MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf1lem3 Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf1lem3 28061
Description: Lemma 3 for clwlkclwwlkf1 28065. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.a 𝐴 = (1st𝑈)
clwlkclwwlkf.b 𝐵 = (2nd𝑈)
clwlkclwwlkf.d 𝐷 = (1st𝑊)
clwlkclwwlkf.e 𝐸 = (2nd𝑊)
Assertion
Ref Expression
clwlkclwwlkf1lem3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑤,𝐴   𝑤,𝑈   𝐴,𝑖   𝐵,𝑖   𝐷,𝑖   𝑤,𝐷   𝑖,𝐸   𝑤,𝑊
Allowed substitution hints:   𝐵(𝑤)   𝐶(𝑤,𝑖)   𝑈(𝑖)   𝐸(𝑤)   𝑊(𝑖)

Proof of Theorem clwlkclwwlkf1lem3
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.a . . . . 5 𝐴 = (1st𝑈)
3 clwlkclwwlkf.b . . . . 5 𝐵 = (2nd𝑈)
4 clwlkclwwlkf.d . . . . 5 𝐷 = (1st𝑊)
5 clwlkclwwlkf.e . . . . 5 𝐸 = (2nd𝑊)
61, 2, 3, 4, 5clwlkclwwlkf1lem2 28060 . . . 4 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
7 simprr 773 . . . . 5 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
81, 2, 3clwlkclwwlkflem 28059 . . . . . . . . 9 (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
91, 4, 5clwlkclwwlkflem 28059 . . . . . . . . 9 (𝑊𝐶 → (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ))
10 lbfzo0 13265 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝐴)) ↔ (♯‘𝐴) ∈ ℕ)
1110biimpri 231 . . . . . . . . . . . . . . 15 ((♯‘𝐴) ∈ ℕ → 0 ∈ (0..^(♯‘𝐴)))
12113ad2ant3 1137 . . . . . . . . . . . . . 14 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → 0 ∈ (0..^(♯‘𝐴)))
1312adantr 484 . . . . . . . . . . . . 13 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → 0 ∈ (0..^(♯‘𝐴)))
1413adantr 484 . . . . . . . . . . . 12 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → 0 ∈ (0..^(♯‘𝐴)))
15 fveq2 6706 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝐵𝑖) = (𝐵‘0))
16 fveq2 6706 . . . . . . . . . . . . . 14 (𝑖 = 0 → (𝐸𝑖) = (𝐸‘0))
1715, 16eqeq12d 2750 . . . . . . . . . . . . 13 (𝑖 = 0 → ((𝐵𝑖) = (𝐸𝑖) ↔ (𝐵‘0) = (𝐸‘0)))
1817rspcv 3525 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐴)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘0) = (𝐸‘0)))
1914, 18syl 17 . . . . . . . . . . 11 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘0) = (𝐸‘0)))
20 simpl 486 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐵‘0))
21 eqtr 2757 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷))) → (𝐵‘0) = (𝐸‘(♯‘𝐷)))
2221adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘0) = (𝐸‘(♯‘𝐷)))
2320, 22eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵‘(♯‘𝐴)) = (𝐵‘0) ∧ ((𝐵‘0) = (𝐸‘0) ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))
2423exp32 424 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐵‘0) = (𝐸‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2524com23 86 . . . . . . . . . . . . . . . . . . . 20 ((𝐵‘(♯‘𝐴)) = (𝐵‘0) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2625eqcoms 2742 . . . . . . . . . . . . . . . . . . 19 ((𝐵‘0) = (𝐵‘(♯‘𝐴)) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
27263ad2ant2 1136 . . . . . . . . . . . . . . . . . 18 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
2827com12 32 . . . . . . . . . . . . . . . . 17 ((𝐸‘0) = (𝐸‘(♯‘𝐷)) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
29283ad2ant2 1136 . . . . . . . . . . . . . . . 16 ((𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ) → ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))))
3029impcom 411 . . . . . . . . . . . . . . 15 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))
3130adantr 484 . . . . . . . . . . . . . 14 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷))))
3231imp 410 . . . . . . . . . . . . 13 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐷)))
