MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixf1 Structured version   Visualization version   GIF version

Theorem symgfixf1 19344
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.h 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
Assertion
Ref Expression
symgfixf1 (𝐾𝑁𝐻:𝑄1-1𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑁,𝑞   𝑄,𝑞   𝑆,𝑞
Allowed substitution hint:   𝐻(𝑞)

Proof of Theorem symgfixf1
Dummy variables 𝑔 𝑝 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgfixf.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . 3 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
3 symgfixf.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
4 symgfixf.h . . 3 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
51, 2, 3, 4symgfixf 19343 . 2 (𝐾𝑁𝐻:𝑄𝑆)
64fvtresfn 6926 . . . . . 6 (𝑔𝑄 → (𝐻𝑔) = (𝑔 ↾ (𝑁 ∖ {𝐾})))
74fvtresfn 6926 . . . . . 6 (𝑝𝑄 → (𝐻𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾})))
86, 7eqeqan12d 2745 . . . . 5 ((𝑔𝑄𝑝𝑄) → ((𝐻𝑔) = (𝐻𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
98adantl 481 . . . 4 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝐻𝑔) = (𝐻𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
101, 2symgfixelq 19340 . . . . . . 7 (𝑔 ∈ V → (𝑔𝑄 ↔ (𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾)))
1110elv 3441 . . . . . 6 (𝑔𝑄 ↔ (𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾))
121, 2symgfixelq 19340 . . . . . . 7 (𝑝 ∈ V → (𝑝𝑄 ↔ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)))
1312elv 3441 . . . . . 6 (𝑝𝑄 ↔ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))
1411, 13anbi12i 628 . . . . 5 ((𝑔𝑄𝑝𝑄) ↔ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)))
15 f1ofn 6759 . . . . . . . . . . 11 (𝑔:𝑁1-1-onto𝑁𝑔 Fn 𝑁)
1615adantr 480 . . . . . . . . . 10 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → 𝑔 Fn 𝑁)
17 f1ofn 6759 . . . . . . . . . . 11 (𝑝:𝑁1-1-onto𝑁𝑝 Fn 𝑁)
1817adantr 480 . . . . . . . . . 10 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → 𝑝 Fn 𝑁)
1916, 18anim12i 613 . . . . . . . . 9 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (𝑔 Fn 𝑁𝑝 Fn 𝑁))
20 difss 4081 . . . . . . . . 9 (𝑁 ∖ {𝐾}) ⊆ 𝑁
2119, 20jctir 520 . . . . . . . 8 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → ((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
2221adantl 481 . . . . . . 7 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
23 fvreseq 6968 . . . . . . 7 (((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)))
2422, 23syl 17 . . . . . 6 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)))
25 f1of 6758 . . . . . . . . . . . 12 (𝑔:𝑁1-1-onto𝑁𝑔:𝑁𝑁)
2625adantr 480 . . . . . . . . . . 11 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → 𝑔:𝑁𝑁)
27 f1of 6758 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
2827adantr 480 . . . . . . . . . . 11 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → 𝑝:𝑁𝑁)
29 fdm 6655 . . . . . . . . . . . 12 (𝑔:𝑁𝑁 → dom 𝑔 = 𝑁)
30 fdm 6655 . . . . . . . . . . . 12 (𝑝:𝑁𝑁 → dom 𝑝 = 𝑁)
3129, 30anim12i 613 . . . . . . . . . . 11 ((𝑔:𝑁𝑁𝑝:𝑁𝑁) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁))
3226, 28, 31syl2an 596 . . . . . . . . . 10 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁))
33 eqtr3 2753 . . . . . . . . . 10 ((dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁) → dom 𝑔 = dom 𝑝)
3432, 33syl 17 . . . . . . . . 9 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → dom 𝑔 = dom 𝑝)
3534ad2antlr 727 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → dom 𝑔 = dom 𝑝)
36 simpr 484 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖))
37 eqtr3 2753 . . . . . . . . . . . 12 (((𝑔𝐾) = 𝐾 ∧ (𝑝𝐾) = 𝐾) → (𝑔𝐾) = (𝑝𝐾))
3837ad2ant2l 746 . . . . . . . . . . 11 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (𝑔𝐾) = (𝑝𝐾))
3938ad2antlr 727 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (𝑔𝐾) = (𝑝𝐾))
40 fveq2 6817 . . . . . . . . . . . . . 14 (𝑖 = 𝐾 → (𝑔𝑖) = (𝑔𝐾))
41 fveq2 6817 . . . . . . . . . . . . . 14 (𝑖 = 𝐾 → (𝑝𝑖) = (𝑝𝐾))
4240, 41eqeq12d 2747 . . . . . . . . . . . . 13 (𝑖 = 𝐾 → ((𝑔𝑖) = (𝑝𝑖) ↔ (𝑔𝐾) = (𝑝𝐾)))
4342ralunsn 4841 . . . . . . . . . . . 12 (𝐾𝑁 → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4443adantr 480 . . . . . . . . . . 11 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4544adantr 480 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4636, 39, 45mpbir2and 713 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖))
47 f1odm 6762 . . . . . . . . . . . . 13 (𝑔:𝑁1-1-onto𝑁 → dom 𝑔 = 𝑁)
4847adantr 480 . . . . . . . . . . . 12 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → dom 𝑔 = 𝑁)
4948adantr 480 . . . . . . . . . . 11 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → dom 𝑔 = 𝑁)
50 difsnid 4757 . . . . . . . . . . . 12 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
5150eqcomd 2737 . . . . . . . . . . 11 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5249, 51sylan9eqr 2788 . . . . . . . . . 10 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5352adantr 480 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5446, 53raleqtrrdv 3296 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))
55 f1ofun 6760 . . . . . . . . . . . 12 (𝑔:𝑁1-1-onto𝑁 → Fun 𝑔)
5655adantr 480 . . . . . . . . . . 11 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → Fun 𝑔)
57 f1ofun 6760 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁 → Fun 𝑝)
5857adantr 480 . . . . . . . . . . 11 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → Fun 𝑝)
5956, 58anim12i 613 . . . . . . . . . 10 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (Fun 𝑔 ∧ Fun 𝑝))
6059ad2antlr 727 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (Fun 𝑔 ∧ Fun 𝑝))
61 eqfunfv 6964 . . . . . . . . 9 ((Fun 𝑔 ∧ Fun 𝑝) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))))
6260, 61syl 17 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))))
6335, 54, 62mpbir2and 713 . . . . . . 7 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → 𝑔 = 𝑝)
6463ex 412 . . . . . 6 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) → 𝑔 = 𝑝))
6524, 64sylbid 240 . . . . 5 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝))
6614, 65sylan2b 594 . . . 4 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝))
679, 66sylbid 240 . . 3 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝))
6867ralrimivva 3175 . 2 (𝐾𝑁 → ∀𝑔𝑄𝑝𝑄 ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝))
69 dff13 7183 . 2 (𝐻:𝑄1-1𝑆 ↔ (𝐻:𝑄𝑆 ∧ ∀𝑔𝑄𝑝𝑄 ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝)))
705, 68, 69sylanbrc 583 1 (𝐾𝑁𝐻:𝑄1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  wss 3897  {csn 4571  cmpt 5167  dom cdm 5611  cres 5613  Fun wfun 6470   Fn wfn 6471  wf 6472  1-1wf1 6473  1-1-ontowf1o 6475  cfv 6476  Basecbs 17115  SymGrpcsymg 19276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-tset 17175  df-efmnd 18772  df-symg 19277
This theorem is referenced by:  symgfixf1o  19347
  Copyright terms: Public domain W3C validator