Step | Hyp | Ref
| Expression |
1 | | symgfixf.p |
. . 3
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
2 | | symgfixf.q |
. . 3
⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
3 | | symgfixf.s |
. . 3
⊢ 𝑆 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
4 | | symgfixf.h |
. . 3
⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) |
5 | 1, 2, 3, 4 | symgfixf 18632 |
. 2
⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄⟶𝑆) |
6 | 4 | fvtresfn 6762 |
. . . . . 6
⊢ (𝑔 ∈ 𝑄 → (𝐻‘𝑔) = (𝑔 ↾ (𝑁 ∖ {𝐾}))) |
7 | 4 | fvtresfn 6762 |
. . . . . 6
⊢ (𝑝 ∈ 𝑄 → (𝐻‘𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾}))) |
8 | 6, 7 | eqeqan12d 2776 |
. . . . 5
⊢ ((𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄) → ((𝐻‘𝑔) = (𝐻‘𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
9 | 8 | adantl 486 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝐻‘𝑔) = (𝐻‘𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
10 | 1, 2 | symgfixelq 18629 |
. . . . . . 7
⊢ (𝑔 ∈ V → (𝑔 ∈ 𝑄 ↔ (𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾))) |
11 | 10 | elv 3416 |
. . . . . 6
⊢ (𝑔 ∈ 𝑄 ↔ (𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾)) |
12 | 1, 2 | symgfixelq 18629 |
. . . . . . 7
⊢ (𝑝 ∈ V → (𝑝 ∈ 𝑄 ↔ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) |
13 | 12 | elv 3416 |
. . . . . 6
⊢ (𝑝 ∈ 𝑄 ↔ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) |
14 | 11, 13 | anbi12i 630 |
. . . . 5
⊢ ((𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄) ↔ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) |
15 | | f1ofn 6604 |
. . . . . . . . . . 11
⊢ (𝑔:𝑁–1-1-onto→𝑁 → 𝑔 Fn 𝑁) |
16 | 15 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → 𝑔 Fn 𝑁) |
17 | | f1ofn 6604 |
. . . . . . . . . . 11
⊢ (𝑝:𝑁–1-1-onto→𝑁 → 𝑝 Fn 𝑁) |
18 | 17 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → 𝑝 Fn 𝑁) |
19 | 16, 18 | anim12i 616 |
. . . . . . . . 9
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁)) |
20 | | difss 4038 |
. . . . . . . . 9
⊢ (𝑁 ∖ {𝐾}) ⊆ 𝑁 |
21 | 19, 20 | jctir 525 |
. . . . . . . 8
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → ((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) |
22 | 21 | adantl 486 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁)) |
23 | | fvreseq 6802 |
. . . . . . 7
⊢ (((𝑔 Fn 𝑁 ∧ 𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖))) |
24 | 22, 23 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖))) |
25 | | f1of 6603 |
. . . . . . . . . . . 12
⊢ (𝑔:𝑁–1-1-onto→𝑁 → 𝑔:𝑁⟶𝑁) |
26 | 25 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → 𝑔:𝑁⟶𝑁) |
27 | | f1of 6603 |
. . . . . . . . . . . 12
⊢ (𝑝:𝑁–1-1-onto→𝑁 → 𝑝:𝑁⟶𝑁) |
28 | 27 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → 𝑝:𝑁⟶𝑁) |
29 | | fdm 6507 |
. . . . . . . . . . . 12
⊢ (𝑔:𝑁⟶𝑁 → dom 𝑔 = 𝑁) |
30 | | fdm 6507 |
. . . . . . . . . . . 12
⊢ (𝑝:𝑁⟶𝑁 → dom 𝑝 = 𝑁) |
31 | 29, 30 | anim12i 616 |
. . . . . . . . . . 11
⊢ ((𝑔:𝑁⟶𝑁 ∧ 𝑝:𝑁⟶𝑁) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁)) |
32 | 26, 28, 31 | syl2an 599 |
. . . . . . . . . 10
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁)) |
33 | | eqtr3 2781 |
. . . . . . . . . 10
⊢ ((dom
𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁) → dom 𝑔 = dom 𝑝) |
34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → dom 𝑔 = dom 𝑝) |
35 | 34 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → dom 𝑔 = dom 𝑝) |
36 | | simpr 489 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) |
