| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | symgfixf.p | . . 3
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) | 
| 2 |  | symgfixf.q | . . 3
⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} | 
| 3 |  | symgfixf.s | . . 3
⊢ 𝑆 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | 
| 4 |  | symgfixf.h | . . 3
⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) | 
| 5 | 1, 2, 3, 4 | symgfixf 19454 | . 2
⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄⟶𝑆) | 
| 6 | 4 | fvtresfn 7018 | . . . . . 6
⊢ (𝑔 ∈ 𝑄 → (𝐻‘𝑔) = (𝑔 ↾ (𝑁 ∖ {𝐾}))) | 
| 7 | 4 | fvtresfn 7018 | . . . . . 6
⊢ (𝑝 ∈ 𝑄 → (𝐻‘𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾}))) | 
| 8 | 6, 7 | eqeqan12d 2751 | . . . . 5
⊢ ((𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄) → ((𝐻‘𝑔) = (𝐻‘𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})))) | 
| 9 | 8 | adantl 481 | . . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝐻‘𝑔) = (𝐻‘𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})))) | 
| 10 | 1, 2 | symgfixelq 19451 | . . . . . . 7
⊢ (𝑔 ∈ V → (𝑔 ∈ 𝑄 ↔ (𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾))) | 
| 11 | 10 | elv 3485 | . . . . . 6
⊢ (𝑔 ∈ 𝑄 ↔ (𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾)) | 
| 12 | 1, 2 | symgfixelq 19451 | . . . . . . 7
⊢ (𝑝 ∈ V → (𝑝 ∈ 𝑄 ↔ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) | 
| 13 | 12 | elv 3485 | . . . . . 6
⊢ (𝑝 ∈ 𝑄 ↔ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) | 
| 14 | 11, 13 | anbi12i 628 | . . . . 5
⊢ ((𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄) ↔ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) | 
| 15 |  | f1ofn 6849 | . . . . . . . . . . 11
⊢ (𝑔:𝑁–1-1-onto→𝑁 → 𝑔 Fn 𝑁) | 
| 16 | 15 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → 𝑔 Fn 𝑁) | 
| 17 |  | f1ofn 6849 | . . . . . . . . . . 11
⊢ (𝑝:𝑁–1-1-onto→𝑁 → 𝑝 Fn 𝑁) | 
| 18 | 17 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → 𝑝 Fn 𝑁) | 
| 19 | 16, 18 | anim12i 613 | . . . . . . . . 9
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁)) | 
| 20 |  | difss 4136 | . . . . . . . . 9
⊢ (𝑁 ∖ {𝐾}) ⊆ 𝑁 | 
| 21 | 19, 20 | jctir 520 | . . . . . . . 8
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → ((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) | 
| 22 | 21 | adantl 481 | . . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) | 
| 23 |  | fvreseq 7060 | . . . . . . 7
⊢ (((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖))) | 
| 24 | 22, 23 | syl 17 | . . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖))) | 
| 25 |  | f1of 6848 | . . . . . . . . . . . 12
⊢ (𝑔:𝑁–1-1-onto→𝑁 → 𝑔:𝑁⟶𝑁) | 
| 26 | 25 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → 𝑔:𝑁⟶𝑁) | 
| 27 |  | f1of 6848 | . . . . . . . . . . . 12
⊢ (𝑝:𝑁–1-1-onto→𝑁 → 𝑝:𝑁⟶𝑁) | 
| 28 | 27 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → 𝑝:𝑁⟶𝑁) | 
| 29 |  | fdm 6745 | . . . . . . . . . . . 12
⊢ (𝑔:𝑁⟶𝑁 → dom 𝑔 = 𝑁) | 
| 30 |  | fdm 6745 | . . . . . . . . . . . 12
⊢ (𝑝:𝑁⟶𝑁 → dom 𝑝 = 𝑁) | 
| 31 | 29, 30 | anim12i 613 | . . . . . . . . . . 11
⊢ ((𝑔:𝑁⟶𝑁 ∧ 𝑝:𝑁⟶𝑁) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁)) | 
| 32 | 26, 28, 31 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁)) | 
| 33 |  | eqtr3 2763 | . . . . . . . . . 10
⊢ ((dom
𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁) → dom 𝑔 = dom 𝑝) | 
| 34 | 32, 33 | syl 17 | . . . . . . . . 9
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → dom 𝑔 = dom 𝑝) | 
