MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1lem3 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1lem3 27518
Description: Lemma 3 for clwlkclwwlkf1 27527. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
clwlkclwwlkf.d 𝐷 = (1st𝑊)
clwlkclwwlkf.e 𝐸 = (2nd𝑊)
Assertion
Ref Expression
clwlkclwwlkf1lem3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈   𝐴,𝑖   𝐵,𝑖   𝐷,𝑖   𝑤,𝐷   𝑖,𝐸   𝑤,𝑊
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤,𝑖)   𝑈(𝑖)   𝐸(𝑤)   𝑊(𝑖)

Proof of Theorem clwlkclwwlkf1lem3
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.a . . . . 5 𝐴 = (1st𝑈)
3 clwlkclwwlkf.b . . . . 5 𝐵 = (2nd𝑈)
4 clwlkclwwlkf.d . . . . 5 𝐷 = (1st𝑊)
5 clwlkclwwlkf.e . . . . 5 𝐸 = (2nd𝑊)
61, 2, 3, 4, 5clwlkclwwlkf1lem2 27516 . . . 4 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
7 simprr 760 . . . . 5 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
81, 2, 3clwlkclwwlkflem 27515 . . . . . . . . 9 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
91, 4, 5clwlkclwwlkflem 27515 . . . . . . . . 9 (𝑊𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ))
10 lbfzo0 12895 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝐴)) ↔ (♯‘𝐴) ∈ ℕ)
1110biimpri 220 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ → 0 ∈ (0..^(♯‘𝐴)))
12113ad2ant3 1115 . . . . . . . . . . . . . 14 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 0 ∈ (0..^(♯‘𝐴)))
1312adantr 473 . . . . . . . . . . . . 13 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → 0 ∈ (0..^(♯‘𝐴)))
1413adantr 473 . . . . . . . . . . . 12 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → 0 ∈ (0..^(♯‘𝐴)))
15 fveq2 6501 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝐵𝑖) = (𝐵‘0))
16 fveq2 6501 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝐸𝑖) = (𝐸‘0))
1715, 16eqeq12d 2793 . . . . . . . . . . . . 13 (𝑖 = 0 → ((𝐵𝑖) = (𝐸𝑖) ↔ (𝐵‘0) = (𝐸‘0)))
1817rspcv 3531 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐴)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘0) = (𝐸‘0)))
1914, 18syl 17 . . . . . . . . . . 11 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘0) = (𝐸‘0)))
20 simpl 475 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐵‘0))
21 eqtr 2799 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷))) → (𝐵‘0) = (𝐸‘(♯‘𝐷)))
2221adantl 474 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘0) = (𝐸‘(♯‘𝐷)))
2320, 22eqtrd 2814 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))
2423exp32 413 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐵‘0) = (𝐸‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2524com23 86 . . . . . . . . . . . . . . . . . . . 20 ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2625eqcoms 2786 . . . . . . . . . . . . . . . . . . 19 ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
27263ad2ant2 1114 . . . . . . . . . . . . . . . . . 18 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2827com12 32 . . . . . . . . . . . . . . . . 17 ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
29283ad2ant2 1114 . . . . . . . . . . . . . . . 16 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
3029impcom 399 . . . . . . . . . . . . . . 15 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))
3130adantr 473 . . . . . . . . . . . . . 14 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))
3231imp 398 . . . . . . . . . . . . 13 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))
33 fveq2 6501 . . . . . . . . . . . . . . . 16 ((♯‘𝐷) = (♯‘𝐴) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3433eqcoms 2786 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = (♯‘𝐷) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3534adantl 474 . . . . . . . . . . . . . 14 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3635adantr 473 . . . . . . . . . . . . 13 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3732, 36eqtrd 2814 . . . . . . . . . . . 12 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))
3837ex 405 . . . . . . . . . . 11 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
3919, 38syld 47 . . . . . . . . . 10 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
4039ex 405 . . . . . . . . 9 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
418, 9, 40syl2an 586 . . . . . . . 8 ((𝑈𝐶𝑊𝐶) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
4241impd 402 . . . . . . 7 ((𝑈𝐶𝑊𝐶) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
43423adant3 1112 . . . . . 6 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
4443imp 398 . . . . 5 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))
457, 44jca 504 . . . 4 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
466, 45mpdan 674 . . 3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
47 fvex 6514 . . . 4 (♯‘𝐴) ∈ V
48 fveq2 6501 . . . . . 6 (𝑖 = (♯‘𝐴) → (𝐵𝑖) = (𝐵‘(♯‘𝐴)))
49 fveq2 6501 . . . . . 6 (𝑖 = (♯‘𝐴) → (𝐸𝑖) = (𝐸‘(♯‘𝐴)))
5048, 49eqeq12d 2793 . . . . 5 (𝑖 = (♯‘𝐴) → ((𝐵𝑖) = (𝐸𝑖) ↔ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
5150ralunsn 4699 . . . 4 ((♯‘𝐴) ∈ V → (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
5247, 51ax-mp 5 . . 3 (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
5346, 52sylibr 226 . 2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖))
54 nnnn0 11718 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℕ0)
55 elnn0uz 12100 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
5654, 55sylib 210 . . . . . . 7 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ (ℤ‘0))
57563ad2ant3 1115 . . . . . 6 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ (ℤ‘0))
588, 57syl 17 . . . . 5 (𝑈𝐶 → (♯‘𝐴) ∈ (ℤ‘0))
59583ad2ant1 1113 . . . 4 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (♯‘𝐴) ∈ (ℤ‘0))
60 fzisfzounsn 12967 . . . 4 ((♯‘𝐴) ∈ (ℤ‘0) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
6159, 60syl 17 . . 3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
6261raleqdv 3355 . 2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ↔ ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖)))
6353, 62mpbird 249 1 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  {crab 3092  Vcvv 3415  cun 3829  {csn 4442   class class class wbr 4930  cfv 6190  (class class class)co 6978  1st c1st 7501  2nd c2nd 7502  0cc0 10337  1c1 10338  cle 10477  cn 11441  0cn0 11710  cuz 12061  ...cfz 12711  ..^cfzo 12852  chash 13508   prefix cpfx 13855  Walkscwlks 27084  ClWalkscclwlks 27262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ifp 1044  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-map 8210  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-hash 13509  df-word 13676  df-substr 13807  df-pfx 13856  df-wlks 27087  df-clwlks 27263
This theorem is referenced by:  clwlkclwwlkf1  27527
  Copyright terms: Public domain W3C validator