Proof of Theorem clwlkclwwlkf1lem3
Step | Hyp | Ref
| Expression |
1 | | clwlkclwwlkf.c |
. . . . 5
⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤
(♯‘(1st ‘𝑤))} |
2 | | clwlkclwwlkf.a |
. . . . 5
⊢ 𝐴 = (1st ‘𝑈) |
3 | | clwlkclwwlkf.b |
. . . . 5
⊢ 𝐵 = (2nd ‘𝑈) |
4 | | clwlkclwwlkf.d |
. . . . 5
⊢ 𝐷 = (1st ‘𝑊) |
5 | | clwlkclwwlkf.e |
. . . . 5
⊢ 𝐸 = (2nd ‘𝑊) |
6 | 1, 2, 3, 4, 5 | clwlkclwwlkf1lem2 28270 |
. . . 4
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖))) |
7 | | simprr 769 |
. . . . 5
⊢ (((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖)) |
8 | 1, 2, 3 | clwlkclwwlkflem 28269 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ)) |
9 | 1, 4, 5 | clwlkclwwlkflem 28269 |
. . . . . . . . 9
⊢ (𝑊 ∈ 𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) |
10 | | lbfzo0 13355 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
(0..^(♯‘𝐴))
↔ (♯‘𝐴)
∈ ℕ) |
11 | 10 | biimpri 227 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐴)
∈ ℕ → 0 ∈ (0..^(♯‘𝐴))) |
12 | 11 | 3ad2ant3 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 0 ∈
(0..^(♯‘𝐴))) |
13 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → 0 ∈
(0..^(♯‘𝐴))) |
14 | 13 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) → 0
∈ (0..^(♯‘𝐴))) |
15 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝐵‘𝑖) = (𝐵‘0)) |
16 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝐸‘𝑖) = (𝐸‘0)) |
17 | 15, 16 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → ((𝐵‘𝑖) = (𝐸‘𝑖) ↔ (𝐵‘0) = (𝐸‘0))) |
18 | 17 | rspcv 3547 |
. . . . . . . . . . . 12
⊢ (0 ∈
(0..^(♯‘𝐴))
→ (∀𝑖 ∈
(0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) → (𝐵‘0) = (𝐸‘0))) |
19 | 14, 18 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) →
(∀𝑖 ∈
(0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) → (𝐵‘0) = (𝐸‘0))) |
20 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐵‘0)) |
21 | | eqtr 2761 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷))) → (𝐵‘0) = (𝐸‘(♯‘𝐷))) |
22 | 21 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘0) = (𝐸‘(♯‘𝐷))) |
23 | 20, 22 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))) |
24 | 23 | exp32 420 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐵‘0) = (𝐸‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))) |
25 | 24 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))) |
26 | 25 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))) |
27 | 26 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))) |
28 | 27 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))) |
29 | 28 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))) |
30 | 29 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))) |
31 | 30 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) →
((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))) |
32 | 31 | imp 406 |
. . . . . . . . . . . . 13
⊢
(((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) ∧
(𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))) |
33 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐷) =
(♯‘𝐴) →
(𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴))) |
34 | 33 | eqcoms 2746 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐴) =
(♯‘𝐷) →
(𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴))) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) →
(𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴))) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) ∧
(𝐵‘0) = (𝐸‘0)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴))) |
37 | 32, 36 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢
(((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) ∧
(𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))) |
38 | 37 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) →
((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))) |
39 | 19, 38 | syld 47 |
. . . . . . . . . 10
⊢ ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧
(♯‘𝐴) =
(♯‘𝐷)) →
(∀𝑖 ∈
(0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))) |
40 | 39 | ex 412 |
. . . . . . . . 9
⊢ (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) →
((♯‘𝐴) =
(♯‘𝐷) →
(∀𝑖 ∈
(0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))) |
41 | 8, 9, 40 | syl2an 595 |
. . . . . . . 8
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))) |
42 | 41 | impd 410 |
. . . . . . 7
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))) |
43 | 42 | 3adant3 1130 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈
(0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))) |
44 | 43 | imp 406 |
. . . . 5
⊢ (((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))) |
45 | 7, 44 | jca 511 |
. . . 4
⊢ (((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))) |
46 | 6, 45 | mpdan 683 |
. . 3
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))) |
47 | | fvex 6769 |
. . . 4
⊢
(♯‘𝐴)
∈ V |
48 | | fveq2 6756 |
. . . . . 6
⊢ (𝑖 = (♯‘𝐴) → (𝐵‘𝑖) = (𝐵‘(♯‘𝐴))) |
49 | | fveq2 6756 |
. . . . . 6
⊢ (𝑖 = (♯‘𝐴) → (𝐸‘𝑖) = (𝐸‘(♯‘𝐴))) |
50 | 48, 49 | eqeq12d 2754 |
. . . . 5
⊢ (𝑖 = (♯‘𝐴) → ((𝐵‘𝑖) = (𝐸‘𝑖) ↔ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))) |
51 | 50 | ralunsn 4822 |
. . . 4
⊢
((♯‘𝐴)
∈ V → (∀𝑖
∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵‘𝑖) = (𝐸‘𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))) |
52 | 47, 51 | ax-mp 5 |
. . 3
⊢
(∀𝑖 ∈
((0..^(♯‘𝐴))
∪ {(♯‘𝐴)})(𝐵‘𝑖) = (𝐸‘𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))) |
53 | 46, 52 | sylibr 233 |
. 2
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵‘𝑖) = (𝐸‘𝑖)) |
54 | | nnnn0 12170 |
. . . . . . . 8
⊢
((♯‘𝐴)
∈ ℕ → (♯‘𝐴) ∈
ℕ0) |
55 | | elnn0uz 12552 |
. . . . . . . 8
⊢
((♯‘𝐴)
∈ ℕ0 ↔ (♯‘𝐴) ∈
(ℤ≥‘0)) |
56 | 54, 55 | sylib 217 |
. . . . . . 7
⊢
((♯‘𝐴)
∈ ℕ → (♯‘𝐴) ∈
(ℤ≥‘0)) |
57 | 56 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) →
(♯‘𝐴) ∈
(ℤ≥‘0)) |
58 | 8, 57 | syl 17 |
. . . . 5
⊢ (𝑈 ∈ 𝐶 → (♯‘𝐴) ∈
(ℤ≥‘0)) |
59 | 58 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (♯‘𝐴) ∈
(ℤ≥‘0)) |
60 | | fzisfzounsn 13427 |
. . . 4
⊢
((♯‘𝐴)
∈ (ℤ≥‘0) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})) |
61 | 59, 60 | syl 17 |
. . 3
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})) |
62 | 61 | raleqdv 3339 |
. 2
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0...(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖) ↔ ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵‘𝑖) = (𝐸‘𝑖))) |
63 | 53, 62 | mpbird 256 |
1
⊢ ((𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵‘𝑖) = (𝐸‘𝑖)) |