37 | | eqtr3 2781 |
. . . . . . . . . . . 12
⊢ (((𝑔‘𝐾) = 𝐾 ∧ (𝑝‘𝐾) = 𝐾) → (𝑔‘𝐾) = (𝑝‘𝐾)) |
38 | 37 | ad2ant2l 746 |
. . . . . . . . . . 11
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (𝑔‘𝐾) = (𝑝‘𝐾)) |
39 | 38 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (𝑔‘𝐾) = (𝑝‘𝐾)) |
40 | | fveq2 6659 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐾 → (𝑔‘𝑖) = (𝑔‘𝐾)) |
41 | | fveq2 6659 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐾 → (𝑝‘𝑖) = (𝑝‘𝐾)) |
42 | 40, 41 | eqeq12d 2775 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐾 → ((𝑔‘𝑖) = (𝑝‘𝑖) ↔ (𝑔‘𝐾) = (𝑝‘𝐾))) |
43 | 42 | ralunsn 4785 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑁 → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) |
44 | 43 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) |
45 | 44 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) ∧ (𝑔‘𝐾) = (𝑝‘𝐾)))) |
46 | 36, 39, 45 | mpbir2and 713 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) |
47 | | f1odm 6607 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝑁–1-1-onto→𝑁 → dom 𝑔 = 𝑁) |
48 | 47 | adantr 485 |
. . . . . . . . . . . . 13
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → dom 𝑔 = 𝑁) |
49 | 48 | adantr 485 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → dom 𝑔 = 𝑁) |
50 | | difsnid 4701 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) |
51 | 50 | eqcomd 2765 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
52 | 49, 51 | sylan9eqr 2816 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
53 | 52 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
54 | 53 | raleqdv 3330 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖) ↔ ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖))) |
55 | 46, 54 | mpbird 260 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)) |
56 | | f1ofun 6605 |
. . . . . . . . . . . 12
⊢ (𝑔:𝑁–1-1-onto→𝑁 → Fun 𝑔) |
57 | 56 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) → Fun 𝑔) |
58 | | f1ofun 6605 |
. . . . . . . . . . . 12
⊢ (𝑝:𝑁–1-1-onto→𝑁 → Fun 𝑝) |
59 | 58 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾) → Fun 𝑝) |
60 | 57, 59 | anim12i 616 |
. . . . . . . . . 10
⊢ (((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾)) → (Fun 𝑔 ∧ Fun 𝑝)) |
61 | 60 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (Fun 𝑔 ∧ Fun 𝑝)) |
62 | | eqfunfv 6799 |
. . . . . . . . 9
⊢ ((Fun
𝑔 ∧ Fun 𝑝) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)))) |
63 | 61, 62 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔‘𝑖) = (𝑝‘𝑖)))) |
64 | 35, 55, 63 | mpbir2and 713 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖)) → 𝑔 = 𝑝) |
65 | 64 | ex 417 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔‘𝑖) = (𝑝‘𝑖) → 𝑔 = 𝑝)) |
66 | 24, 65 | sylbid 243 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ ((𝑔:𝑁–1-1-onto→𝑁 ∧ (𝑔‘𝐾) = 𝐾) ∧ (𝑝:𝑁–1-1-onto→𝑁 ∧ (𝑝‘𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝)) |
67 | 14, 66 | sylan2b 597 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝)) |
68 | 9, 67 | sylbid 243 |
. . 3
⊢ ((𝐾 ∈ 𝑁 ∧ (𝑔 ∈ 𝑄 ∧ 𝑝 ∈ 𝑄)) → ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝)) |
69 | 68 | ralrimivva 3121 |
. 2
⊢ (𝐾 ∈ 𝑁 → ∀𝑔 ∈ 𝑄 ∀𝑝 ∈ 𝑄 ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝)) |
70 | | dff13 7006 |
. 2
⊢ (𝐻:𝑄–1-1→𝑆 ↔ (𝐻:𝑄⟶𝑆 ∧ ∀𝑔 ∈ 𝑄 ∀𝑝 ∈ 𝑄 ((𝐻‘𝑔) = (𝐻‘𝑝) → 𝑔 = 𝑝))) |
71 | 5, 69, 70 | sylanbrc 587 |
1
⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄–1-1→𝑆) |