MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1lem3 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1lem3 29976
Description: Lemma 3 for clwlkclwwlkf1 29980. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
clwlkclwwlkf.d 𝐷 = (1st𝑊)
clwlkclwwlkf.e 𝐸 = (2nd𝑊)
Assertion
Ref Expression
clwlkclwwlkf1lem3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈   𝐴,𝑖   𝐵,𝑖   𝐷,𝑖   𝑤,𝐷   𝑖,𝐸   𝑤,𝑊
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤,𝑖)   𝑈(𝑖)   𝐸(𝑤)   𝑊(𝑖)

Proof of Theorem clwlkclwwlkf1lem3
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.a . . . . 5 𝐴 = (1st𝑈)
3 clwlkclwwlkf.b . . . . 5 𝐵 = (2nd𝑈)
4 clwlkclwwlkf.d . . . . 5 𝐷 = (1st𝑊)
5 clwlkclwwlkf.e . . . . 5 𝐸 = (2nd𝑊)
61, 2, 3, 4, 5clwlkclwwlkf1lem2 29975 . . . 4 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
7 simprr 772 . . . . 5 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
81, 2, 3clwlkclwwlkflem 29974 . . . . . . . . 9 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
91, 4, 5clwlkclwwlkflem 29974 . . . . . . . . 9 (𝑊𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ))
10 lbfzo0 13591 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝐴)) ↔ (♯‘𝐴) ∈ ℕ)
1110biimpri 228 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ → 0 ∈ (0..^(♯‘𝐴)))
12113ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 0 ∈ (0..^(♯‘𝐴)))
1312adantr 480 . . . . . . . . . . . . 13 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → 0 ∈ (0..^(♯‘𝐴)))
1413adantr 480 . . . . . . . . . . . 12 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → 0 ∈ (0..^(♯‘𝐴)))
15 fveq2 6817 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝐵𝑖) = (𝐵‘0))
16 fveq2 6817 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝐸𝑖) = (𝐸‘0))
1715, 16eqeq12d 2746 . . . . . . . . . . . . 13 (𝑖 = 0 → ((𝐵𝑖) = (𝐸𝑖) ↔ (𝐵‘0) = (𝐸‘0)))
1817rspcv 3571 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐴)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘0) = (𝐸‘0)))
1914, 18syl 17 . . . . . . . . . . 11 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘0) = (𝐸‘0)))
20 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐵‘0))
21 eqtr 2750 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷))) → (𝐵‘0) = (𝐸‘(♯‘𝐷)))
2221adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘0) = (𝐸‘(♯‘𝐷)))
2320, 22eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))
2423exp32 420 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐵‘0) = (𝐸‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2524com23 86 . . . . . . . . . . . . . . . . . . . 20 ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2625eqcoms 2738 . . . . . . . . . . . . . . . . . . 19 ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
27263ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2827com12 32 . . . . . . . . . . . . . . . . 17 ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
29283ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
3029impcom 407 . . . . . . . . . . . . . . 15 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))
3130adantr 480 . . . . . . . . . . . . . 14 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))
3231imp 406 . . . . . . . . . . . . 13 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))
33 fveq2 6817 . . . . . . . . . . . . . . . 16 ((♯‘𝐷) = (♯‘𝐴) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3433eqcoms 2738 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = (♯‘𝐷) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3534adantl 481 . . . . . . . . . . . . . 14 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3635adantr 480 . . . . . . . . . . . . 13 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3732, 36eqtrd 2765 . . . . . . . . . . . 12 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))
3837ex 412 . . . . . . . . . . 11 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
3919, 38syld 47 . . . . . . . . . 10 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
4039ex 412 . . . . . . . . 9 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
418, 9, 40syl2an 596 . . . . . . . 8 ((𝑈𝐶𝑊𝐶) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
4241impd 410 . . . . . . 7 ((𝑈𝐶𝑊𝐶) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
43423adant3 1132 . . . . . 6 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
4443imp 406 . . . . 5 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))
457, 44jca 511 . . . 4 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
466, 45mpdan 687 . . 3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
47 fvex 6830 . . . 4 (♯‘𝐴) ∈ V
48 fveq2 6817 . . . . . 6 (𝑖 = (♯‘𝐴) → (𝐵𝑖) = (𝐵‘(♯‘𝐴)))
49 fveq2 6817 . . . . . 6 (𝑖 = (♯‘𝐴) → (𝐸𝑖) = (𝐸‘(♯‘𝐴)))
5048, 49eqeq12d 2746 . . . . 5 (𝑖 = (♯‘𝐴) → ((𝐵𝑖) = (𝐸𝑖) ↔ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
5150ralunsn 4844 . . . 4 ((♯‘𝐴) ∈ V → (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
5247, 51ax-mp 5 . . 3 (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
5346, 52sylibr 234 . 2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖))
54 nnnn0 12380 . . . . . . 7 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℕ0)
55 elnn0uz 12769 . . . . . . 7 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
5654, 55sylib 218 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ (ℤ‘0))
57563ad2ant3 1135 . . . . 5 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ (ℤ‘0))
588, 57syl 17 . . . 4 (𝑈𝐶 → (♯‘𝐴) ∈ (ℤ‘0))
59583ad2ant1 1133 . . 3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (♯‘𝐴) ∈ (ℤ‘0))
60 fzisfzounsn 13672 . . 3 ((♯‘𝐴) ∈ (ℤ‘0) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
6159, 60syl 17 . 2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
6253, 61raleqtrrdv 3294 1 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  {crab 3393  Vcvv 3434  cun 3898  {csn 4574   class class class wbr 5089  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  0cc0 10998  1c1 10999  cle 11139  cn 12117  0cn0 12373  cuz 12724  ...cfz 13399  ..^cfzo 13546  chash 14229   prefix cpfx 14570  Walkscwlks 29568  ClWalkscclwlks 29741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-substr 14541  df-pfx 14571  df-wlks 29571  df-clwlks 29742
This theorem is referenced by:  clwlkclwwlkf1  29980
  Copyright terms: Public domain W3C validator