| 35 | 34 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → dom 𝑔 = dom 𝑝) | 
| 36 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) | 
| 37 |  | eqtr3 2763 | . . . . . . . . . . . 12
⊢ (((𝑔‘𝐾) = 𝐾 ∧ (𝑝‘𝐾) = 𝐾) → (𝑔‘𝐾) = (𝑝‘𝐾)) | 
| 38 | 37 | ad2ant2l 746 | . . . . . . . . . . 11
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (𝑔‘𝐾) = (𝑝‘𝐾)) | 
| 39 | 38 | ad2antlr 727 | . . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (𝑔‘𝐾) = (𝑝‘𝐾)) | 
| 40 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐾 → (𝑔‘𝑖) = (𝑔‘𝐾)) | 
| 41 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐾 → (𝑝‘𝑖) = (𝑝‘𝐾)) | 
| 42 | 40, 41 | eqeq12d 2753 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝐾 → ((𝑔‘𝑖) = (𝑝‘𝑖) ↔ (𝑔‘𝐾) = (𝑝‘𝐾))) | 
| 43 | 42 | ralunsn 4894 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑁 → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) | 
| 44 | 43 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) | 
| 45 | 44 | adantr 480 | . . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) | 
| 46 | 36, 39, 45 | mpbir2and 713 | . . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) | 
| 47 |  | f1odm 6852 | . . . . . . . . . . . . 13
⊢ (𝑔:𝑁–1-1-onto→𝑁 → dom 𝑔 = 𝑁) | 
| 48 | 47 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → dom 𝑔 = 𝑁) | 
| 49 | 48 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → dom 𝑔 = 𝑁) | 
| 50 |  | difsnid 4810 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) | 
| 51 | 50 | eqcomd 2743 | . . . . . . . . . . 11
⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) | 
| 52 | 49, 51 | sylan9eqr 2799 | . . . . . . . . . 10
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) | 
| 53 | 52 | adantr 480 | . . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) | 
| 54 | 46, 53 | raleqtrrdv 3330 | . . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)) | 
| 55 |  | f1ofun 6850 | . . . . . . . . . . . 12
⊢ (𝑔:𝑁–1-1-onto→𝑁 → Fun 𝑔) | 
| 56 | 55 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → Fun 𝑔) | 
| 57 |  | f1ofun 6850 | . . . . . . . . . . . 12
⊢ (𝑝:𝑁–1-1-onto→𝑁 → Fun 𝑝) | 
| 58 | 57 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → Fun 𝑝) | 
| 59 | 56, 58 | anim12i 613 | . . . . . . . . . 10
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (Fun 𝑔 ∧ Fun 𝑝)) | 
| 60 | 59 | ad2antlr 727 | . . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (Fun 𝑔 ∧ Fun 𝑝)) | 
| 61 |  | eqfunfv 7056 | . . . . . . . . 9
⊢ ((Fun
𝑔 ∧ Fun 𝑝) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)))) | 
| 62 | 60, 61 | syl 17 | . . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)))) | 
| 63 | 35, 54, 62 | mpbir2and 713 | . . . . . . 7
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → 𝑔 = 𝑝) | 
| 64 | 63 | ex 412 | . . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) → 𝑔 = 𝑝)) | 
| 65 | 24, 64 | sylbid 240 | . . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝)) | 
| 66 | 14, 65 | sylan2b 594 | . . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝)) | 
| 67 | 9, 66 | sylbid 240 | . . 3
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝)) | 
| 68 | 67 | ralrimivva 3202 | . 2
⊢ (𝐾 ∈ 𝑁 → ∀𝑔 ∈ 𝑄 ∀𝑝 ∈ 𝑄 ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝)) | 
| 69 |  | dff13 7275 | . 2
⊢ (𝐻:𝑄–1-1→𝑆 ↔ (𝐻:𝑄⟶𝑆 ∧ ∀𝑔 ∈ 𝑄 ∀𝑝 ∈ 𝑄 ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝))) | 
| 70 | 5, 68, 69 | sylanbrc 583 | 1
⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄–1-1→𝑆) |