MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1lem3 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1lem3 27778
Description: Lemma 3 for clwlkclwwlkf1 27782. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
clwlkclwwlkf.d 𝐷 = (1st𝑊)
clwlkclwwlkf.e 𝐸 = (2nd𝑊)
Assertion
Ref Expression
clwlkclwwlkf1lem3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈   𝐴,𝑖   𝐵,𝑖   𝐷,𝑖   𝑤,𝐷   𝑖,𝐸   𝑤,𝑊
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤,𝑖)   𝑈(𝑖)   𝐸(𝑤)   𝑊(𝑖)

Proof of Theorem clwlkclwwlkf1lem3
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.a . . . . 5 𝐴 = (1st𝑈)
3 clwlkclwwlkf.b . . . . 5 𝐵 = (2nd𝑈)
4 clwlkclwwlkf.d . . . . 5 𝐷 = (1st𝑊)
5 clwlkclwwlkf.e . . . . 5 𝐸 = (2nd𝑊)
61, 2, 3, 4, 5clwlkclwwlkf1lem2 27777 . . . 4 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
7 simprr 771 . . . . 5 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
81, 2, 3clwlkclwwlkflem 27776 . . . . . . . . 9 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
91, 4, 5clwlkclwwlkflem 27776 . . . . . . . . 9 (𝑊𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ))
10 lbfzo0 13071 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝐴)) ↔ (♯‘𝐴) ∈ ℕ)
1110biimpri 230 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ → 0 ∈ (0..^(♯‘𝐴)))
12113ad2ant3 1131 . . . . . . . . . . . . . 14 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 0 ∈ (0..^(♯‘𝐴)))
1312adantr 483 . . . . . . . . . . . . 13 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → 0 ∈ (0..^(♯‘𝐴)))
1413adantr 483 . . . . . . . . . . . 12 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → 0 ∈ (0..^(♯‘𝐴)))
15 fveq2 6664 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝐵𝑖) = (𝐵‘0))
16 fveq2 6664 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝐸𝑖) = (𝐸‘0))
1715, 16eqeq12d 2837 . . . . . . . . . . . . 13 (𝑖 = 0 → ((𝐵𝑖) = (𝐸𝑖) ↔ (𝐵‘0) = (𝐸‘0)))
1817rspcv 3617 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐴)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘0) = (𝐸‘0)))
1914, 18syl 17 . . . . . . . . . . 11 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘0) = (𝐸‘0)))
20 simpl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐵‘0))
21 eqtr 2841 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷))) → (𝐵‘0) = (𝐸‘(♯‘𝐷)))
2221adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘0) = (𝐸‘(♯‘𝐷)))
2320, 22eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))
2423exp32 423 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐵‘0) = (𝐸‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2524com23 86 . . . . . . . . . . . . . . . . . . . 20 ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2625eqcoms 2829 . . . . . . . . . . . . . . . . . . 19 ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
27263ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2827com12 32 . . . . . . . . . . . . . . . . 17 ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
29283ad2ant2 1130 . . . . . . . . . . . . . . . 16 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
3029impcom 410 . . . . . . . . . . . . . . 15 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))
3130adantr 483 . . . . . . . . . . . . . 14 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))
3231imp 409 . . . . . . . . . . . . 13 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))
33 fveq2 6664 . . . . . . . . . . . . . . . 16 ((♯‘𝐷) = (♯‘𝐴) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3433eqcoms 2829 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = (♯‘𝐷) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3534adantl 484 . . . . . . . . . . . . . 14 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3635adantr 483 . . . . . . . . . . . . 13 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3732, 36eqtrd 2856 . . . . . . . . . . . 12 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))
3837ex 415 . . . . . . . . . . 11 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
3919, 38syld 47 . . . . . . . . . 10 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
4039ex 415 . . . . . . . . 9 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
418, 9, 40syl2an 597 . . . . . . . 8 ((𝑈𝐶𝑊𝐶) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
4241impd 413 . . . . . . 7 ((𝑈𝐶𝑊𝐶) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
43423adant3 1128 . . . . . 6 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
4443imp 409 . . . . 5 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))
457, 44jca 514 . . . 4 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
466, 45mpdan 685 . . 3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
47 fvex 6677 . . . 4 (♯‘𝐴) ∈ V
48 fveq2 6664 . . . . . 6 (𝑖 = (♯‘𝐴) → (𝐵𝑖) = (𝐵‘(♯‘𝐴)))
49 fveq2 6664 . . . . . 6 (𝑖 = (♯‘𝐴) → (𝐸𝑖) = (𝐸‘(♯‘𝐴)))
5048, 49eqeq12d 2837 . . . . 5 (𝑖 = (♯‘𝐴) → ((𝐵𝑖) = (𝐸𝑖) ↔ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
5150ralunsn 4817 . . . 4 ((♯‘𝐴) ∈ V → (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
5247, 51ax-mp 5 . . 3 (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
5346, 52sylibr 236 . 2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖))
54 nnnn0 11898 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℕ0)
55 elnn0uz 12277 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
5654, 55sylib 220 . . . . . . 7 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ (ℤ‘0))
57563ad2ant3 1131 . . . . . 6 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ (ℤ‘0))
588, 57syl 17 . . . . 5 (𝑈𝐶 → (♯‘𝐴) ∈ (ℤ‘0))
59583ad2ant1 1129 . . . 4 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (♯‘𝐴) ∈ (ℤ‘0))
60 fzisfzounsn 13143 . . . 4 ((♯‘𝐴) ∈ (ℤ‘0) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
6159, 60syl 17 . . 3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
6261raleqdv 3415 . 2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ↔ ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖)))
6353, 62mpbird 259 1 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  cun 3933  {csn 4560   class class class wbr 5058  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  0cc0 10531  1c1 10532  cle 10670  cn 11632  0cn0 11891  cuz 12237  ...cfz 12886  ..^cfzo 13027  chash 13684   prefix cpfx 14026  Walkscwlks 27372  ClWalkscclwlks 27545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-substr 13997  df-pfx 14027  df-wlks 27375  df-clwlks 27546
This theorem is referenced by:  clwlkclwwlkf1  27782
  Copyright terms: Public domain W3C validator