13 (𝑔:𝑁1-1-onto𝑁 → dom 𝑔 = 𝑁)
4847adantr 480 . . . . . . . . . . . 12 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → dom 𝑔 = 𝑁)
4948adantr 480 . . . . . . . . . . 11 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → dom 𝑔 = 𝑁)
50 difsnid 4791 . . . . . . . . . . . 12 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
5150eqcomd 2742 . . . . . . . . . . 11 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5249, 51sylan9eqr 2793 . . . . . . . . . 10 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5352adantr 480 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5446, 53raleqtrrdv 3313 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))
55 f1ofun 6825 . . . . . . . . . . . 12 (𝑔:𝑁1-1-onto𝑁 → Fun 𝑔)
5655adantr 480 . . . . . . . . . . 11 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → Fun 𝑔)
57 f1ofun 6825 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁 → Fun 𝑝)
5857adantr 480 . . . . . . . . . . 11 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → Fun 𝑝)
5956, 58anim12i 613 . . . . . . . . . 10 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (Fun 𝑔 ∧ Fun 𝑝))
6059ad2antlr 727 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (Fun 𝑔 ∧ Fun 𝑝))
61 eqfunfv 7031 . . . . . . . . 9 ((Fun 𝑔 ∧ Fun 𝑝) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))))
6260, 61syl 17 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))))
6335, 54, 62mpbir2and 713 . . . . . . 7 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → 𝑔 = 𝑝)
6463ex 412 . . . . . 6 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) → 𝑔 = 𝑝))
6524, 64sylbid 240 . . . . 5 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝))
6614, 65sylan2b 594 . . . 4 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝))
679, 66sylbid 240 . . 3 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝))
6867ralrimivva 3188 . 2 (𝐾𝑁 → ∀𝑔𝑄𝑝𝑄 ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝))
69 dff13 7252 . 2 (𝐻:𝑄1-1𝑆 ↔ (𝐻:𝑄𝑆 ∧ ∀𝑔𝑄𝑝𝑄 ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝)))
705, 68, 69sylanbrc 583 1 (𝐾𝑁𝐻:𝑄1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  cdif 3928  cun 3929  wss 3931  {csn 4606  cmpt 5206  dom cdm 5659  cres 5661  Fun wfun 6530   Fn wfn 6531  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  Basecbs 17233  SymGrpcsymg 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-tset 17295  df-efmnd 18852  df-symg 19356
This theorem is referenced by:  symgfixf1o  19426
  Copyright terms: Public domain W3C validator