33 fveq2 6706 . . . . . . . . . . . . . . . 16 ((♯‘𝐷) = (♯‘𝐴) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3433eqcoms 2742 . . . . . . . . . . . . . . 15 ((♯‘𝐴) = (♯‘𝐷) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3534adantl 485 . . . . . . . . . . . . . 14 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3635adantr 484 . . . . . . . . . . . . 13 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐸‘(♯‘𝐷)) = (𝐸‘(♯‘𝐴)))
3732, 36eqtrd 2774 . . . . . . . . . . . 12 (((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) ∧ (𝐵‘0) = (𝐸‘0)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))
3837ex 416 . . . . . . . . . . 11 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → ((𝐵‘0) = (𝐸‘0) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
3919, 38syld 47 . . . . . . . . . 10 ((((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) ∧ (♯‘𝐴) = (♯‘𝐷)) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
4039ex 416 . . . . . . . . 9 (((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) ∧ (𝐷(Walks‘𝐺)𝐸 ∧ (𝐸‘0) = (𝐸‘(♯‘𝐷)) ∧ (♯‘𝐷) ∈ ℕ)) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
418, 9, 40syl2an 599 . . . . . . . 8 ((𝑈𝐶𝑊𝐶) → ((♯‘𝐴) = (♯‘𝐷) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
4241impd 414 . . . . . . 7 ((𝑈𝐶𝑊𝐶) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
43423adant3 1134 . . . . . 6 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
4443imp 410 . . . . 5 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))
457, 44jca 515 . . . 4 (((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) ∧ ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
466, 45mpdan 687 . . 3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
47 fvex 6719 . . . 4 (♯‘𝐴) ∈ V
48 fveq2 6706 . . . . . 6 (𝑖 = (♯‘𝐴) → (𝐵𝑖) = (𝐵‘(♯‘𝐴)))
49 fveq2 6706 . . . . . 6 (𝑖 = (♯‘𝐴) → (𝐸𝑖) = (𝐸‘(♯‘𝐴)))
5048, 49eqeq12d 2750 . . . . 5 (𝑖 = (♯‘𝐴) → ((𝐵𝑖) = (𝐸𝑖) ↔ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
5150ralunsn 4795 . . . 4 ((♯‘𝐴) ∈ V → (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴)))))
5247, 51ax-mp 5 . . 3 (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ∧ (𝐵‘(♯‘𝐴)) = (𝐸‘(♯‘𝐴))))
5346, 52sylibr 237 . 2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖))
54 nnnn0 12080 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℕ0)
55 elnn0uz 12462 . . . . . . . 8 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
5654, 55sylib 221 . . . . . . 7 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ (ℤ‘0))
57563ad2ant3 1137 . . . . . 6 ((𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ) → (♯‘𝐴) ∈ (ℤ‘0))
588, 57syl 17 . . . . 5 (𝑈𝐶 → (♯‘𝐴) ∈ (ℤ‘0))
59583ad2ant1 1135 . . . 4 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (♯‘𝐴) ∈ (ℤ‘0))
60 fzisfzounsn 13337 . . . 4 ((♯‘𝐴) ∈ (ℤ‘0) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
6159, 60syl 17 . . 3 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (0...(♯‘𝐴)) = ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)}))
6261raleqdv 3318 . 2 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → (∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖) ↔ ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ {(♯‘𝐴)})(𝐵𝑖) = (𝐸𝑖)))
6353, 62mpbird 260 1 ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  {crab 3058  Vcvv 3401  cun 3855  {csn 4531   class class class wbr 5043  cfv 6369  (class class class)co 7202  1st c1st 7748  2nd c2nd 7749  0cc0 10712  1c1 10713  cle 10851  cn 11813  0cn0 12073  cuz 12421  ...cfz 13078  ..^cfzo 13221  chash 13879   prefix cpfx 14218  Walkscwlks 27656  ClWalkscclwlks 27829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-substr 14189  df-pfx 14219  df-wlks 27659  df-clwlks 27830
This theorem is referenced by:  clwlkclwwlkf1  28065
  Copyright terms: Public domain W3C validator